Anti-Inflammatory Effects of Helianthus Tuberosus L. Polysaccharide and Its Limited Gene Expression Profile
Abstract
1. Introduction
2. Results
2.1. In Vitro Study of Anti-Inflammatory Activity
2.2. Carrageenan-Induced Oedema Model
2.3. Air Pouch Granuloma Model
2.4. Formalin-Induced Oedema
3. Discussion
4. Materials and Methods
4.1. Studied Substance
4.2. In Vivo Study of Anti-Inflammatory Activity
4.2.1. Experimental Animals
4.2.2. Carrageenan-Induced Oedema Model
- Control group—animals received a sterile 0.9% NaCl solution intraperitoneally 1 h prior to the carrageenan injection (n = 8);
- Experimental group—animals received a sterile 0.9% NaCl solution containing HTLP at a dose of 100 µg/rat intraperitoneally 1 h before carrageenan administration (n = 8);
- Comparison group—animals received ibuprofen (a well-known anti-inflammatory agent) at a dose of 100 mg/kg intraperitoneally 1 h before carrageenan administration (n = 8).
4.2.3. Air Pouch Granuloma Model
- Control group—animals received a sterile 0.9% NaCl solution intraperitoneally 1 h prior to the turpentine injection (n = 8);
- Experimental group—animals received a sterile 0.9% NaCl solution containing HTLP at a dose of 100 µg/rat intraperitoneally 1 h prior to the turpentine injection (n = 8);
- Comparison group—animals received ibuprofen at a dose of 100 mg/kg intraperitoneally 1 h prior to the turpentine injection (n = 8).
4.2.4. Formalin-Induced Oedema Model
- Control group—animals received a sterile 0.9% NaCl solution intraperitoneally 1 h before formalin administration (n = 8);
- Experimental group—animals received a sterile 0.9% NaCl solution containing HTLP at a dose of 100 µg/rat intraperitoneally 1 h before formalin administration (n = 8);
- Comparison group—animals received ibuprofen at a dose of 100 mg/kg intraperitoneally 1 h before formalin administration (n = 8).
4.3. In Vitro Study of Anti-Inflammatory Activity
4.3.1. Cell Line and Culture Conditions
4.3.2. Differentiation of Monocytes into Macrophage-like Cells
4.3.3. Induction of Inflammation and Treatment with the Investigated Substance
4.3.4. Gene Expression Analysis by Real-Time Quantitative PCR
Primer Design
RNA Extraction and Reverse Transcription
Real-Time Quantitative PCR
Data Analysis and Quality Control
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HTLP | Helianthus tuberosus L. polysaccharide |
CSF | Colony-stimulating factor |
cDNA | Complementary DNA |
IFN | Interferon |
IL | Interleukin |
TNF | Tumour necrosis factor |
IQR | Interquartile range |
References
- Potere, N.; Bonaventura, A.; Abbate, A. Novel Therapeutics and Upcoming Clinical Trials Targeting Inflammation in Cardiovascular Diseases. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 2371–2395. [Google Scholar] [CrossRef]
- Chaffey, L.E.; Roberti, A.; Bowman, A.; O’BRien, C.J.; Som, L.; Purvis, G.S.; Greaves, D.R. Drug repurposing screen identifies novel anti-inflammatory activity of sunitinib in macrophages. Eur. J. Pharmacol. 2024, 969, 176437. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I.; Glass, C.K. Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science 2013, 339, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Scarpignato, C.; Lanas, A.; Blandizzi, C.; Lems, W.F.; Hermann, M.; Hunt, R.H. Safe prescribing of non-steroidal anti-inflammatory drugs in patients with osteoarthritis—An expert consensus addressing benefits as well as gastrointestinal and cardiovascular risks. BMC Med. 2015, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Ghlichloo, I.; Gerriets, V. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK547742/ (accessed on 16 May 2025).
