Expression Profile of IL-2, IL-6, IL-10, and TNF-α in Breast Tumors
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Eligibility Criteria
4.1.1. Patient Selection
4.1.2. Inclusion Criteria
4.1.3. Exclusion Criteria
4.1.4. Samples
4.2. Gene Expression
4.3. Sample Size
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BL1 | Basal-like 1 |
BL2 | Basal-like 2 |
DC | Dendritic Cells |
ER | Estrogen Receptor |
GAPDH | Glyceraldehyde-3-Phosphate Dehydrogenase |
HER2 | Human Epidermal Growth Factor Receptor 2 |
IDC | Invasive Ductal Carcinoma |
IL-2 | Interleukin-2 |
IL-6 | Interleukin-6 |
IL-7 | Interleukin-7 |
IL-10 | Interleukin-10 |
IL-12 | Interleukin-12 |
IL-17 | Interleukin-17 |
ILC | Invasive Lobular Carcinoma |
IM | Immunomodulatory |
Ki-67 | Proliferation Marker KI-67 |
LAR | Luminal Androgen Receptor |
MSL | Mesenchymal Stem-like |
mRNA | Messenger Ribonucleic Acid |
NF-κB | Nuclear Factor kappa B |
PCR | Polymerase Chain Reaction |
PR | Progesterone Receptor |
TCGF | T-cell Growth Factor |
TNBC | Triple Negative Breast Cancer |
TNF-α | Tumor Necrosis Factor Alpha |
VEGF | Vascular Endothelial Growth Factor |
References
- Gordon-Dseagu, V.; Vlad, J. Differences in Cancer Incidence and Mortality Across the Globe. Available online: https://www.wcrf.org/differences-in-cancer-incidence-and-mortality-across-the-globe/ (accessed on 20 October 2024).
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef]
- Fan, Y.; He, S. The Characteristics of Tumor Microenvironment in Triple Negative Breast Cancer. Cancer Manag. Res. 2022, 14, 1–17. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Agnoli, C.; Grioni, S.; Pala, V.; Allione, A.; Matullo, G.; Di Gaetano, C.; Tagliabue, G.; Sieri, S.; Krogh, V. Biomarkers of inflammation and breast cancer risk: A case-control study nested in the EPIC-Varese cohort. Sci. Rep. 2017, 7, 1270. [Google Scholar] [CrossRef] [PubMed]
- Padala, C.; Puranam, K.; Shyamala, N.; Kupsal, K.; Kummari, R.; Galimudi, R.K.; Gundapaneni, K.K.; Tupurani, M.A.; Suryadevera, A.; Chinta, S.K.; et al. Genotypic and haplotype analysis of Interleukin-6 and -18 gene polymorphisms in association with clinicopathological factors in breast cancer. Cytokine 2022, 160, 156024. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- Villaseñor, A.; Flatt, S.W.; Marina, C.; Natarajan, L.; Pierce, J.P.; Patterson, R.E. Postdiagnosis C-reactive protein and breast cancer survivorship: Findings from the WHEL Study. Cancer Epidemiol. Biomark. Prev. 2014, 23, 189–199. [Google Scholar] [CrossRef]
- Pierce, B.L.; Ballard-Barbash, R.; Bernstein, L.; Baumgartner, R.N.; Neuhouser, M.L.; Wener, M.H.; Baumgartner, K.B.; Gilliland, F.D.; Sorensen, B.E.; McTiernan, A.; et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J. Clin. Oncol. 2009, 27, 3437–3444. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Zhao, N.; Rosen, J.M. Breast cancer heterogeneity through the lens of single-cell analysis and spatial pathologies. Semin. Cancer Biol. 2022, 82, 3–10. [Google Scholar] [CrossRef]
