Ammonium Catecholaldehydes as Multifunctional Bioactive Agents: Evaluating Antimicrobial, Antioxidant, and Antiplatelet Activity
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Biological Studies
2.2.1. Antimicrobial Activity
2.2.2. CV Assay
2.2.3. Hemolytic and Cytotoxic Activities
2.2.4. Anticoagulant and Antiplatelet Activity Studies
2.2.5. Evaluation of Antiphytopathogenic Activity
2.2.6. Evaluation of Antioxidant Activity
3. Materials and Methods
3.1. Chemistry
3.2. Biological Studies
3.2.1. Antimicrobial Activity
3.2.2. Crystal Violet (CV) Assay
3.2.3. Cytotoxic Activity
Cell Lines and Their Cultivation
Determination of Cell Viability
3.2.4. Hemolytic Activity
3.2.5. Anticoagulant and Antiplatelet Activity Study
3.2.6. Antiphytopathogenic Activity
3.2.7. Coulometric Evaluation of Total Antioxidant Capacity
3.2.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ikuta, K.S.; Swetschinski, L.R.; Aguilar, G.R.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Weaver, N.D.; Wool, E.E.; Han, C.; Hayoon, A.G.; et al. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 17, 2221–2248. [Google Scholar] [CrossRef]
- Biondo, C. New Insights into Bacterial Pathogenesis. Pathogens 2023, 12, 38. [Google Scholar] [CrossRef]
- Soni, J.; Sinha, S.; Pandey, R. Understanding bacterial pathogenicity: A closer look at the journey of harmful microbes. Front. Microbiol. 2024, 15, 1370818. [Google Scholar] [CrossRef]
- Yilmaz, N.K.; Schiffer, C.A. Introduction: Drug Resistance. Chem. Rev. 2021, 121, 3235–3237. [Google Scholar] [CrossRef]
- Harikumar, G.; Krishanan, K. The growing menace of drug resistant pathogens and recent strategies to overcome drug resistance: A review. J. King Saud Univ.—Sci. 2022, 34, 101979. [Google Scholar] [CrossRef]
- Saha, M.; Sarkar, A. Review on Multiple Facets of Drug Resistance: A Rising Challenge in the 21st Century. J. Xenobiot. 2021, 11, 197–214. [Google Scholar] [CrossRef]
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef]
- Verhaegen, M.; Bergot, T.; Liebana, E.; Stancanelli, G.; Streissl, F.; Mingeot-Leclercq, M.-P.; Mahillon, J.; Bragard, C. On the use of antibiotics to control plant pathogenic bacteria: A genetic and genomic perspective. Front. Microbiol. 2023, 14, 1221478. [Google Scholar] [CrossRef]
- Nelson, M.-A.M.; Baba, S.P.; Anderson, E.J. Biogenic Aldehydes as therapeutic targets for cardiovascular disease. Curr. Opin. Pharmacol. 2017, 33, 56–63. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Kopin, I.J.; Sharabi, Y. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol. Ther. 2014, 144, 268–282. [Google Scholar] [CrossRef]
- Colzani, M.; De Maddis, D.; Casali, G.; Carini, M.; Vistoli, G.; Aldini, G. Reactivity, selectivity, and reaction mechanisms of aminoguanidine, hydralazine, pyridoxamine, and carnosine as sequestering agents of reactive carbonyl species: A comparative study. ChemMedChem 2016, 11, 1778–1789. [Google Scholar] [CrossRef]
- Anastassova, N.; Stefanova, D.; Hristova-Avakumova, N.; Georgieva, I.; Kondeva-Burdina, M.; Rangelov, M.; Todorova, N.; Tzoneva, R.; Yancheva, D. New indole-3-propionic acid and 5-methoxy-indole carboxylic acid derived hydrazone hybrids as multifunctional neuroprotectors. Antioxidants 2023, 12, 977. [Google Scholar] [CrossRef]
- Cukierman, D.S.; Rey, N.A. Tridentate N-Acylhydrazones as Moderate Ligands for the Potential Management of Cognitive Decline Associated with Metal-Enhanced Neu-roaggregopathies. Front. Neurol. 2022, 13, 828654. [Google Scholar] [CrossRef]
- Anastassova, N.; Aluani, D.; Hristova-Avakumova, N.; Tzankova, V.; Kondeva-Burdina, M.; Rangelov, M.; Todorova, N.; Yancheva, D. Study on the neuroprotective, radical-scavenging and MAO-B inhibiting properties of new benzimidazole arylhydrazones as potential multi-target drugs for the treatment of Parkinson’s disease. Antioxidants 2022, 11, 884. [Google Scholar] [CrossRef]
- Antemie, R.-G.; Marc, G.; Pele, R.; Fizeșan, I.; Creștin, I.-V.; Borlan, R.; Theodosis-Nobelos, P.; Rekka, E.A.; Oniga, O.; Crișan, O.; et al. Antioxidant Activity and Cytotoxicity Evaluation of New Catechol Hydrazinyl-Thiazole Derivatives as Potential Protectors in Retinal Degenerative Processes. Antioxidants 2025, 14, 646. [Google Scholar] [CrossRef]