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and aging: Signaling pathways and intervention therapies. Sig. Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef]
- Hou, C.; Chen, L.; Yang, L.; Ji, X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, B.; Wang, Z.; Li, M.; Zhao, W. Natural Polysaccharides with Immunomodulatory Activities. Mini Rev. Med. Chem. 2020, 20, 96–106. [Google Scholar] [CrossRef]
- Generalov, E.; Yakovenko, L. Receptor basis of biological activity of polysaccharides. Biophys. Rev. 2023, 15, 1209–1222. [Google Scholar] [CrossRef]
- Li, D.; Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 2021, 6, 291. [Google Scholar] [CrossRef]
- Generalov, E.; Grigoryan, I.; Minaichev, V.; Sinitsyna, O.; Yakovenko, L.; Sinitsyn, A.; Generalova, L. Anti-Inflammatory Effects of Solanum tuberosum L. Polysaccharide and Its Limited Gene Expression Profile. Int. J. Mol. Sci. 2025, 26, 5562. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.J.; Fehrenbach, G.W.; Abidin, I.Z.; Buckley, C.; Montgomery, T.; Pogue, R.; Murray, P.; Major, I.; Rezoagli, E. Polysaccharides—Naturally Occurring Immune Modulators. Polymers 2023, 15, 2373. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Wang, X.Q.; Xu, X.F.; Zhang, X.W. Purification, antitumor and anti-inflammation activities of an alkali-soluble and carboxymethyl polysaccharide CMP33 from Poria cocos. Int. J. Biol. Macromol. 2019, 127, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Generalov, E.; Laryushkin, D.; Kritskaya, K.; Kulchenko, N.; Sinitsyn, A.; Yakovenko, L.; Generalova, L.; Belostotsky, N. Immune basis of therapeutic effects of Solanum tuberosum L. polysaccharide on chronic peptic ulcer healing. Pharmaceutics 2025, 18, 502. [Google Scholar] [CrossRef]
- Generalov, E.A. Water-soluble polysaccharide from Heliantnus tuberosus L.: Radioprotective, colony-stimulation and immunomodulation activities. Biofizika 2015, 60, 73–79. [Google Scholar]
- Yin, Z.; Zhang, J.; Qin, J.; Guo, L.; Guo, Q.; Kang, W.; Ma, C.; Chen, L. Anti-inflammatory properties of polysaccharides from edible fungi on health-promotion: A review. Front. Pharmacol. 2024, 15, 1447677. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Wang, H.; Wu, Q.; Geng, Y. Effects of Pine Pollen Polysaccharides and Sulfated Polysaccharides on Ulcerative Colitis in Mice by Regulating Th17/Treg. Foods 2024, 13, 3183. [Google Scholar] [CrossRef]
- Lu, L.; Xiong, Y.; Lin, Z.; Chu, X.; Panayi, A.C.; Hu, Y.; Zhou, J.; Mi, B.; Liu, G. Advances in the therapeutic application and pharmacological properties of kinsenoside against inflammation and oxidative stress-induced disorders. Front. Pharmacol. 2022, 13, 1009550. [Google Scholar] [CrossRef]
- Ma, L.; Wang, X.; Li, Y.; Xiao, H.; Yuan, F. Effect of polysaccharides from Vitis vinifera L. on NF-κB/IκB-α signal pathway and inflammatory factors in Alzheimer’s model rats. Biotechnol. Biotechnol. Equip. 2018, 32, 1012–1020. [Google Scholar] [CrossRef]
