Association of Low Free T3 with Disease Presence and Activity in Ankylosing Spondylitis
Abstract
1. Introduction
2. Results and Discussion
2.1. Baseline Demographic, Clinical, and Laboratory Characteristics
2.2. Associations Between Clinical, Hematologic, and Biochemical Parameters and AS Presence
2.3. Comparison of AS Patients by Disease Activity
2.4. Sex- and BASDAI-Stratified Analyses of Clinical and Biochemical Characteristics (Supplementary Tables S1–S8)
2.5. Effects of Disease Duration and Treatment Type on Thyroid Function
2.6. Diagnostic Performance of FT3
2.7. Clinical Significance and Mechanistic Considerations of FT3 in Ankylosing Spondylitis
2.8. Clinical Implications
2.9. Study Limitations, Therapeutic Perspective, and Future Directions
3. Materials and Methods
3.1. Study Design and Participants
- Known thyroid disease or thyroid hormone replacement therapy.
- Individuals taking medications known to influence thyroid function, including amiodarone and propranolol.
- Chronic kidney or liver disease.
- Malignancy.
- Uncontrolled diabetes mellitus and hypertension.
- Acute infection or chronic inflammatory diseases other than AS.
- Patients receiving medications other than non-steroidal anti-inflammatory drugs (NSAIDs) or TNF-α inhibitors were excluded from the study. All AS patients were receiving either NSAIDs and/or TNF-α inhibitors as part of their treatment regimen. The TNF-α inhibitors used included infliximab, etanercept, adalimumab, certolizumab, and golimumab. None of the patients were treated with corticosteroids, conventional immunosuppressive agents, or DMARDs.
3.2. Clinical and Anthropometric Assessments
3.3. Laboratory Measurements
- Hematologic markers: white blood cell count, neutrophils, lymphocytes, monocytes, and platelet count.
- Biochemical markers: glucose, hemoglobin A1c (HbA1c), urea, creatinine, uric acid, total protein, C-reactive protein (CRP), lipid profile (total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides), vitamin B12, folate, vitamin D, and magnesium.
- Thyroid function tests: TSH, free T4 (FT4), and free T3 (FT3). Serum FT3, FT4, and TSH concentrations were measured using an electrochemiluminescence immunoassay (ECLIA) on a Cobas e601 analyzer (Roche Diagnostics, Mannheim, Germany). The intra-assay and inter-assay coefficients of variation (CVs) were <5% and <8%, respectively. The reference ranges for FT3, FT4, and TSH were 2.0–4.4 pg/mL, 0.93–1.7 ng/dL, and 0.34–4.2 µIU/mL, respectively.
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klisic, A.; Kotur-Stevuljevic, J.; Cure, O.; Kizilkaya, B.; Beyazal Celiker, F.; Er, H.; Mercantepe, F. Cardiovascular Risk in Patients with Ankylosing Spondylitis. J. Clin. Med. 2024, 13, 6064. [Google Scholar] [CrossRef] [PubMed]
- Maia, D.G.; Augusto, K.L.; Bezerra, M.C.; Rodrigues, C.E.M. Metabolic Syndrome in Patients with Ankylosing Spondylitis Receiving Anti-TNFα Therapy: Association with Predictors of Cardiovascular Risk. Clin. Rheumatol. 2017, 36, 2371–2376. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, W.; Li, L.; Chai, Y.; Yang, Y.; Pu, X. Ankylosing Spondylitis Disease Activity and Serum Vitamin D Levels: A Systematic Review and Meta-Analysis. Medicine 2022, 101, E31764. [Google Scholar] [CrossRef] [PubMed]