- Bogdanov, A.V.; Iskhakova, K.R.; Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Terekhova, N.V.; Arsenyev, M.V.; Ziyatdinova, G.K.; Bukharov, S.V. Ammonium-Charged Sterically Hindered Phenols with Antioxidant and Selective Anti-Gram-Positive Bacterial Activity. Chem. Biodivers. 2020, 17, e2000147. [Google Scholar] [CrossRef]
- Thota, S.; Rodrigues, D.A.; de Sena Murteira Pinheiro, P.; Lima, L.M.; Fraga, C.A.M.; Barreiro, E.J. N-Acylhydrazones as drugs. Bioorg. Med. Chem. Lett. 2018, 28, 2797–2806. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, S.; Yu, L.; Zhang, W.; Wang, Z.; Chi, Y.R.; Wu, J. Hydrazone derivatives in agrochemical discovery and development. Chin. Chem. Lett. 2024, 35, 108207. [Google Scholar] [CrossRef]
- Socea, L.-I.; Barbuceanu, S.-F.; Pahontu, E.M.; Dumitru, A.-C.; Nitulescu, G.M.; Sfetea, R.C.; Apostol, T.-V. Acylhydrazones and Their Biological Activity: A Review. Molecules 2022, 27, 8719. [Google Scholar] [CrossRef]
- Sunil, R.; Sarbani, P.; Jayashree, A. Molecular Hybridization—An Emanating Tool in Drug Design. Med. Chem. 2019, 9, 93–95. [Google Scholar]
- Adaila, K.; Milenkovic, M.; Bacchi, A.; Cantoni, G.; Swart, M.; Gruden-Pavlovic, M.; Milenkovic, M.; Cobeljic, B.; Todorovic, T.; Andelkovic, K. Synthesis, characterization, DFT calculations, and antimicrobial activity of Pd(II) and Co(III) complexes with the condensation derivative of 2-(diphenylphosphino) benzaldehyde and Girard’s T reagent. J. Coord. Chem. 2014, 67, 3633–3648. [Google Scholar] [CrossRef]
- Cobeljic, B.; Milenkovic, M.; Pevec, A.; Turel, I.; Vujcic, M.; Janovic, B.; Gligorijevic, N.; Sladic, D.; Radulovic, S.; Jovanovic, K.; et al. Investigation of antitumor potential of Ni(II) complexes with tridentate PNO acylhydrazones of 2-(diphenylphosphino)benzaldehyde and monodentate pseudohalides. J. Biol. Inorg. Chem. 2016, 21, 145–162. [Google Scholar] [CrossRef]
- Curreri, A.M.; Mitragotri, S.; Tanner, E.E.L. Recent Advances in Ionic Liquids in Biomedicine. Adv. Sci. 2021, 8, 2004819. [Google Scholar] [CrossRef]
- Nikfarjam, N.; Ghomi, M.; Agarwal, T.; Hassanpour, M.; Sharifi, E.; Khorsandi, D.; Khan, M.A.; Rossi, F.; Rossetti, A.; Zare, E.N.; et al. Antimicrobial Ionic Liquid-Based Materials for Biomedical Applications. Adv. Funct. Mater. 2021, 31, 2104148. [Google Scholar] [CrossRef]
- Bures, F. Quaternary Ammonium Compounds: Simple in Structure, Complex in Application. Top. Curr. Chem. 2019, 377, 14. [Google Scholar] [CrossRef]
- Mahoney, A.R.; Safaee, M.M.; Wuest, W.M.; Furst, A.L. The silent pandemic: Emergent antibiotic resistances following the global response to SARS-CoV-2. iScience 2021, 24, 102304. [Google Scholar] [CrossRef]
- Kwasniewska, D.; Chen, Y.-L.; Wieczorek, D. Biological Activity of Quaternary Ammonium Salts and Their Derivatives. Pathogens 2020, 9, 459. [Google Scholar] [CrossRef]
- Osimitz, T.G.; Droege, W. Quaternary ammonium compounds: Perspectives on benefits, hazards, and risk. Toxicol. Res. Appl. 2021, 5, 239784732110490. [Google Scholar] [CrossRef]
- Xie, X.; Cong, W.; Zhao, F.; Li, H.; Xin, W.; Hou, G. Synthesis, physiochemical property and antimicrobial activity of novel quaternary ammonium salts. J. Enzyme Inhib. Med. Chem. 2018, 33, 98–105. [Google Scholar] [CrossRef]
- Hu, Y.; Yue, H.; Huang, S.; Song, B.; Xing, Y.; Liu, M.; Wang, G.; Diao, Y.; Zhang, S. Molecular Sizes and Antibacterial Performance Relationships of Flexible Ionic Liquid Derivatives. J. Am. Chem. Soc. 2020, 142, 20257–20269. [Google Scholar] [CrossRef]
- Schrank, C.L.; Wilt, I.K.; Monteagudo Ortiz, C.; Haney, B.A.; Wuest, W.M. Using membrane perturbing small molecules to target chronic persistent infections. RSC Med. Chem. 2021, 12, 1312–1324. [Google Scholar] [CrossRef]
- Jennings, M.C.; Minbiole, K.P.C.; Wuest, W.M. Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance. ACS Infect. Dis. 2015, 1, 288–303. [Google Scholar] [CrossRef]
- Joshi, A.D.; Botham, R.C.; Schlein, L.J.; Roth, H.S.; Mangraviti, A.; Borodovsky, A.; Tyler, B.; Joslyn, S.; Looper, J.S.; Podell, M.; et al. Synergistic and targeted therapy with a procaspase-3 activator and temozolomide extends survival in glioma rodent models and is feasible for the treatment of canine malignant glioma patients. Oncotarget 2017, 8, 80124–80138. [Google Scholar] [CrossRef]