- Maiorov, S.A.; Laryushkin, D.P.; Kritskaya, K.A.; Zinchenko, V.P.; Gaidin, S.G.; Kosenkov, A.M. The Role of Ion Channels and Intracellular Signaling Cascades in the Inhibitory Action of WIN 55,212-2 upon Hyperexcitation. Brain Sci. 2024, 14, 668. [Google Scholar] [CrossRef]
- Gaidin, S.; Maiorov, S.; Zinchenko, V.; Laryushkin, D.; Tuleukhanov, S.; Kairat, B.; Kosenkov, A. Pharmacological inhibition of PLC and PKC triggers epileptiform activity in hippocampal neurons. Epilepsy Res. 2025, 214, 107570. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Zhi, Z.; Wei, C.; Wang, W.; Ding, T.; Ye, X.; Hu, Y.; Linhardt, R.J.; Chen, S. Macromolecular Properties and Hypolipidemic Effects of Four Sulfated Polysaccharides from Sea Cucumbers. Carbohydr. Polym. 2017, 173, 330–337. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, G.; Li, F.; Fang, S.; Zhou, S.; Ishiwata, A.; Tonevitsky, A.G.; Shkurnikov, M.; Cai, H.; Ding, F. Immunomodulatory Effect and Biological Significance of β-Glucans. Pharmaceutics 2023, 15, 1615. [Google Scholar] [CrossRef] [PubMed]
- Mata-Martínez, P.; Bergón-Gutiérrez, M.; Del Fresno, C. Dectin-1 Signaling Update: New Perspectives for Trained Immunity. Front. Immunol. 2022, 13, 812148. [Google Scholar] [CrossRef] [PubMed]
- Pedro, A.R.V.; Lima, T.; Fróis-Martins, R.; Leal, B.; Ramos, I.C.; Martins, E.G.; Cabrita, A.R.J.; Fonseca, A.J.M.; Maia, M.R.G.; Vilanova, M.; et al. Dectin-1-Mediated Production of Pro-Inflammatory Cytokines Induced by Yeast β-Glucans in Bovine Monocytes. Front. Immunol. 2021, 12, 689879. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Yáñez, A.; Ramos, P.; Morales-Quintana, L. Human Health Benefits through Daily Consumption of Jerusalem Artichoke (Helianthus tuberosus L.) Tubers. Horticulturae 2022, 8, 620. [Google Scholar] [CrossRef]
- Sawicka, B.; Skiba, D.; Pszczółkowski, P.; Aslan, I.; Sharifi-Rad, J.; Krochmal-Marczak, B. Jerusalem artichoke (Helianthus tuberosus L.) as a medicinal plant and its natural products. Cell Mol. Biol. 2020, 66, 160–177. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S.; Nowicka, P.; Rubiński, P.; Cebulak, T. Evaluation of Innovative Dried Purée from Jerusalem Artichoke—In Vitro Studies of Its Physicochemical and Health-Promoting Properties. Molecules 2021, 26, 2644. [Google Scholar] [CrossRef]
- Mao, S.; Zhang, X.; Yang, M.; Duan, J.; Xiao, P. A comprehensive review on the antitumor mechanisms of polysaccharides and their structure-activity relationships—Current insights and future directions. Int. J. Biol. Macromol. 2025, 319, 145355. [Google Scholar] [CrossRef]
- Guo, R.; Chen, M.; Ding, Y.; Yang, P.; Wang, M.; Zhang, H.; He, Y.; Ma, H. Polysaccharides as Potential Anti-tumor Biomacromolecules -A Review. Front. Nutr. 2022, 9, 838179. [Google Scholar] [CrossRef]
- Generalov, E.A. Structure and radioprotective properties of a non-toxic polysaccharide from Helianthus tuberosus L. Biophysics 2014, 59, 357–363. [Google Scholar] [CrossRef]