- Ab Mumin, N.; Ramli Hamid, M.T.; Wong, J.H.D.; Rahmat, K.; Ng, K.H. Magnetic Resonance Imaging Phenotypes of Breast Cancer Molecular Subtypes: A Systematic Review. Acad. Radiol. 2022, 29 (Suppl. 1), S89–S106. [Google Scholar] [CrossRef]
- Méndez-García, L.A.; Nava-Castro, K.E.; Ochoa-Mercado, T.d.L.; Palacios-Arreola, M.I.; Ruiz-Manzano, R.A.; Segovia-Mendoza, M.; Solleiro-Villavicencio, H.; Cázarez-Martínez, C.; Morales-Montor, J. Breast cancer metastasis: Are cytokines important players during its development and progression? J. Interferon Cytokine Res. 2019, 39, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Ásgeirsson, K.S.; Ólafsdóttir, K.; Jónasson, J.G.; Ögmundsdóttir, H.M. The effects of IL-6 on cell adhesion and E-cadherin expression in breast cancer. Cytokine 1998, 10, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Sun, F.; Zhou, J.; Li, L.; Shapiro, S.D.; Xiao, G. Interleukin-6 prevents the Initiation but enhances the progression of lung cancer. Cancer Res. 2015, 75, 3209–3215. [Google Scholar] [CrossRef]
- Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the Interleukin-10 receptor. Annu. Rev. Immunol. 2001, 19, 683–765. [Google Scholar] [CrossRef]
- Dennis, K.L.; Blatner, N.R.; Gounari, F.; Khazaie, K. Current status of Interleukin-10 and regulatory T cells in cancer. Curr. Opin. Oncol. 2013, 25, 637–645. [Google Scholar] [CrossRef]
- Sakamoto, T.; Saito, H.; Tatebe, S.; Tsujitani, S.; Ozaki, M.; Ito, H.; Ikeguchi, M. Interleukin-10 expression significantly correlates with minor CD8 + T cell infiltration and high microvessel density in patients with gastric cancer. Int. J. Cancer 2006, 118, 1909–1914. [Google Scholar] [CrossRef]
- Chew, V.; Toh, H.C.; Abastado, J.P. Immune microenvironment in tumour progression: Characteristics and challenges for therapy. J. Oncol. 2012, 2012, 608406. [Google Scholar] [CrossRef]
- Esquivel-Velazquez, M.; Ostoa-Saloma, P.; Palacios-Arreola, M.I.; Nava-Castro, K.E.; Castro, J.I.; Morales-Montor, J. The role of cytokines in breast cancer development and progression. J. Interferon Cytokine Res. 2015, 35, 1–16. [Google Scholar] [CrossRef]
- Autenshlyus, A.; Davletova, K.; Varaksin, N.; Marinkin, I.; Lyakhovich, V. Cytokines in various molecular subtypes of breast cancer. Int. J. Immunopathol. Pharmacol. 2021, 35, 20587384211034089. [Google Scholar] [CrossRef]
- Liu, G.; Chen, X.T.; Zhang, H. Expression analysis of cytokines IL-5, IL-6, IL-8, IL-17 and VEGF in breast cancer patients. Front. Oncol. 2022, 12, 1019247. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Tang, C.; Liu, J.; Jiang, W.; Yu, H.; Dong, F.; Huang, C.; Rixiati, Y. Comprehensive analysis of suppressor of cytokine signaling proteins in human breast Cancer. BMC Cancer 2021, 21, 696. [Google Scholar] [CrossRef] [PubMed]
- McCart Reed, A.E.; Kalita-De Croft, P.; Kutasovic, J.R.; Saunus, J.M.; Lakhani, S.R. Recent advances in breast cancer research impacting clinical diagnostic practice. J. Pathol. 2019, 247, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Schillace, V.; Skinner, A.M.; Pommier, R.F. Estrogen receptor, progesterone receptor, interleukin-6 and interleukin-8 are variable in breast cancer and benign stem/progenitor cell populations. BMC Cancer 2014, 14, 733. [Google Scholar] [CrossRef]