- Abdel-Mohsen, H.T.; Conrad, J.; Harms, K.; Nohr, D.; Biefuss, U. Laccase-catalyzed green synthesis and cytotoxic activity of novel pyrimidobenzothiazoles and catechol thioethers. RSC Adv. 2017, 7, 17427–17441. [Google Scholar] [CrossRef]
- Varela, M.T.; Costa-Silva, T.A.; Lago, J.H.G.; Tempone, A.G.; Fernandes, J.P.S. Evaluation of the antitrypanosoma activity and SAR study of novel LINS03 derivatives. Bioorg. Chem. 2019, 89, 102996. [Google Scholar] [CrossRef]
- Losel, R.M.N.; Schnetzke, U.; Brinkkoetter, P.T.; Song, H.; Beck, G.; Schnuelle, P.; Hoger, S.; Wehling, M.; Yard, B.A. N-Octanoyl Dopamine, a Non-Hemodyanic Dopamine Derivative, for Cell Protection during Hypothermic Organ Preservation. PLoS ONE 2010, 5, e9713. [Google Scholar] [CrossRef]
- Adeyemi, C.M.; Hoppe, H.C.; Isaacs, M.; Mnkandhla, D.; Lobb, K.A.; Klein, R.; Kaye, P.T. Synthesis and anti-parasitic activity of N-benzylated phosphoramidate Mg2+-chelating ligands. Bioorg. Chem. 2020, 105, 104280. [Google Scholar] [CrossRef]
- Silva, A.G.; Vila, L.; Marques, P.; Moreno, L.; Loza, M.; Sans, M.J.; Cortes, D.; Castro, M.; Cabedo, N. 1-(2′-Bromobenzyl)-6,7-dihydroxy-N-methyl-tetrahydroisoquinoline and 1,2-Demethyl-nuciferine as Agonists in Human D2 Dopamine Receptors. J. Nat. Prod. 2020, 83, 127–133. [Google Scholar] [CrossRef]
- Viglianisi, C.; Menichetty, S. Chain Breaking Antioxidant Activity of Heavy (S, Se, Te) Chalcogens Substituted Polyphenols. Antioxidants 2019, 8, 487–509. [Google Scholar] [CrossRef]
- Smolyaninov, I.; Pitikova, O.; Korchagina, E.; Berberova, N.; Poddel’sky, A.; Luzhnova, S. Electrochemical behavior and anti/prooxidant activity of thioethers with redox-active catechol moiety. Monatsh. Chem. 2018, 149, 1813–1826. [Google Scholar] [CrossRef]
- Bogdanov, A.V.; Bukharov, S.V.; Garifullina, R.A.; Voloshina, A.D.; Lyubina, A.P.; Amerkhanova, S.K.; Bezsonova, M.S.; Khaptsev, Z.Y.; Tsivileva, O.M. Synthesis and Antimicrobial Activity Evaluation of Ammonium Acylhydrazones Based on 4,6-Di-tert-butyl-2,3-dihydroxybenzaldehyde. Russ. J. Gen. Chem. 2022, 92, 1875–1886. [Google Scholar] [CrossRef]
- Bogdanov, A.V.; Bukharov, S.V.; Rozhkova, M.A.; Voloshina, A.D. The First Representatives of Phosphonium Salts Based on the Ammonium Acylhydrazone Scaffold: Synthesis and Biological Activity. Russ. J. Gen. Chem. 2023, 93, S587–S590. [Google Scholar] [CrossRef]
- Flegontov, S.A.; Titova, Z.S.; Buzykin, B.I.; Kitaev, Y.P. Hydrazones. Russ. Chem. Bull. 1976, 25, 541–546. [Google Scholar] [CrossRef]
- Litvinov, I.A.; Kataeva, O.N.; Ermolaeva, L.V.; Vagina, G.A.; Troepol’skaya, T.V.; Naumov, V.A. Crystal and molecular structure of aroyl- and acetylhydrazones of acet- and benzaldehydes. Russ. Chem. Bull. 1991, 40, 62–67. [Google Scholar] [CrossRef]
- Palla, G.; Predieri, G.; Domiano, P. Conformational behaviour and E/Z isomerization of N-acyl and N-aroylhydrazones. Tetrahedron 1986, 42, 3649–3654. [Google Scholar] [CrossRef]
- Kuodis, Z.; Rutavicius, A.; Matijoska, A.; Eicher–Lorka, O. Synthesis and isomerism of hydrazones of 2-(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-ylthio)acetohydrazide. Cent. Eur. J. Chem. 2007, 5, 996–1006. [Google Scholar] [CrossRef]
- Syakaev, V.V.; Podyachev, S.N.; Buzykin, B.I.; Latypov, S.K.; Habicher, W.D.; Konovalov, A.I. NMR study of conformation and isomerization of aryl- and heteroarylaldehyde 4-tert-butylphenoxyacetylhydrazones. J. Mol. Struct. 2006, 788, 55. [Google Scholar] [CrossRef]
- Himmelreich, U.; Tschwatschal, F.; Borsdorf, R. NMR-spektroskopische Untersuchungen an Derivaten des 2,4-Dichlorphenoxyessigsäurehydrazids. Monatsh. Chem. 1993, 124, 1041. [Google Scholar] [CrossRef]
- Rutavichyus, A.; Valyulene, S.; Kuodis, Z. Synthesis and structure of dihydrazones obtained from the dihydrazide of 1,3,4-thiadiazole-2,5-dithioglycolic acid. Chem. Heterocycl. Compd. 1997, 33, 118–124. [Google Scholar] [CrossRef]
- Rutavichyus, A.; Valyulene, S. Synthesis and structure of dihydrazones obtained from the dihydrazide of S,S′-(1,3,4-thiadiazole-2,5-diyl)bis(2-mercaptopropionic acid. Chem. Heterocycl. Compd. 1998, 34, 1436–1441. [Google Scholar] [CrossRef]