- Solmaz, D.; Kozaci, D.; Sari, I.; Taylan, A.; Onen, F.; Akkoc, N.; Akar, S. Oxidative Stress and Related Factors in Patients with Ankylosing Spondylitis. Eur. J. Rheumatol. 2016, 3, 20–24. [Google Scholar] [CrossRef]
- Mısırcı, S.; Alp, A.; Altan, L.; Başar Yılmaz, B. Systemic Immune Inflammation Index in Ankylosing Spondylitis Patients. Turk. J. Osteoporos. 2024, 30, 22–29. [Google Scholar] [CrossRef]
- Moon, D.H.; Kim, A.; Song, B.W.; Kim, Y.K.; Kim, G.T.; Ahn, E.Y.; So, M.W.; Lee, S.G. High Baseline Neutrophil-to-Lymphocyte Ratio Could Serve as a Biomarker for Tumor Necrosis Factor-Alpha Blockers and Their Discontinuation in Patients with Ankylosing Spondylitis. Pharmaceuticals 2023, 16, 379. [Google Scholar] [CrossRef]
- Gökmen, F.; Akbal, A.; Güneş, F.; Türkön, H.; Vural, A.; Binnetoğlu, E.; Kömürcü, E.; Şen, H.; Aşik, M.; Akbal, E. Serum Fetuin-a Level in Patients with Ankylosing Spondylitis and Its Relationship with Clinical Parameters. Arch. Rheumatol. 2015, 30, 1–5. [Google Scholar] [CrossRef]
- Uçar, M.; Sarikaya, S.; Sarp, Ü.; Turan, Y.; Akyol, L.; Börekçi, E.; Erbay, A.R.; Demir, V. Cardiometabolic Risk Factors in Patients with Ankylosing Spondylitis. Arch. Rheumatol. 2015, 30, 221–225. [Google Scholar] [CrossRef]
- Fischer, R.; Trudgian, D.C.; Wright, C.; Thomas, G.; Bradbury, L.A.; Brown, M.A.; Bowness, P.; Kessler, B.M. Discovery of Candidate Serum Proteomic and Metabolomic Biomarkers in Ankylosing Spondylitis. Mol. Cell. Proteom. 2012, 11, M111.013904. [Google Scholar] [CrossRef]
- Kebapcilar, L.; Bilgir, O.; Alacacioglu, A.; Yildiz, Y.; Taylan, A.; Gunaydin, R.; Yuksel, A.; Karaca, B.; Sari, I. Impaired Hypothalamo-Pituitary-Adrenal Axis in Patients with Ankylosing Spondylitis. J. Endocrinol. Investig. 2010, 33, 42–47. [Google Scholar] [CrossRef]
- Pawar, A.; Joshi, P.; Singhai, A. An Assessment of Thyroid Dysfunction and Related Parameters in Patients with Systemic Autoimmune Disorders. Cureus 2023, 15, 8–13. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, Z.; Wang, X. The Association of Common Autoimmune Diseases with Autoimmune Thyroiditis: A Two-Sample Mendelian Randomization Study. Front. Endocrinol. 2024, 15, 1383221. [Google Scholar] [CrossRef] [PubMed]
- Peluso, R.; Lupoli, G.A.; Del Puente, A.; Iervolino, S.; Bruner, V.; Lupoli, R.; Di Minno, M.N.D.; Foglia, F.; Scarpa, R.; Lupoli, G. Prevalence of Thyroid Autoimmunity in Patients with Spondyloarthropathies. J. Rheumatol. 2011, 38, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Tarhan, F.; Orük, G.; Niflioğlu, O.; Ozer, S. Thyroid Involvement in Ankylosing Spondylitis and Relationship of Thyroid Dysfunction with Anti-TNF α Treatment. Rheumatol. Int. 2013, 33, 853–857. [Google Scholar] [CrossRef]
- Lange, U.; Boss, B.; Teichmann, J.; Klett, R.; Stracke, H.; Bretzel, R.G.; Neeck, G. Thyroid Disorders in Female Patients with Ankylosing Spondylitis. Eur. J. Med. Res. 1999, 22, 468–474. [Google Scholar]
- Fernández-Reyes, M.J.; Sánchez, R.; Heras, M.; Tajada, P.; Iglesias, P.; García, L.; García Arévalo, M.C.; Molina, A.; Rodríguez, A.; Alvarez-Ude, F. ¿Pueden los niveles de T3L facilitar la detección de estados inflamatorios o de catabolismo y desnutrición en enfermos en diálisis? [Can FT3 levels facilitate the detection of inflammation or catabolism and malnutrition in dialysis patients?]. Nefrologia 2009, 29, 304–310. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Chávez Valencia, V.; Mejía Rodríguez, O.; Viveros Sandoval, M.E.; Abraham Bermúdez, J.; Gutiérrez Castellanos, S.; Orizaga de la Cruz, C.; Roa Córdova, M.A. Prevalencia Del Síndrome Complejo de Malnutrición e Inflamación y Su Correlación Con Las Hormonas Tiroideas En Pacientes En Hemodiálisis Crónica. Nefrología 2018, 38, 57–63. [Google Scholar] [CrossRef]