- Generalov, E.A. Antimetastatic and Tumor Growth Inhibition Activity of Polysaccharide from Helianthus Tuberosus L. ARC J. Cancer Sci. 2015, 1, 5–10. [Google Scholar] [CrossRef]
- Generalov, E.; Dyukina, A.; Shemyakov, A.; Mytsin, G.; Agapov, A.; Kritskaya, K.; Kosenkov, A.; Gaidin, S.; Maiorov, S.; Generalova, L.; et al. Polysaccharide from Helianthus tuberosus L. as a potential radioprotector. Biochem. Biophys. Res. Commun. 2024, 733, 150442. [Google Scholar] [CrossRef] [PubMed]
- Generalov, E.A.; Afremova, A.I. The Molecular mechanism of the action of Helianthus tuberosus L. polysaccharide. Biophysics 2016, 61, 558–564. [Google Scholar] [CrossRef]
- Generalov, E.A. Spectral characteristics and monosaccharide composition of an interferon-inducing antiviral polysaccharide from Helianthus tuberosus L. Biophysics 2015, 60, 53–59. [Google Scholar] [CrossRef]
- García-Domínguez, M. The Role of TNF-α in Neuropathic Pain: An Immunotherapeutic Perspective. Life 2025, 15, 785. [Google Scholar] [CrossRef]
- Wooff, Y.; Man, S.M.; Aggio-Bruce, R.; Natoli, R.; Fernando, N. IL-1 Family Members Mediate Cell Death, Inflammation and Angiogenesis in Retinal Degenerative Diseases. Front. Immunol. 2019, 10, 1618. [Google Scholar] [CrossRef]
- Ullrich, K.A.; Schulze, L.L.; Paap, E.M.; Müller, T.M.; Neurath, M.F.; Zundler, S. Immunology of IL-12: An update on functional activities and implications for disease. EXCLI J. 2020, 19, 1563–1589. [Google Scholar] [CrossRef]
- Krueger, J.G.; Eyerich, K.; Kuchroo, V.K.; Ritchlin, C.T.; Abreu, M.T.; Elloso, M.M.; Fourie, A.; Fakharzadeh, S.; Sherlock, J.P.; Yang, Y.-W.; et al. IL-23 past, present, and future: A roadmap to advancing IL-23 science and therapy. Front. Immunol. 2024, 15, 1331217. [Google Scholar] [CrossRef]
- Elgueta, R.; Benson, M.J.; de Vries, V.C.; Wasiuk, A.; Guo, Y.; Noelle, R.J. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 2009, 229, 152–172. [Google Scholar] [CrossRef]
- Haile, S.T.; Horn, L.A.; Ostrand-Rosenberg, S. A soluble form of CD80 enhances antitumor immunity by neutralizing programmed death ligand-1 and simultaneously providing costimulation. Cancer Immunol. Res. 2014, 2, 610–615. [Google Scholar] [CrossRef]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2020, 217, e20190418. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.H.; Park, P.S.U.; Park-Min, K.H. The M-CSF receptor in osteoclasts and beyond. Exp. Mol. Med. 2020, 52, 1239–1254. [Google Scholar] [CrossRef]
- Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; de Giorgis, T.; Kiess, W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol. 2015, 11, 535–546. [Google Scholar] [CrossRef]
- Directive 2010/63/EU of the European Parliament and of the Council on the Protection of Animals Used for Scientific Purposes. FAOLEX. Available online: https://www.fao.org/faolex/results/details/ru/c/LEX-FAOC098296/ (accessed on 15 January 2025).