- Alegbeleye, O.; Odeyemi, O.A.; Strateva, M.; Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Appl. Food Res. 2022, 2, 100122. [Google Scholar] [CrossRef]
- Erdrich, S.H.; Sharma, V.; Schurr, U.; Arsova, B.; Frunzke, J. Isolation of novel Xanthomonas phages infecting the plant pathogens X. translucens and X. campestris. Viruses 2022, 14, 1449. [Google Scholar] [CrossRef] [PubMed]
- Bournonville, L.; Askri, D.; Arafah, K.; Voisin, S.N.; Bocquet, M.; Bulet, P. Unraveling the Bombus terrestris hemolymph, an indicator of the immune response to microbial infections, through complementary mass spectrometry approaches. Int. J. Mol. Sci. 2023, 24, 4658. [Google Scholar] [CrossRef] [PubMed]
- Mousa, S.; Magdy, M.; Xiong, D.; Nyaruabaa, R.; Rizk, S.M.; Yu, J.; Wei, H. Microbial profiling of potato-associated rhizosphere bacteria under bacteriophage therapy. Antibiotics 2022, 11, 1117. [Google Scholar] [CrossRef] [PubMed]
- Soufi, O.; Romero, C.; Louaileche, H. Ortho-diphenol profile and antioxidant activity of Algerian black olive cultivars: Effect of dry salting process. Food Chem. 2014, 157, 504–510. [Google Scholar] [CrossRef]
- Almarhoon, Z.M.; Al-Zaben, M.I.; Ben Bacha, A.; Haukka, M.; El-Faham, A.; Soliman, S.M. Synthesis, X-ray structure, conformational analysis, and DFT studies of a giant s-triazine bis-Schiff base. Crystals 2021, 11, 1418. [Google Scholar] [CrossRef]
- Charlton, N.C.; Mastyugin, M.; Török, B.; Török, M. Structural features of small molecule antioxidants and strategic modifications to improve potential bioactivity. Molecules 2023, 28, 1057. [Google Scholar] [CrossRef]
- Baier, A.; Kokel, A.; Horton, W.; Gizińska, E.; Pandey, G.; Szyszka, R.; Török, B.; Török, M. Organofluorine hydrazone derivatives as multifunctional anti-Alzheimer’s agents with CK2 inhibitory and antioxidant features. ChemMedChem 2021, 16, 1927–1932. [Google Scholar] [CrossRef]
- Ito, S.; Sugumaran, M.; Wakamatsu, K. Chemical Reactivities of ortho-quinones produced in living organisms: Fate of quinonoid products formed by tyrosinase and henoloxidase action on phenols and catechols. Int. J. Mol. Sci. 2020, 21, 6080. [Google Scholar] [CrossRef]
- Huang, X.; Jin, L.; Deng, H.; Wu, D.; Shen, Q.K.; Quan, Z.S.; Zhang, C.H.; Guo, H.Y. Research and development of natural product tanshinone I: Pharmacology, total synthesis, and structure modifications. Front. Pharmacol. 2022, 13, 920411. [Google Scholar] [CrossRef]
- Li, Q.; Mi, Y.; Tan, W.; Guo, Z. Highly efficient free radical-scavenging property of phenolic-functionalized chitosan derivatives: Chemical modification and activity assessment. Int. J. Biol. Macromol. 2020, 164, 4279–4288. [Google Scholar] [CrossRef]
- Purgatorio, R.; Boccarelli, A.; Pisani, L.; De Candia, M.; Catto, M.; Altomare, C.D. A critical appraisal of the protective activity of polyphenolic antioxidants against iatrogenic effects of anticancer chemotherapeutics. Antioxidants 2024, 13, 133. [Google Scholar] [CrossRef]
- Nakayama, T.; Uno, B. Concerted two-proton–coupled electron transfer from catechols to superoxide via hydrogen bonds. Electrochim. Acta 2016, 208, 304–309. [Google Scholar] [CrossRef]
- Arman, A.; Sağlam, Ş.; Üzer, A.; Apak, R. A novel electrochemical sensor based on phosphate-stabilized poly-caffeic acid film in combination with graphene nanosheets for sensitive determination of nitro-aromatic energetic materials. Talanta 2024, 266, 125098. [Google Scholar] [CrossRef] [PubMed]
- Zivari-Moshfegh, F.; Nematollahi, D. An eco-friendly electrochemical process for the formation of a new desloratadine derivative and its antibacterial susceptibility. Report of a new type of ortho-quinhydrone complex. Electrochim. Acta 2022, 421, 140518. [Google Scholar] [CrossRef]
- Duffin, P.; Martin, D.L.; Pagenkopp Lohan, K.M.; Ross, C. Integrating host immune status, Labyrinthula spp. load and environmental stress in a seagrass pathosystem: Assessing immune markers and scope of a new qPCR primer set. PLoS ONE 2020, 15, e0230108. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Akashi, T.; Aoki, T. The missing link in leguminous pterocarpan biosynthesis is a dirigent domain-containing protein with isoflavanol dehydratase activity. Plant Cell Physiol. 2017, 58, 398–408. [Google Scholar] [CrossRef]