- Bielicki, P.; Przybyłowski, T.; Kumor, M.; Barnaś, M.; Wiercioch, M.; Chazan, R. Thyroid Hormone Levels and TSH Activity in Patients with Obstructive Sleep Apnea Syndrome. Adv. Exp. Med. Biol. 2016, 878, 67–71. [Google Scholar] [CrossRef]
- Feng, X.L.; Chen, H.M.; Yin, L.J.; Chen, J.; Chen, L.L. Developing a Nomogram for Risk Prediction of the Low T3 Syndrome. Sci. Rep. 2025, 15, 4863. [Google Scholar] [CrossRef]
- Ganesan, K.; Anastasopoulou, C.; Wadud, K. Euthyroid Sick Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Boelen, A.; Kwakkel, J.; Fliers, E. Beyond Low Plasma T 3: Local Thyroid Hormone Metabolism during Inflammation and Infection. Endocr. Rev. 2011, 32, 670–693. [Google Scholar] [CrossRef]
- Nascimento Pontes, C.D.; da Rocha, J.L.G.; Rodrigues Medeiros, J.M.; dos Santos, B.F.B.; da Silva, P.H.M.; Rodrigues Medeiros, J.M.; Costa, G.G.; Sfair Silva, I.M.; Gomes, D.L.; Santos, F.M.; et al. Low T3 Syndrome as a Prognostic Factor in Patients in the Intensive Care Unit: An Observational Cohort Study. Rev. Bras. Ter. Intensiv. 2022, 34, 262–271. [Google Scholar] [CrossRef]
- Pan, Q.; Jian, Y.; Zhang, Y.; Zhang, W.; Chen, Z.; Yang, Y.; Liu, A.; Wang, G. The Association Between Low T3 Syndrome and Survival in Patients With Newly Diagnosed Multiple Myeloma: A Retrospective Study. Technol. Cancer Res. Treat. 2022, 21, 15330338221094422. [Google Scholar] [CrossRef]
- Mantzouratou, P.; Malaxianaki, E.; Cerullo, D.; Lavecchia, A.M.; Pantos, C.; Xinaris, C.; Mourouzis, I. Thyroid Hormone and Heart Failure: Charting Known Pathways for Cardiac Repair/Regeneration. Biomedicines 2023, 11, 975. [Google Scholar] [CrossRef]
- Kannan, L.; Shaw, P.A.; Morley, M.P.; Brandimarto, J.; Fang, J.C.; Sweitzer, N.K.; Cappola, T.P.; Cappola, A.R. Thyroid Dysfunction in Heart Failure and Cardiovascular Outcomes. Circ. Heart Fail. 2018, 11, e005266. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Yoshihisa, A.; Kimishima, Y.; Kiko, T.; Kanno, Y.; Yokokawa, T.; Abe, S.; Misaka, T.; Sato, T.; Oikawa, M.; et al. Low T3 Syndrome Is Associated With High Mortality in Hospitalized Patients With Heart Failure. J. Card. Fail. 2019, 25, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Akar, S.; Kaplan, Y.C.; Ecemis, S.; Keskin-Arslan, E.; Gercik, Ö.; Gücenmez, S.; Solmaz, D. The Role of Smoking in the Development and Progression of Structural Damage in Axial SpA Patients: A Systematic Review and Meta-Analysis. Eur. J. Rheumatol. 2019, 6, 184–192. [Google Scholar] [CrossRef]
- Yarkan Tuğsal, H.; Kenar, G.; Can, G.; Çapar, S.; Zengin, B.; Akar, S.; Dalkiliç, E.; Şenel, S.; Koca, S.S.; Göker, B.; et al. The Impact of Smoking on Response to Tumor Necrosis Factor-α Inhibitor Treatment in Patients with Ankylosing Spondylitis. Turk. J. Med. Sci. 2023, 53, 970–978. [Google Scholar] [CrossRef]
- Kaut, I.K.; Abourazzak, F.E.; Jamila, E.; Sènami, F.A.; Diketa, D.; Taoufik, H. Axial Spondyloarthritis and Cigarette Smoking. Open Rheumatol. J. 2017, 11, 53–61. [Google Scholar] [CrossRef]