- Guillen, J. FELASA guidelines and recommendations. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 311–321. [Google Scholar]
- Whiteley, P.E.; Dalrymple, S.A. Models of inflammation: Carrageenan-induced paw edema in the rat. Curr. Protoc. Pharmacol. 1998, 541–543. [Google Scholar] [CrossRef]
- Ben Khedir, S.; Mzid, M.; Bardaa, S.; Moalla, D.; Sahnoun, Z.; Rebai, T. In Vivo Evaluation of the Anti-Inflammatory Effect of Pistacia lentiscus Fruit Oil and Its Effects on Oxidative Stress. Evid. Based Complement. Alternat. Med. 2016, 2016, 6108203. [Google Scholar] [CrossRef]
- Colville-Nash, P.; Lawrence, T. Air-pouch models of inflammation and modifications for the study of granuloma-mediated cartilage degradation. Methods Mol. Biol. 2003, 225, 181–189. [Google Scholar] [CrossRef]
- Wheeler-Aceto, H.; Cowan, A. Standardization of the rat paw formalin test for the evaluation of analgesics. Psychopharmacology 1991, 104, 35–44. [Google Scholar] [CrossRef]
- Kozera, B.; Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 2013, 54, 391–406. [Google Scholar] [CrossRef]
- Kritskaya, K.A.; Fedotova, E.I.; Nadeev, A.D.; Berezhnov, A.V. Silver Bullet of Acidification: Studying Anti-PD Neuroprotective Mechanisms of Transient pH-Decrease. BIOCELL 2025, 49, 451–464. [Google Scholar] [CrossRef]
Gene (Protein) | Forward Primer (5′→3′) | Reverse Primer (5′→3′) |
---|---|---|
IL1B (IL-1β) | ATGATGGCTTATTACAGTGGCAA | GTCGGAGATTCGTAGCTGGA |
IL6 | ACTCACCTCTTCAGAACGAATTG | CCATCTTTGGAAGGTTCAGGTTG |
IL10 | GACTTTAAGGGTTACCTGGGTTG | TCACATGCGCCTTGATGTCTG |
IL12B | GCGGAGCTGCTACACTCTC | CCATGACCTCAATGGGCAGAC |
IL23 | CTCAGGGACAACAGTCAGTTC | ACAGGGCTATCAGGGAGCA |
TNFA (TNF-α) | CCTCTCTCTAATCAGCCCTCTG | GAGGACCTGGGAGTAGATGAG |
CD40 | TTGGGGTCAAGCAGATTGCTA | GCAGATGACACATTGGAGAAGA |
CD80 | GGCACATACGAGTGTGTTGT | TCAGCTTTGACTGATAACGTCAC |
CD274 | GGACAAGCAGTGACCATCAAG | CCCAGAATTACCAAGTGAGTCCT |
CSF1 | TGGCGAGCAGGAGTATCAC | AGGTCTCCATCTGACTGTCAAT |
NAMPT | GGCACCACTAATCATCAGACCTG | AAGGTGGCAGCAACTTGTAGCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Generalov, E.; Yakovenko, L.; Sinitsyn, A.; Alekseev, A.; Sinitsyna, O.; Abduvosidov, K.; Minaichev, V.; Generalova, L. Anti-Inflammatory Effects of Helianthus Tuberosus L. Polysaccharide and Its Limited Gene Expression Profile. Int. J. Mol. Sci. 2025, 26, 7885. https://doi.org/10.3390/ijms26167885
Generalov E, Yakovenko L, Sinitsyn A, Alekseev A, Sinitsyna O, Abduvosidov K, Minaichev V, Generalova L. Anti-Inflammatory Effects of Helianthus Tuberosus L. Polysaccharide and Its Limited Gene Expression Profile. International Journal of Molecular Sciences. 2025; 26(16):7885. https://doi.org/10.3390/ijms26167885
Chicago/Turabian StyleGeneralov, Evgenii, Leonid Yakovenko, Arkady Sinitsyn, Alexander Alekseev, Olga Sinitsyna, Khurshed Abduvosidov, Vladislav Minaichev, and Liubov Generalova. 2025. "Anti-Inflammatory Effects of Helianthus Tuberosus L. Polysaccharide and Its Limited Gene Expression Profile" International Journal of Molecular Sciences 26, no. 16: 7885. https://doi.org/10.3390/ijms26167885
APA StyleGeneralov, E., Yakovenko, L., Sinitsyn, A., Alekseev, A., Sinitsyna, O., Abduvosidov, K., Minaichev, V., & Generalova, L. (2025). Anti-Inflammatory Effects of Helianthus Tuberosus L. Polysaccharide and Its Limited Gene Expression Profile. International Journal of Molecular Sciences, 26(16), 7885. https://doi.org/10.3390/ijms26167885