- Choubey, S.; Goyal, S.; Varughese, L.R.; Kumar, V.; Sharma, A.K.; Beniwal, V. Probing gallic acid for its broad spectrum applications. Mini Rev. Med. Chem. 2018, 18, 1283–1293. [Google Scholar] [CrossRef]
- Mukurumbira, A.R.; Shellie, R.A.; Keast, R.; Palombo, E.A.; Shah, R.; Muir, B.W.; White, J.; Jadhav, S.R. Preparation, physicochemical characterisation and assessment of liquid and vapour phase antimicrobial activity of essential oil loaded lipid nanoparticles. LWT 2024, 191, 115624. [Google Scholar] [CrossRef]
- Bikmukhametov, A.; Vasilevskaya, N.; Arsenyev, M.; Gerasimov, A.; Bukharov, M.; Islamov, D.; Belyakova, S.; Kuzin, Y.; Evtugyn, G.; Padnya, P. Task-specific ionic liquids based on catechol-containing hydrazones: Synthesis, selective Cu(II) binding, thermal properties, and redox-activity. J. Mol. Liq. 2025, 425, 127234. [Google Scholar] [CrossRef]
- Astaf’eva, T.; Arsenyev, M.; Rumyantcev, R.; Poddel’sky, A.; Fukin, G.; Cherkasov, V. Imine-Based Catechols and o-Benzoquinones: Synthesis, Structure and Features of Redox Behaviour. ACS Omega 2020, 5, 22179–22191. [Google Scholar] [CrossRef] [PubMed]
- Ziyatdinova, G.; Budnikov, H. Analytical capabilities of coulometric sensor systems in the antioxidants analysis. Chemosensors 2021, 9, 91. [Google Scholar] [CrossRef]
- Branković, J.; Milivojević, N.; Milovanović, V.; Simijonović, D.; Petrović, Z.D.; Marković, Z.; Šeklić, D.S.; Živanović, M.N.; Vukić, M.D.; Petrović, V.P. Evaluation of antioxidant and cytotoxic properties of phenolic N-acylhydrazones: Structure-activity relationship. R. Soc. Open Sci. 2022, 9, 211853. [Google Scholar] [CrossRef] [PubMed]
- Socea, L.I.; Visan, D.C.; Barbuceanu, S.F.; Apostol, T.V.; Bratu, O.G.; Socea, B. The antioxidant activity of some acylhydrazones with dibenzo[a,d][7]annulene moiety. Rev. Chim. 2018, 69, 795–797. [Google Scholar] [CrossRef]
- Nugumanova, G.N.; Bukharov, S.V.; Tagasheva, R.G.; Mukmeneva, N.A.; Deberdeev, R.Y. Antioxidant activity of isatin acylhydrazones with sterically hindered phenol fragments. Russ. J. Gen. Chem. 2015, 85, 53–56. [Google Scholar] [CrossRef]
- Bogdanov, A.V.; Kadomtseva, M.E.; Bukharov, S.V.; Voloshina, A.D.; Mironov, V.F. Effect of the Cationic Moiety on the Antimicrobial Activity of Sterically Hindered Isatin 3-Hydrazone Derivatives. Russ. J. Org. Chem. 2020, 56, 555–558. [Google Scholar] [CrossRef]
- Bogdanov, A.V.; Zaripova, I.F.; Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Tsivunina, I.V.; Dobrynin, A.B.; Mironov, V.F. Isatin derivatives bearing a fluorine atom. Part 1: Synthesis, hemotoxicity and antimicrobial activity evaluation of fluoro-benzylated water-soluble pyridinium isatin-3-acylhydrazones. J. Fluorine Chem. 2019, 227, 109345. [Google Scholar] [CrossRef]
- Shushunova, N.Y.; Khramova, D.V.; Kovylina, T.A.; Arsenyev, M.V.; Zhiganshina, E.R.; Chesnokov, S.A. Pyrazole-Containing o-Benzoquinones: Synthesis and Inhibitory Activity in Free-Radical Polymerization. Russ. J. Gen. Chem. 2023, 93, S639–S648. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial Susceptibility. In Tests for Bacteria That Grow Aerobically; CLSI: Wayne, PA, USA, 2000. [Google Scholar]
- Amerhanova, S.; Voloshina, A.; Sapunova, A.; Lyubina, A.; Mikhailov, V.; Mirgorodskaya, A.; Zakharova, L. Mitochondria-targeted Dicationic Imidazolium Surfactants. Eur. J. Clin. Investig. 2021, 51, 36. [Google Scholar] [CrossRef]
- Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Belenok, M.G.; Strobykina, I.Y.; Lyubina, A.P.; Gumerova, S.K.; Kataev, V.E. Antimicrobial and cytotoxic effects of ammonium derivatives of diterpenoids steviol and isosteviol. Bioorg. Med. Chem. 2021, 32, 115974. [Google Scholar] [CrossRef]
- Voloshina, A.D.; Gumerova, S.K.; Sapunova, A.S.; Kulik, N.V.; Mirgorodskaya, A.B.; Kotenko, A.A.; Prokopyeva, T.M.; Mikhailov, V.A.; Zakharova, L.Y.; Sinyashin, O.G. The structure–activity correlation in the family of dicationic imidazolium surfactants: Antimicrobial properties and cytotoxic effect. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129728. [Google Scholar] [CrossRef]
- Born, G. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962, 194, 927–929. [Google Scholar] [CrossRef]