- Barone, M.; Viggiani, M.T.; Anelli, M.G.; Fanizzi, R.; Lorusso, O.; Lopalco, G.; Cantarini, L.; Di Leo, A.; Lapadula, G.; Iannone, F. Sarcopenia in Patients with Rheumatic Diseases: Prevalence and Associated Risk Factors. J. Clin. Med. 2018, 7, 504. [Google Scholar] [CrossRef]
- Stolwijk, C.; Boonen, A.; van Tubergen, A.; Reveille, J.D. Epidemiology of Spondyloarthritis. Rheum. Dis. Clin. N. Am. 2012, 38, 441–476. [Google Scholar] [CrossRef]
- Bandinelli, F.; Martinelli-Consumi, B.; Manetti, M.; Vallecoccia, M.S. Sex Bias in Diagnostic Delay: Are Axial Spondyloarthritis and Ankylosing Spondylitis Still Phantom Diseases in Women? A Systematic Review and Meta-Analysis. J. Pers. Med. 2024, 14, 91. [Google Scholar] [CrossRef] [PubMed]
- Czókolyová, M.; Pusztai, A.; Végh, E.; Horváth, Á.; Szentpéteri, A.; Hamar, A.; Szamosi, S.; Hodosi, K.; Domján, A.; Szántó, S.; et al. Changes of Metabolic Biomarker Levels upon One-Year Anti-Tnf-α Therapy in Rheumatoid Arthritis and Ankylosing Spondylitis: Associations with Vascular Pathophysiology. Biomolecules 2021, 11, 1535. [Google Scholar] [CrossRef]
- Bonek, K.; Warnawin, E.K.; Kornatka, A.; Plebańczyk, M.; Burakowski, T.; Maśliński, W.; Wisłowska, M.; Głuszko, P.; Ciechomska, M. Circulating MiRNA Correlates with Lipid Profile and Disease Activity in Psoriatic Arthritis, Rheumatoid Arthritis, and Ankylosing Spondylitis Patients. Biomedicines 2022, 10, 893. [Google Scholar] [CrossRef] [PubMed]
- Bilski, R.; Kamiński, P.; Kupczyk, D.; Jeka, S.; Baszyński, J.; Tkaczenko, H.; Kurhaluk, N. Environmental and Genetic Determinants of Ankylosing Spondylitis. Int. J. Mol. Sci. 2024, 25, 7814. [Google Scholar] [CrossRef]
- Warner, M.H.; Beckett, G.J. Mechanisms behind the Non-Thyroidal Illness Syndrome: An Update. J. Endocrinol. 2010, 205, 1–13. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, J.; Wang, Y.; Liu, J.; Yang, W.; Niu, M.; Yu, Y.; Zhao, H. Proteomic Profiling of Inflammatory Protein Dysregulation in HLA-B27-Positive Ankylosing Spondylitis: Molecular Signatures and Potential Biomarkers. Biomolecules 2025, 15, 516. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ramos, S.; Rafael-Vidal, C.; Pego-Reigosa, J.M.; García, S. Monocytes and Macrophages in Spondyloarthritis: Functional Roles and Effects of Current Therapies. Cells 2022, 11, 515. [Google Scholar] [CrossRef]
- Martelli-Garcia, A.; Esparza-Guerrero, Y.; Jacobo-Cuevas, H.; Saldaña-Cruz, A.M.; Gonzalez-Montoya, N.G.; Nava-Valdivia, C.A.; Gomez-Ramirez, E.E.; Vazquez-Villegas, M.L.; Ponce-Guarneros, J.M.; Ramirez-Villafaña, M.; et al. Role of High Serum Tenascin C Levels as Potential Biomarker of Persistent Inflammation in Patients with Ankylosing Spondylitis Despite Treatment with Cs-DMARDS or Anti-TNF Agents. Diagnostics 2025, 15, 1457. [Google Scholar] [CrossRef]
- Targońska-Stępniak, B.; Grzechnik, K. The Usefulness of Cellular Immune Inflammation Markers and Ultrasound Evaluation in the Assessment of Disease Activity in Patients with Spondyloarthritis. J. Clin. Med. 2023, 12, 5463. [Google Scholar] [CrossRef]
- Berbel-Arcobé, L.; Benavent, D.; Valencia-Muntalà, L.; Gómez-Vaquero, C.; Juanola, X.; Nolla, J.M. Assessing Sarcopenia, Presarcopenia, and Malnutrition in Axial Spondyloarthritis: Insights from a Spanish Cohort. Nutrients 2025, 17, 1019. [Google Scholar] [CrossRef]