- Fontanini, G.; Campani, D.; Roncella, M.; Cecchetti, D.; Calvo, S.; Toniolo, A.; Basolo, F. Expression of interleukin 6 (IL-6) correlates with oestrogen receptor in human breast carcinoma. Br. J. Cancer 1999, 80, 579–584. [Google Scholar] [CrossRef]
- Jiang, T.; Zhou, C.; Ren, S. Role of IL-2 in cancer immunotherapy. Oncoimmunology 2016, 5, e1163462. [Google Scholar] [CrossRef]
- Abbas, A.K.; Trotta, E.; Simeonov, R.; Marson, A.; Bluestone, J.A. Revisiting IL-2: Biology and therapeutic prospects. Sci. Immunol. 2018, 3, eaat1482. [Google Scholar] [CrossRef]
- Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Pérez-Gracia, J.L.; Rodriguez-Ruiz, M.E.; Ponz-Sarvise, M.; Castañón, E.; Melero, I. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 2019, 120, 6–15. [Google Scholar] [CrossRef]
- Salamanna, F.; Borsari, V.; Contartese, D. What is the role of interleukins in breast cancer bone metastases? A systematic review of preclinical and clinical evidence. Cancers 2019, 11, 2018. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Kumar, D.N.; Dehari, D.; Patil, R.; Singh, S.; Kumar, D.; Agrawal, A.K. Endorsement of TNBC Biomarkers in Precision Therapy by Nanotechnology. Cancers 2023, 15, 2661. [Google Scholar] [CrossRef]
- Yin, L.; Duan, J.-J.; Bian, X.-W.; Yu, S.-C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef]
Variable | n | % |
---|---|---|
Tumor type | ||
Invasive Ductal Carcinoma | 77 | 81.05 |
Mucinous Carcinoma | 3 | 3.16 |
In Situ Ductal Carcinoma | 4 | 4.21 |
Invasive Ductal Carcinoma/PAGET | 2 | 2.11 |
Invasive Lobular Carcinoma | 7 | 7.37 |
Lobular Carcinoma | 2 | 2.1 |
Stage | ||
0 | 2 | 2.11 |
IA | 16 | 16.84 |
IIA | 31 | 32.63 |
IIIA | 32 | 33.68 |
IIB | 4 | 4.21 |
IIIB | 10 | 10.53 |
Her2-neo | ||
Negative | 59 | 62.11 |
+ | 20 | 21.05 |
++ | 6 | 6.32 |
+++ | 10 | 10.53 |
PR | ||
Negative | 19 | 20.00 |
Positive | 76 | 80.00 |
ER | ||
Negative | 16 | 16.85 |
Positive | 79 | 83.15 |
Chemotherapy | ||
No | 4 | 4.21 |
Yes | 91 | 95.79 |
IL2 mRNA | ||
Expression detected | 65 | 68.42 |
Expression not detected | 30 | 31.58 |
IL6 mRNA | ||
Expression detected | 87 | 91.58 |
Expression not detected | 8 | 8.42 |
IL10 mRNA | ||
Absent | 95 | 100 |
TNF-a mRNA | ||
Expression detected | 93 | 97.89 |
Expression not detected | 2 | 2.11 |
Mean (SD) | Range | |
Age | 56.87 (13.63) | 31.00–89.00 |
Median | CI 95% | |
Ki-67 (%) | 2.0 | 0.0; 10.0 |
Variables | IL-2 | p * | IL-6 | p * | TNF-α | p * | |||
---|---|---|---|---|---|---|---|---|---|
No Expression | Expression | No Expression | Expression | No Expression | Expression | ||||
n (%) | n (%) | n (%) | |||||||
ER | |||||||||
Negative | 13 (81.25) | 3 (18.75) | 0.215 | 15 (93.75) | 1 (6.25) | 0.722 | 15 (93.75) | 1 (6.25) | 0.210 |
Positive | 52 (65.83) | 27 (34.17) | 72 (91.13) | 7 (8.87) | 78 (98.73) | 1 (1.27) | |||
PR | |||||||||
Negative | 16 (84.21) | 3 (15.79) | 0.098 | 18 (94.74) | 1 (5.26) | 0.579 | 17 (89.47) | 2 (10.53) | 0.004 |
Positive | 49 (64.47) | 27 (35.53) | 69 (90.79) | 7 (9.21) | 76 (100) | 0 (0.0) | |||
Chemo | |||||||||