- Arif, H.; Aggarwal, S. Salicylic Acid (Aspirin); StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Chen, J.; Yu, Y.; Li, S.; Ding, W. Resveratrol and coumarin: Novel agricultural antibacterial agent against Ralstonia solanacearum in vitro and in vivo. Molecules 2016, 21, 1501. [Google Scholar] [CrossRef]
- Golfakhrabadi, F.; Shams Ardakani, M.R.; Saeidnia, S.; Akbarzadeh, T.; Yousefbeyk, F.; Jamalifar, H.; Khanavi, M. In vitro antimicrobial and acetylcholinesterase inhibitory activities of coumarins from Ferulago carduchorum. Med. Chem. Res. 2016, 25, 1623–1629. [Google Scholar] [CrossRef]
- Samaga, P.V.; Rai, V.R.; Rai, K.M.L. Bionectria ochroleuca NOTL33—An endophytic fungus from Nothapodytes foetida producing antimicrobial and free radical scavenging metabolites. Ann. Microbiol. 2014, 64, 275–285. [Google Scholar] [CrossRef]
Starting Aldehyde | R | Reaction Time, h | Product No. with SMILES | Isomeric Ratio | |
---|---|---|---|---|---|
1 | Et2MeN+ | 4 | 9a OC1=C(O)C(C=NNC(C[N+](CC)(C)CC)=O)=C(C(C)C)C=C1C(C)C.[Br-] | 5/1 | |
2 | Et2MeN+ | 5.5 | 9b OC1=C(O)C(C=NNC(C[N+](CC)(C)CC)=O)=C(C(C)(C)CC)C=C1C(C)(C)CC.[Br-] | 6/1 | |
3 | Et2MeN+ | 3 | 9c OC1=C(O)C(C=NNC(C[N+](CC)(C)CC)=O)=C(C2CCCCC2)C=C1C3CCCCC3.[Br-] | 4.5/1 | |
4 | Et2MeN+ | 5 | 9d OC1=C(O)C(C=NNC(C[N+](CC)(C)CC)=O)=C(C2(C)CCCCC2)C=C1C3(C)CCCCC3.[Br-] | 6/1 | |
5 | Et2MeN+ | 3 | 9e OC1=C(O)C(C=NNC(C[N+](CC)(C)CC)=O)=C(C23C[C@@H]4C[C@H](C3)C[C@H](C2)C4)C=C1C56C[C@H]7C[C@@H](C6)C[C@@H](C5)C7.[Br-] | 6/1 | |
1 | 4 | 10a OC1=C(O)C(C=NNC(C[N+]2(CC3)CCN3CC2)=O)=C(C(C)C)C=C1C(C)C.[Br-] | 4/1 | ||
2 | 6.5 | 10b OC1=C(O)C(C=NNC(C[N+]2(CC3)CCN3CC2)=O)=C(C(C)(C)CC)C=C1C(C)(C)CC.[Br-] | 6/1 | ||
3 | 4 | 10c OC1=C(O)C(C=NNC(C[N+]2(CC3)CCN3CC2)=O)=C(C4CCCCC4)C=C1C5CCCCC5.[Br-] | 4/1 | ||
4 | 2 | 10d OC1=C(O)C(C=NNC(C[N+]2(CC3)CCN3CC2)=O)=C(C4(C)CCCCC4)C=C1C5(C)CCCCC5.[Br-] | 5.5/1 | ||
5 | 8.5 | 10e OC1=C(O)C(C=NNC(C[N+]2(CC3)CCN3CC2)=O)=C([C@@]45C[C@@H]6C[C@H](C5)C[C@H](C4)C6)C=C1[C@]78C[C@H]9C[C@@H](C8)C[C@@H](C7)C9.[Br-] | 5.5/1 | ||
1 | 4 | 11a OC1=C(O)C(C=NNC(C[N+]2=CC=CC(C)=C2C)=O)=C(C(C)C)C=C1C(C)C.[Br-] | 2/1 | ||
2 | 4 | 11b OC1=C(O)C(C=NNC(C[N+]2=CC=CC(C)=C2C)=O)=C(C(C)(C)CC)C=C1C(C)(C)CC.[Br-] | 2.8/1 | ||
3 | 3 | 11c OC1=C(O)C(C=NNC(C[N+]2=CC=CC(C)=C2C)=O)=C(C3CCCCC3)C=C1C4CCCCC4.[Br-] | 2.5/1 | ||
4 | 6.5 | 11d OC1=C(O)C(C=NNC(C[N+]2=CC=CC(C)=C2C)=O)=C(C3(C)CCCCC3)C=C1C4(C)CCCCC4.[Br-] | 3/1 | ||
5 | 3 | 11e OC1=C(O)C(C=NNC(C[N+]2=CC=CC(C)=C2C)=O)=C(C34C[C@@H]5C[C@H](C4)C[C@H](C3)C5)C=C1C67C[C@H]8C[C@@H](C7)C[C@@H](C6)C8.[Br-] | 2.5/1 |
Compound | MIC/MBC, µM | |||
---|---|---|---|---|
Sa | Bc | MRSA-1 | MRSA-2 | |
9a | 8.8 ± 0.8/17.6 ± 1.5 | 8.8 * ± 0.7/8.8 * ± 0.7 | 17.6 * ± 1.6/17.6 * ± 1.6 | 17.6 ± 1.5/17.6 ± 1.5 |
9b | 62.4 ± 5.3/62.4 ± 5.3 | 31.2 ± 2.8/250 ± 21 | n.d. | n.d. |
9c | 60.0 ± 5.1/60.0 ± 5.1 | 30.0 ± 2.4/30.0 ± 2.4 | n.d. | n.d. |
9d | 56.6 ± 4.7/113.1 ± 10 | 28.3 ± 2.3/22618 ± | n.d. | n.d. |
9e | 199 ± 17/>398 | 49.7 ± 4.0/99.4 ± 8.4 | n.d. | n.d. |
10a | 133.1 ± 11/133.1 ± 11 | 66.6 ± 5.3/133.1 ± 11 | n.d. | n.d. |
10b | 3.7 * ± 0.4/14.8 ± 1.2 | 7.4 * ± 0.7/14.8 * ± 1.2 | 1.9 * ± 0.2/7.4 * ± 0.7 | 3.7 * ± 0.4/3.7 * ± 0.4 |
10c | 28.5 ± 2.1/57.0 ± 4.4 | 7.1 * ± 0.6/7.1 * ± 0.6 | n.d. | n.d. |
10d | 54.2 ± 3.8/54.2 ± 3.8 | 27.1 ± 2.2/54.2 ± 3.8 | n.d. | n.d. |
10e | 47.8 ± 4.2/95.6 ± 8.8 | 47.8 ± 3.8/95.6 ± 7.6 | n.d. | n.d. |
11a | 8.4 ± 0.8/16.8 ± 1.5 | 8.4 * ± 0.6/8.4 * ± 0.6 | 16.8 * ± 1.5/16.8 * ± 1.5 | 33.6 ± 2.7/33.6 ± 2.7 |
11b | 60.0 ± 5.2/480 ± 38 | 30.0 ± 2.4/30.0 ± 2.4 | n.d. | n.d. |
11c | 57.5 ± 5.4/57.5 ± 5.4 | 28.7 ± 2.3/28.7 ± 2.3 | n.d. | n.d. |
11d | 54.6 ± 4.4/109 ± 9 | 27.3 ± 2.2/27.3 ± 2.2 | n.d. | n.d. |
11e | 193 ± 15/>385 | 48.2 ± 3.9/385 ± 30 | n.d. | n.d. |
Norfloxacin | 12.2 ± 0.9/12.2 ± 0.9 | 24.5 ± 1.7/24.5 ± 1.7 | >500/>500 | 12.2 ± 0.8/48.9 ± 3.3 |
Compound | Latent Period, % of Control | Maximum Amplitude (MA), % of Control | Aggregation Rate, % of Control | Time to MA, % of Control | APTT $, % of Control |
---|---|---|---|---|---|
9a | +3.7 (2.8–4.5) # | −12.1 (10.3–13.7) * | +7.4 (5.8–8.6) *,# | −13.6 (11.8–15.2) *,# | +4.6 (4.1–7.3) *,† |
9b | −7.1 (4.8–8.6) *,# | −10.8 (7.6–14.1) * | −19.2 (16.7–21.5) *,# | −2.1 (1.4–4.8) # | +2.1 (1.4–4.8) † |