- van der Slik, B.; Spoorenberg, A.; Wink, F.; Bos, R.; Bootsma, H.; Maas, F.; Arends, S. Although Female Patients with Ankylosing Spondylitis Score Worse on Disease Activity than Male Patients and Improvement in Disease Activity Is Comparable, Male Patients Show More Radiographic Progression during Treatment with TNF-α Inhibitors. Semin. Arthritis Rheum. 2019, 48, 828–833. [Google Scholar] [CrossRef]
- Gulati, M.; Dursun, E.; Vincent, K.; Watt, F.E. The Influence of Sex Hormones on Musculoskeletal Pain and Osteoarthritis. Lancet Rheumatol. 2023, 5, e225–e238. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.M.; Deodhar, A.; Gensler, L.S.; Dubreuil, M.; Yu, D.; Khan, M.A.; Haroon, N.; Borenstein, D.; Wang, R.; Biehl, A. 2019 Update of the American College of Rheumatology. Arthritis Rheumatol. 2019, 71, 1599–1613. [Google Scholar] [CrossRef] [PubMed]
- Ramiro, S.; Nikiphorou, E.; Sepriano, A.; Ortolan, A.; Webers, C.; Baraliakos, X.; Landewé, R.B.M.; Van Den Bosch, F.E.; Boteva, B.; Bremander, A.; et al. ASAS-EULAR Recommendations for the Management of Axial Spondyloarthritis: 2022 Update. Ann. Rheum. Dis. 2022, 82, 19–34. [Google Scholar] [CrossRef] [PubMed]
- González, D.A.; Díaz, B.B.; Rodríguez Pérez, M.D.C.; Hernández, A.G.; Chico, B.N.D.; de León, A.C. Sex Hormones and Autoimmunity. Immunol. Lett. 2010, 133, 6–13. [Google Scholar] [CrossRef]
- Klein, S.L.; Flanagan, K.L. Sex Differences in Immune Responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Langer, M.M.; Bauschen, A.; Guckenbiehl, S.; Klauss, S.; Lutz, T.; Denk, G.; Zwanziger, D.; Moeller, L.C.; Lange, C.M. Evolution of Non-Thyroidal Illness Syndrome in Acute Decompensation of Liver Cirrhosis and Acute-on-Chronic Liver Failure. Front. Endocrinol. 2023, 14, 1104388. [Google Scholar] [CrossRef]
- Paschou, S.A.; Palioura, E.; Kothonas, F.; Myroforidis, A.; Loi, V.; Poulou, A.; Goumas, K.; Effraimidis, G.; Vryonidou, A. The Effect of Anti-Tnf Therapy on Thyroid Function in Patients with Inflammatory Bowel Disease. Endocr. J. 2018, 65, 1121–1125. [Google Scholar] [CrossRef]
- Lasa, M.; Contreras-Jurado, C. Thyroid Hormones Act as Modulators of Inflammation through Their Nuclear Receptors. Front. Endocrinol. 2022, 13, 937099. [Google Scholar] [CrossRef]
- van der Spek, A.H.; Fliers, E.; Boelen, A. Thyroid Hormone Metabolism in Innate Immune Cells. J. Endocrinol. 2017, 232, R67–R81. [Google Scholar] [CrossRef]
- Kwakkel, J.; Fliers, E.; Boelen, A. Illness-Induced Changes in Thyroid Hormone Metabolism: Focus on the Tissue Level. Neth. J. Med. 2011, 69, 224–228. [Google Scholar]
- Rudwaleit, M.; Van Der Heijde, D.; Landewé, R.; Akkoc, N.; Brandt, J.; Chou, C.T.; Dougados, M.; Huang, F.; Gu, J.; Kirazli, Y.; et al. The Assessment of SpondyloArthritis International Society Classification Criteria for Peripheral Spondyloarthritis and for Spondyloarthritis in General. Ann. Rheum. Dis. 2011, 70, 25–31. [Google Scholar] [CrossRef]
- Bönisch, A.; Ehlebracht-König, I. The BASDAI-D—An Instrument to Defining Disease Status in Ankylosing Spondylitis and Related Diseases. Z. Rheumatol. 2003, 62, 251–263. [Google Scholar] [CrossRef]
Control Group n = 117 | Ankylosing Spondylitis n = 120 | p | |
---|---|---|---|
N (male/female) | 56/61 | 74/46 | 0.033 |
Age, years | 39.00 (30.00–47.00) | 37.00 (31.00–47.00) | 0.949 |
BMI, kg/m2 # | 28.38 ± 5.12 | 26.59 ± 5.21 | 0.008 |
Waist circumference, cm | 95.00 (84.00–102.50) | 92.00 (86.50–104.00) | 0.943 |