No | 2 (50.00) | 2 (50.00) | 0.418 | 3 (75.00) | 1 (25.00) | 0.222 | 4 (100) | 0 (0.0) | 0.764 |
Yes | 63 (69.23) | 28 (30.77) | 84 (92.31) | 7 (7.69) | 89 (97.80) | 2 (2.20) | |||
Stage | |||||||||
0 | 2 (100) | 0 (0.0) | 0.051 | 1 (50.0) | 1 (50.0) | 0.207 | 2 (100) | 0 (0.0) | 0.040 |
IA | 10 (62.50) | 6 (37.50) | 15 (93.75) | 1 (6.25) | 16 (100) | 0 (0.0) | |||
IIA | 24 (77.42) | 7 (22.58) | 28 (90.32) | 3 (9.68) | 30 (96.77) | 1 (3.23) | |||
IIIA | 22 (68.75) | 10 (31.25) | 30 (93.75) | 2 (6.25) | 32 (100) | 0 (0.0) | |||
IIB | 4 (100) | 0 (0.0) | 3 (75.00) | 1 (25.00) | 3 (75.00) | 1 (25.00) | |||
IIIB | 3 (30.0) | 7 (70.0) | 10 (100) | 0 (0.0) | 10 (100) | 0 (0.0) | |||
Her2-neo | |||||||||
Negative | 42 (71.19) | 17 (28.81) | 0.829 | 54 (91.53) | 5 (8.47) | 0.834 | 57 (96.61) | 2 (3.39) | 0.742 |
+ | 12 (60.00) | 8 (40.00) | 19 (95.00) | 1 (5.00) | 20 (100) | 0 (0.0) | |||
++ | 4 (66.67) | 2 (33.33) | 5 (83.33) | 1 (16.67) | 6 (100) | 0 (0.0) | |||
+++ | 7 (70.00) | 3 (30.00) | 9 (90.00) | 1 (10.00) | 10 (100) | 0 (0.0) |
Variables | IL-2 mRNA | p * | IL-6 mRNA | p * | TNF-α mRNA | p * | |||
---|---|---|---|---|---|---|---|---|---|
Absent | Present | Absent | Present | Absent | Present | ||||
Mean (CI 95%) | Mean (CI 95%) | Mean (CI 95%) | |||||||
Age | 55.5 (52.2; 58.8) | 59.7 (54.4; 65.07) | 0.16 | 56.9 (54.0; 59.8) | 55.6 (42.5; 69.2) | 0.82 | 57.1 (54.3; 59.8) | 46.5 (150.4; 243.4) | 0.27 |
Median (CI 95%) | p ** | Median (CI 95%) | p ** | Median (CI 95%) | p ** | ||||
Ki-67 (%) | 2.5 (0.0; 10.0) | 2.0 (0.0; 15.0) | 0.80 | 5.0 (0.0; 10.0) | 0.0 (0.0; 30.28) | 0.610 | 2.0 (0.0; 10.00) | 17.5 (0.0; 35.00) | 0.714 |
Gene | Primers Sequence | Amplicon (bp) |
---|---|---|
IL-2 | F-CCCAAGAAGGCCACAGAACT R-TTGCTGATTAAGTCCCTGGGT | 125 |
IL-10 | F-GCTGAGAACCAAGACCCAGA R-ATTCTTCACCTGCTCCACGG | 141 |
IL-6 | F-CCAGAGCTGTGCAGATGAGT R-AGCTGCGCAGAATGAGATGA | 174 |
TNF-α | F-AGAGGGAAGAGTTCCCCAGG R-CCTCAGCTTGAGGGTTTGCT | 123 |
GAPDH | F-GACCACAGTCCATGCCAT R-CAGCTCAGGGATGACCTT | 148 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, H.W.G.; Bramante, B.C.; Perez, M.M.; da Veiga, G.L.; Alves, B.d.C.A.; Fonseca, F.L.A. Expression Profile of IL-2, IL-6, IL-10, and TNF-α in Breast Tumors. Int. J. Mol. Sci. 2025, 26, 7841. https://doi.org/10.3390/ijms26167841
dos Santos HWG, Bramante BC, Perez MM, da Veiga GL, Alves BdCA, Fonseca FLA. Expression Profile of IL-2, IL-6, IL-10, and TNF-α in Breast Tumors. International Journal of Molecular Sciences. 2025; 26(16):7841. https://doi.org/10.3390/ijms26167841
Chicago/Turabian Styledos Santos, Harryson W. G., Beatriz C. Bramante, Matheus M. Perez, Glaucia L. da Veiga, Beatriz da C. A. Alves, and Fernando L. A. Fonseca. 2025. "Expression Profile of IL-2, IL-6, IL-10, and TNF-α in Breast Tumors" International Journal of Molecular Sciences 26, no. 16: 7841. https://doi.org/10.3390/ijms26167841
APA Styledos Santos, H. W. G., Bramante, B. C., Perez, M. M., da Veiga, G. L., Alves, B. d. C. A., & Fonseca, F. L. A. (2025). Expression Profile of IL-2, IL-6, IL-10, and TNF-α in Breast Tumors. International Journal of Molecular Sciences, 26(16), 7841. https://doi.org/10.3390/ijms26167841