9c | +11.3 (9.6–13.5) *,# | −13.5 (11.6–16.4) * | +13.7 (12.4–15.6) *,# | −9.4 (6.7–10.9) *,# | +9.4 (6.7–10.9) *,† |
9d | −16.7 (15.3–17.8) *,# | +6.3 (4.9–8.2) *,# | +14.2 (13.5–16.7) *,# | +2.7 (2.2–3.9) # | +0.7 (0.2–0.9) † |
9e | +3.2 (2.7–4.9) # | −7.6 (7.1–9.3) *,# | −11.2 (9.6–13.5) * | −14.7 (11.2–17.6) *,# | +3.2 (1.3–4.5) † |
10a | +4.3 (3.7–5.4) *,# | −5.9 (4.8–6.9) *,# | −3.3 (2.4–3.6) # | −4.8 (3.7–6.5) *,# | +4.8 (3.7–6.5) † |
10b | +21.3 (20.4–24.7) *,# | −21.8 (18.4–25.2) *,# | −19.7 (17.1–21.8) *,# | −21.8 (18.9–23.4) *,# | +8.3 (7.4–10.2) *,† |
10c | +4.2 (3.7–6.3) *,# | −8.9 (6.8–10.9) * | −12.1 (10.3–15.4) * | −2.3 (1.6–3.4) # | +2.3 (1.6–3.4) † |
10d | −2.4 (0.7–4.3) | −1.1 (0.5–1.6) # | −3.7 (1.3–4.1) # | −4.4 (3.3–5.2) *,# | +4.4 (3.3–5.2) † |
10e | +6.1 (5.8–7.1) *,# | −6.5 (4.9–7.6) *,# | −13.6 (10.4–17.5) * | −8.3 (6.5–9.3) *,# | +8.3 (6.5–9.3) *,† |
11a | +18.3 (16.5–19.3) *,# | −17.7 (14.5–19.8) * | −21.1 (16.4–23.6) *,# | −2.7 (2.1–4.9)# | +2.7 (2.1–4.9) † |
11b | +6.2 (5.7–8.3) *,# | −13.8 (11.4–15.9) * | −19.8 (17.4–22.7) *,# | −13.6 (11.5–14.3) *,# | +7.1 (6.2–9.3) *,† |
11c | +1.1 (0.8–1.3) # | −10.3 (8.1–12.4) * | −9.7 (7.6–11.5) * | −7.9 (7.4–9.1) *,# | +8.3 (7.4–9.2) *,† |
11d | +4.2 (3.9–6.1) *,# | −0.7 (0.5–1.4) # | +6.3 (4.9–7.1) *,# | +14.5 (11.6–18.7) * | +5.7 (5.2–8.1) *,† |
11e | +11.5 (8.4–13.3) *,# | −12.1 (9.7–14.1) * | −15.6 (12.3–17.2) * | −3.1 (2.7–4.5) # | +6.1 (5.8–7.2) *, † |
Acetylsalicylic acid | −2.1 (1.1–2.6) | −13.7 (10.8–16.4) * | −10.5 (7.6–12.3) * | +10.5 (8.7–13.4) * | - |
Heparin sodium | - | - | - | - | +20.3 (19.7–21.4) * |
Compound | Bacterial Phytopathogen | ||||
---|---|---|---|---|---|
M. luteus | P. atrosepticum | P. carotovorum subsp. carotovorum | Ps. fluorescens | X. campestris | |
9a | 15.0 (13.8–16.2) *,#,†,‡,§ | 16.9 (15.9–18.0) *,#,†,‡,§ | 18.1 (16.6–19.6) *,#,†,‡,§ | 15.2 (13.9–16.5) #,†,‡,§ | 17.1 (15.9–18.2) *,#,†,‡,§ |
9b | 12.3 (10.7–14.0) § | 12.2 (10.7–13.8) †,‡,§ | 11.7 (10.5–12.8) †,‡,§ | 11.8 (10.4–13.3) § | 11.2 (9.4–12.9) |
9c | 6.9 (5.5–8.4) *,# | 9.0 (7.7–10.3) | 8.9 (8.2–9.7) | 7.8 (6.6–9.1) *,† | 7.0 (5.6–8.4) |
9d | 10.1 (8.2–11.9) | 11.7 (9.8–13.6) ‡,§ | 11.7 (10.9–12.6) †,‡,§ | 11.1 (9.8–12.5) § | 10.1 (8.1–12.0) |
9e | 4.7 (2.8–6.6) *,#,†,‡ | 3.9 (2.6–5.2) *,#,† | 3.2 (2.3–4.1) *,#,†,‡,§ | 4.3 (2.9–5.8) *,#,†,‡,§ | 4.9 (3.2–6.6) *,#,† |
10a | 9.3 (7.7–11.0) | 9.6 (8.0–11.2) | 11.3 (9.7–12.9)†,‡,§ | 8.2 (7.0–9.4) * | 10.1 (8.4–11.7) |
10b | 8.3 (6.9–9.8) * | 10.8 (8.9–12.7) | 9.9 (8.3–11.5) | 7.3 (6.0–8.7) *,† | 8.9 (7.0–10.9) |
10c | 7.0 (5.4–8.6) *,# | 10.3 (8.3–12.4) | 10.9 (8.9–12.9) | 7.2 (6.1–8.4) *,† | 10.9 (9.1–12.8) |
10d | 8.2 (6.6–9.7) * | 9.2 (7.7–10.6) | 11.9 (10.2–13.6) †,‡,§ | 7.1 (6.1–8.1) *,#,†,‡ | 7.4 (6.3–8.5) # |
10e | 8.9 (7.8–10.1) * | 6.8 (5.6–7.9) * | 10.1 (8.0–12.1) | 10.7 (8.9–12.5) | 5.6 (3.5–7.7) *,# |
11a | 15.3 (14.3–16.3) *,#,†,‡,§ | 16.3 (14.6–18.1) *,#,†,‡,§ | 17.1 (15.9–18.2) *,#,†,‡,§ | 14.3 (13.1–15.6) #,†,‡,§ | 15.2 (14.0–16.5) *,#,†,‡,§ |
11b | 10.2 (8.5–12.0) § | 11.2 (9.2–13.1) ‡,§ | 13.0 (11.5–14.5) *,†,‡,§ | 9.2 (7.8–10.7) * | 11.1 (9.3–12.8) § |
11c | 10.9 (9.0–13.0) § | 10.4 (8.5–12.4) ‡ | 10.2 (8.5–11.9) | 7.2 (6.3–8.1) *,#,†,‡ | 10.3 (8.8–11.8) § |
11d | 9.1 (7.7–10.5) | 7.2 (5.9–8.5) * | 7.9 (6.7–9.1) | 7.9 (7.0–8.8) *,† | 9.1 (7.9–10.3) |
11e | 7.8 (6.6–9.1) *,# | 11.0 (9.1–12.9) ‡,§ | 10.4 (8.8–12.0) ‡ | 9.2 (8.0–10.4) *,† | 11.8 (10.7–12.9) *,§ |
Ampicillin, 500 μg/mL | 11.7 (10.3–13.0) | 10.1 (8.8–11.4) | 9.4 (8.1–10.6) | 13.6 (12.3–14.8) | 9.4 (8.4–10.5) |
Chloramphenicol, 500 μg/mL | 10.7 (9.3–12.0) | 9.6 (7.7–11.4) | 10.1 (7.9–12.3) | 10.6 (8.7–12.4) | 10.7 (8.8–12.5) |
Kanamycin, 500 μg/mL | 9.7 (8.3–11.0) | 8.2 (7.2–9.1) | 8.0 (7.0–9.0) | 10.9 (9.7–12.1) | 9.3 (7.7–11.0) |
Tetracycline, 500 μg/mL | 9.5 (8.3–10.7) | 6.8 (5.2–8.3) | 7.1 (5.9–8.4) | 9.7 (8.5–10.9) | 9.1 (7.3–10.8) |
Norfloxacin, 500 μg/mL | 6.7 (5.3–8.0) | 7.3 (5.6–8.9) | 7.8 (6.8–8.8) | 7.6 (6.5–8.7) | 7.1 (5.6–8.5) |
Sodium hypochlorite, 1000 μg/mL | 2.6 (1.7–3.4) | 4.2 (3.4–4.9) | 2.8 (2.0–3.7) | 4.1 (3.2–4.9) | 3.9 (3.0–4.7) |
Chlorohexidin, 500 μg/mL | 5.1 (3.4–6.9) | 4.1 (3.3–4.8) | 5.1 (3.5–6.7) | 4.2 (3.2–5.1) | 5.0 (3.5–6.5) |