Diabetes mellitus (no/yes) | 117/0 | 119/1 | 0.322 |
Coronary artery disease (no/yes) | 117/0 | 119/1 | 0.322 |
Hypertension (no/yes) | 114/3 | 116/4 | 0.727 |
Hyperlipidemia (no/yes) | 117/0 | 119/1 | 0.322 |
Alcohol drinking status (no/yes) | 113/4 | 113/7 | 0.377 |
Smoking status (no/yes) | 86/31 | 71/49 | 0.020 |
Disease duration, months | / | 6.00 (4.00–10.00) | / |
NSAID/Anti-TNF-α agents | / | 45/75 | / |
BASDAI score | / | 4.75 ± 2.15 | / |
BASFI score | / | 3.10 (1.20–5.00) | / |
Control Group | Ankylosing Spondylitis | p | |
---|---|---|---|
WBC × 1000 | 6.70 (5.45–7.73) | 7.59 (6.58–9.06) | <0.001 |
Neutrophil count × 1000 | 3.62 (3.07–4.97) | 4.67 (3.44–5.53) | 0.002 |
Lymphocyte count × 1000 | 2.07 (1.74–2.48) | 2.39 (1.96–2.96) | <0.001 |
Monocyte count × 100 | 3.80 (3.20–4.80) | 4.75 (3.85–5.80) | <0.001 |
Platelet count × 10,000 | 26.00 (21.00–30.00) | 28.00 (25.00–33.50) | <0.001 |
Glucose (mg/dL) | 92.00 (88.00–97.00) | 91.00 (85.00–98.00) | 0.237 |
HbA1c, % | 5.60 (5.30–5.90) | 5.60 (5.20–5.85) | 0.293 |
Urea (mg/dL) | 26.00 (21.00–31.00) | 27.00 (23.00–32.00) | 0.387 |
Creatinine (mg/dL) | 0.79 (0.70–0.90) | 0.70 (0.60–0.90) | 0.005 |
Uric acid (mg/dL) | 4.70 (3.90–6.00) | 5.00 (4.20–5.95) | 0.408 |
Total protein (g/dL) | 7.56 (7.37–7.80) | 7.70 (7.05–8.00) | 0.266 |
CRP (mg/L) | 1.83 (0.84–3.53) | 5.00 (2.00–8.50) | <0.001 |
ESR (mm/hour) | 7.00 (4.00–12.00) | 12.00 (4.00–20.00) | 0.001 |
Total cholesterol # (mg/dL) | 213.17 ± 43.44 | 205.50 ± 37.73 | 0.134 |
HDL-C (mg/dL) | 52.00 (44.00–61.50) | 49.00 (41.00–57.00) | 0.030 |
LDL-C # (mg/dL) | 133.96 ± 38.08 | 129.45 ± 32.51 | 0.332 |
Triglycerides (mg/dL) | 106.00 (75.00–173.00) | 118.50 (81.00–167.00) | 0.401 |
Vitamin B12 (pg/mL) | 304.00 (258.00–353.00) | 331.00 (265.00–413.50) | 0.018 |
Folate (ng/mL) | 9.00 (7.32–11.74) | 8.00 (6.30–11.00) | 0.111 |
Vitamin D (ng/mL) | 8.60 (6.00–13.73) | 10.00 (7.00–16.00) | 0.045 |
Magnesium (mg/dL) | 2.00 (1.92–2.10) | 1.98 (1.90–2.09) | 0.060 |
TSH (mIU/L) | 2.02 (1.47–3.00) | 1.62 (1.21–2.76) | 0.021 |
FT4 (ng/dL) | 1.16 (1.05–1.26) | 1.15 (1.04–1.31) | 0.656 |
FT3 (pg/mL) | 3.44 (3.16–3.69) | 3.25 (3.01–3.58) | 0.037 |
Single Predictors | OR (95%CI) | p | Nagelkerke R2 |
---|---|---|---|
Age, years | 0.998 (0.975–1.022) | 0.887 | 0.000 |
BMI, kg/m2 | 0.934 (0.887–0.984) | 0.010 | 0.039 |
Waist circumference, cm | 1.001 (0.982–1.020) | 0.918 | 0.000 |
WBC count | 1.388 (1.187–1.622) | <0.001 | 0.102 |
Neutrophil count | 1.321 (1.099–1.589) | 0.003 | 0.051 |
Lymphocyte count | 2.034 (1.367–3.027) | <0.001 | 0.073 |
Monocyte count | 1.535 (1.261–1.870) | <0.001 | 0.114 |
Platelet count | 1.084 (1.039–1.132) | <0.001 | 0.085 |
Glucose (mg/dL) | 0.976 (0.953–1.000) | 0.051 | 0.024 |
HbA1c, % | 0.586 (0.316–1.086) | 0.090 | 0.025 |
Urea (mg/dL) | 1.020 (0.985–1.056) | 0.267 | 0.007 |
Creatinine (mg/dL) | 0.073 (0.014–0.383) | 0.002 | 0.057 |
Uric acid (mg/dL) | 0.026 (0.850–1.225) | 0.774 | 0.000 |
Total protein (g/dL) | 1.124 (0.655–1.928) | 0.671 | 0.009 |
CRP (mg/L) | 1.026 (0.987–1.067) | 0.197 | 0.013 |
ESR (mm/hour) | 1.078 (1.041–1.117) | <0.001 | 0.109 |
Total cholesterol (mg/dL) | 0.995 (0.989–1.002) | 0.135 | 0.013 |
HDL-C (mg/dL) | 0.980 (0.962–0.999) | 0.044 | 0.025 |
LDL-C (mg/dL) | 0.996 (0.989–1.004) | 0.331 | 0.005 |
Triglycerides (mg/dL) | 1.000 (0.996–1.003) | 0.975 | 0.000 |