Compound | Bacterial Phytopathogen | ||||
---|---|---|---|---|---|
M. luteus | P. atrosepticum | P. carotovorum subsp. carotovorum | Ps. fluorescens | X. campestris | |
9a | 6.25 (5.62–6.88) *,#,†,‡,§ | 6.25 (4.68–7.82) *,#,†,‡,§ | 6.25 (4.68–7.82) *,†,§ | 6.25 (4.68–7.82) *,#,†,‡,§ | 6.25 (4.68–7.82) *,#,†,§ |
9b | 0.70 (0.64–0.76) *,#,†,‡,§ | 1.25 (1.01–1.49) *,#,‡,§ | 1.25 (0.94–1.56) | 1.25 (0.94–1.56) *,§ | 0.64 (0.48–0.80) *,#,†,‡,§ |
9d | 6.25 (4.69–7.81) *,#,†,‡,§ | 6.25 (4.69–7.81) *,#,†,‡,§ | 12.5 (9.40–15.6) *,#,†,‡,§ | 12.5 (9.40–15.6) *,#,†,‡ | 6.25 (4.69–7.81) *,#,†,§ |
10a | 20.0 (16.2–23.8) *,#,†,‡,§ | 25.0 (18.7–31.3) *,#,†,‡,§ | 25.0 (18.7–31.3) *,#,†,‡,§ | 12.5 (9.40–15.6) *,#,†,‡ | 12.5 (9.40–15.6) *,#,†,‡,§ |
10b | 3.85 (3.38–4.32) *,#,† | 2.92 (2.19–3.65) *,† | 3.12 (2.34–3.90) *,#,†,§ | 2.50 (1.87–3.13) *,§ | 2.50 (1.87–3.13) *,‡ |
10d | 6.25 (4.69–7.81) *,#,†,‡,§ | 6.25 (4.69–7.81) *,#,†,‡,§ | 6.25 (4.69–7.81) *,†,‡,§ | 6.25 (4.69–7.81) *,#,†,‡,§ | 3.12 (2.34–3.90) *,†,‡ |
11a | 3.12 (2.81–3.43) *,#,† | 3.12 (2.34–3.90) *,† | 1.56 (1.40–1.72) *,#,‡,§ | 3.12 (2.34–3.90) *,†,§ | 1.56 (1.40–1.72) *,‡ |
11b | 1.25 (1.00–1.50) *,‡,§ | 2.50 (1.87–3.13) * | 2.50 (1.87–3.13) *,#,§ | 5.00 (3.70–6.30) *,#,†,‡,§ | 2.50 (1.87–3.13) *,‡ |
11d | 3.12 (2.34–3.90) *,† | 3.80 (3.15–4.45) *,† | 2.50 (1.87–3.13) *,#,§ | 2.50 (1.87–3.13) *,§ | 2.50 (1.87–3.13) *,‡ |
Ampicillin | 0.32 (0.30–0.34) | 0.64 (0.48–0.80) | 0.32 (0.30–0.34) | 0.32 (0.30–0.34) | 0.32 (0.30–0.34) |
Chloramphenicol | 1.62 (1.21–2.03) | 3.25 (2.44–4.06) | 6.50 (5.40–7.60) | 1.62 (1.21–2.03) | 1.62 (1.21–2.03) |
Kanamycin | 1.25 (0.94–1.56) | 1.25 (0.94–1.56) | 1.25 (0.94–1.56) | 1.25 (0.94–1.56) | 1.25 (0.94–1.56) |
Tetracycline | 3.25 (2.44–4.06) | 3.25 (2.44–4.06) | 3.25 (2.44–4.06) | 1.62 (1.21–2.03) | 6.50 (4.87–8.13) |
Norfloxacin | 2.50 (1.96–3.04) | 2.50 (1.96–3.04) | 35.0 (32.5–37.5) | 15.0 (12.5–17.5) | 2.50 (1.96–3.04) |
Compound | Number of Electrons | Total Antioxidant Capacity, kC mol−1 | RSD, % |
---|---|---|---|
9a | 2 | 227 ± 5 | 0.94 |
9b | 2 | 220 ± 8 | 1.7 |
9c | 2 | 247 ± 9 | 3.2 |
9d | 2 | 210 ± 8 | 2.9 |
9e | 2 | 232 ± 6 | 2.3 |
10a | 2 | 254 ± 11 | 3.5 |
10b | 2 | 208 ± 10 | 3.5 |
10c | 2 | 218 ± 7 | 2.6 |
10d | 2 | 215 ± 9 | 2.2 |
10e | 2 | 215 ± 9 | 3.2 |
11a | 3 | 261 ± 3 | 0.44 |
11b | 3 | 250 ± 7 | 2.3 |
11c | 3 | 297 ± 13 | 1.8 |
11d | 3 | 223 ± 8 | 3.4 |
11e | 3 | 255 ± 5 | 1.6 |
Catechol | 2 | 193 ± 1 | 0.30 |
Butylated hydroxytoluene (BHT) | 2 | 159 ± 6 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdanov, A.V.; Tagasheva, R.G.; Voloshina, A.; Lyubina, A.; Tsivileva, O.; Kuzovlev, A.N.; Yi, W.; Samorodov, A.V.; Ziyatdinova, G.K.; Zhiganshina, E.R.; et al. Ammonium Catecholaldehydes as Multifunctional Bioactive Agents: Evaluating Antimicrobial, Antioxidant, and Antiplatelet Activity. Int. J. Mol. Sci. 2025, 26, 7866. https://doi.org/10.3390/ijms26167866
Bogdanov AV, Tagasheva RG, Voloshina A, Lyubina A, Tsivileva O, Kuzovlev AN, Yi W, Samorodov AV, Ziyatdinova GK, Zhiganshina ER, et al. Ammonium Catecholaldehydes as Multifunctional Bioactive Agents: Evaluating Antimicrobial, Antioxidant, and Antiplatelet Activity. International Journal of Molecular Sciences. 2025; 26(16):7866. https://doi.org/10.3390/ijms26167866
Chicago/Turabian StyleBogdanov, Andrei V., Roza G. Tagasheva, Alexandra Voloshina, Anna Lyubina, Olga Tsivileva, Artem N. Kuzovlev, Wang Yi, Aleksandr V. Samorodov, Guzel K. Ziyatdinova, Elnara R. Zhiganshina, and et al. 2025. "Ammonium Catecholaldehydes as Multifunctional Bioactive Agents: Evaluating Antimicrobial, Antioxidant, and Antiplatelet Activity" International Journal of Molecular Sciences 26, no. 16: 7866. https://doi.org/10.3390/ijms26167866
APA StyleBogdanov, A. V., Tagasheva, R. G., Voloshina, A., Lyubina, A., Tsivileva, O., Kuzovlev, A. N., Yi, W., Samorodov, A. V., Ziyatdinova, G. K., Zhiganshina, E. R., Arsenyev, M. V., & Bukharov, S. V. (2025). Ammonium Catecholaldehydes as Multifunctional Bioactive Agents: Evaluating Antimicrobial, Antioxidant, and Antiplatelet Activity. International Journal of Molecular Sciences, 26(16), 7866. https://doi.org/10.3390/ijms26167866