Vitamin B12 (pg/mL) | 1.002 (1.000–1.004) | 0.097 | 0.018 |
Folate (ng/mL) | 0.977 (0.917–1.040) | 0.468 | 0.003 |
Vitamin D (ng/mL) | 1.018 (0.984–1.052) | 0.304 | 0.006 |
Magnesium (mg/dL) | 0.308 (0.070–1.358) | 0.120 | 0.005 |
TSH (mIU/L) | 0.852 (0.701–1.036) | 0.109 | 0.015 |
FT4 (ng/dL) | 1.526 (0.436–5.339) | 0.508 | 0.003 |
FT3 (pg/mL) | 0.555 (0.332–0.926) | 0.024 | 0.030 |
Adjusted | |||
Predictors in Models | OR (95% CI) | p | Nagelkerke R2 |
BMI (kg/m2) | 0.899 (0.840–0.962) | 0.002 | 0.403 |
WBC count | 1.226 (0.989–1.520) | 0.063 | |
Platelet count | 1.032 (0.976–1.092) | 0.271 | |
Creatinine (mg/dL) | 0.005 (0.000–0.081) | <0.001 | |
ESR (mm/hour) | 1.083 (1.035–1.134) | 0.001 | |
HDL-C (mg/dL) | 0.983 (0.958–1.010) | 0.211 | |
FT3 (pg/mL) | 0.423 (0.218–0.822) | 0.011 |
BASDAI Score < 4 n = 44 | BASDAI Score ≥ 4 n = 76 | p | |
---|---|---|---|
N (male/female) | 33/11 | 42/34 | 0.026 |
Age, years | 38.00 (30.02–44.00) | 37.00 (31.00–49.00) | 0.653 |
BMI, kg/m2 # | 25.61 ± 4.50 | 27.21 ± 5.51 | 0.105 |
Waist circumference, cm | 92.50 (87.00–101.00) | 91.00 (86.00–106.00) | 0.978 |
Diabetes mellitus (no/yes) | 44/0 | 75/1 | 0.448 |
Coronary artery disease (no/yes) | 44/0 | 75/1 | 0.448 |
Hypertension (no/yes) | 42/2 | 73/2 | 0.564 |
Hyperlipidemia (no/yes) | 44/0 | 75/1 | 0.448 |
Alcohol drinking status (no/yes) | 40/4 | 72/4 | 0.407 |
Smoking status (no/yes) | 23/21 | 48/29 | 0.279 |
Disease duration, months | 7.00 (5.00–10.50) | 5.00 (3.00–10.00) | 0.095 |
NSAID/Anti-TNF-α biological agents | 9/35 | 36/41 | 0.004 |
BASDAI score | 2.85 (1.90–3.55) | 5.60 (4.60–7.20) | <0.001 |
BASFI score | 1.40 (0.55–3.80) | 4.00 (2.25–6.05) | <0.001 |
BASDAI Score < 4 n = 44 | BASDAI Score ≥ 4 n = 76 | p | |
---|---|---|---|
WBC count × 1000 | 7.45 (6.53–8.69) | 7.68 (6.63–9.21) | 0.527 |
Neutrophil count × 1000 | 4.29 (3.23–5.41) | 4.75 (3.59–5.62) | 0.286 |
Lymphocyte count × 1000 | 2.51 (1.99–3.01) | 2.31 (1.96–2.96) | 0.865 |
Monocyte count × 100 | 4.80 (4.15–5.95) | 4.60 (3.80–5.80) | 0.329 |
Platelet count × 10,000 | 28.00 (24.00–32.50) | 28.00 (26.00–34.0) | 0.389 |
Glucose (mg/dL) | 91.00 (84.00–99.00) | 91.00 (85.00–97.00) | 0.929 |
HbA1c, % | 5.60 (5.20–5.80) | 5.50 (5.20–5.90) | 0.518 |
Urea (mg/dL) | 27.00 (23.50–29.50) | 26.00 (21.00–32.00) | 0.493 |
Creatinine (mg/dL) | 0.80 (0.70–0.90) | 0.70 (0.60–0.90) | 0.069 |
Uric acid (mg/dL) | 5.15 (4.45–6.00) | 4.80 (4.00–5.90) | 0.065 |
Total protein (g/dL) | 8.00 (7.60–8.00) | 7.60 (7.00–8.00) | 0.039 |
CRP (mg/L) | 4.50 (1.75–8.50) | 5.00 (2.00–9.00) | 0.409 |
ESR (mm/hour) | 10.50 (4.00–19.00) | 13.00 (4.00–22.00) | 0.264 |
Total cholesterol # (mg/dL) | 207.00 ± 36.71 | 205.99 ± 42.92 | 0.896 |
HDL-C (mg/dL) | 50.50 (43.50–59.00) | 47.00 (40.00–56.00) | 0.135 |
LDL-C # (mg/dL) | 128.09 ± 32.51 | 131.77 ± 37.77 | 0.590 |
Triglycerides (mg/dL) | 117.00 (74.00–188.50) | 119.00 (86.00–162.00) | 0.765 |
Vitamin B12 (pg/mL) | 347.00 (278.00–416.00) | 326.00 (259.00–412.00) | 0.135 |
Folate (ng/mL) | 8.00 (6.75–13.00) | 8.00 (6.00–11.00) | 0.568 |
Vitamin D (ng/mL) | 12.00 (8.50–16.50) | 10.00 (6.00–15.00) | 0.168 |
Magnesium (mg/dL) | 2.00 (1.87–2.07) | 1.96 (1.90–2.10) | 0.659 |
TSH (mIU/L) | 1.60 (1.20–2.32) | 1.64 (1.21–2.80) | 0.708 |
FT4 (ng/dL) | 1.21 (1.07–1.32) | 1.12 (1.04–1.29) | 0.268 |
FT3 (pg/mL) | 3.44 (3.19–3.83) | 3.20 (2.94–2.48) | 0.004 |
FT3 (pg/mL) | 1.000 | |||||
BASDAI score | −0.243 ** | 1.000 | ||||
CRP (mg/L) | −0.152 * | 0.152 | 1.000 | |||
ESR (mm/hour) | −0.259 *** | 0.144 | 0.482 *** | 1.000 | ||
WBC count | 0.071 | 0.045 | 0.421 *** | 0.139 * | 1.000 | |
Lymphocyte count | 0.145 * | −0.030 | 0.129 * | −0.017 | 0.503 *** | 1.000 |
Correlation matrix | FT3 (pg/mL) | BASDAI score | CRP (mg/L) | ESR (mm/hour) | WBC count | Lymphocyte count |
Single Predictors | OR (95%CI) | p | Nagelkerke R2 |
---|---|---|---|
Age, years | 1.012 (0.977–1.049) | 0.514 | 0.005 |
BMI, kg/m2 | 1.065 (0.986–1.149) | 0.108 | 0.031 |
Waist circumference, cm | 1.008 (0.978–1.040) | 0.595 | 0.003 |
WBC count | 1.080 (0.878–1.328) | 0.467 | 0.006 |
Neutrophil count | 1.140 (0.882–1.474) | 0.317 | 0.012 |
Lymphocyte count | 1.017 (0.626–1.654) | 0.944 | 0.000 |
Monocyte count | 0.875 (0.692–1.106) | 0.263 | 0.014 |
Platelet count | 1.025 (0.972–1.082) | 0.356 | 0.010 |
Glucose (mg/dL) | 1.001 (0.961–1.042) | 0.981 | 0.000 |
HbA1c, % | 0.681 (0.258–1.801) | 0.439 | 0.007 |
Urea (mg/dL) | 0.987 (0.942–1.035) | 0.601 | 0.003 |
Creatinine (mg/dL) | 0.117 (0.010–1.295) | 0.080 | 0.035 |
Uric acid (mg/dL) | 0.734 (0.542–0.994) | 0.046 | 0.047 |
Total protein (g/dL) | 1.029 (0.925–1.145) | 0.604 | 0.005 |
CRP (mg/L) | 1.047 (0.975–1.125) | 0.208 | 0.020 |
ESR (mm/hour) | 1.025 (0.985–1.067) | 0.216 | 0.018 |
Total cholesterol (mg/dL) | 0.999 (0.990–1.009) | 0.895 | 0.000 |
HDL-C (mg/dL) | 0.980 (0.952–1.009) | 0.170 | 0.021 |
LDL-C (mg/dL) | 1.003 (0.992–1.014) | 0.587 | 0.005 |
Triglycerides (mg/dL) | 0.999 (0.993–1.005) | 0.717 | 0.001 |
Vitamin B12 (pg/mL) | 0.997 (0.994–1.000) | 0.057 | 0.042 |
Folate (ng/mL) | 0.973 (0.897–1.055) | 0.507 | 0.005 |
Vitamin D (ng/mL) | 0.965 (0.918–1.014) | 0.160 | 0.023 |
Magnesium (mg/dL) | 1.740 (0.235–12.888) | 0.588 | 0.003 |
TSH (mIU/L) | 1.021 (0.773–1.349) | 0.882 | 0.000 |
FT4 (ng/dL) | 0.421 (0.075–2.370) | 0.327 | 0.011 |
FT3 (pg/mL) | 0.414 (0.206–0.831) | 0.013 | 0.030 |
Adjusted | |||
Predictors in Models | OR (95% CI) | p | Nagelkerke R2 |
Uric acid (mg/dL) | 0.891 (0.605–1.312) | 0.559 | 0.189 |
FT3 (pg/mL) | 0.484 (0.232–0.999) | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciftel, E.; Klisic, A.; Kizilkaya, B.; Cure, O.; Mercantepe, F.; Karakas, S.M.; Ninić, A. Association of Low Free T3 with Disease Presence and Activity in Ankylosing Spondylitis. Int. J. Mol. Sci. 2025, 26, 7862. https://doi.org/10.3390/ijms26167862
Ciftel E, Klisic A, Kizilkaya B, Cure O, Mercantepe F, Karakas SM, Ninić A. Association of Low Free T3 with Disease Presence and Activity in Ankylosing Spondylitis. International Journal of Molecular Sciences. 2025; 26(16):7862. https://doi.org/10.3390/ijms26167862
Chicago/Turabian StyleCiftel, Enver, Aleksandra Klisic, Bayram Kizilkaya, Osman Cure, Filiz Mercantepe, Sibel Mataraci Karakas, and Ana Ninić. 2025. "Association of Low Free T3 with Disease Presence and Activity in Ankylosing Spondylitis" International Journal of Molecular Sciences 26, no. 16: 7862. https://doi.org/10.3390/ijms26167862
APA StyleCiftel, E., Klisic, A., Kizilkaya, B., Cure, O., Mercantepe, F., Karakas, S. M., & Ninić, A. (2025). Association of Low Free T3 with Disease Presence and Activity in Ankylosing Spondylitis. International Journal of Molecular Sciences, 26(16), 7862. https://doi.org/10.3390/ijms26167862