Exploring the Heterogeneity of Cancer-Associated Fibroblasts via Development of Patient-Derived Cell Culture of Breast Cancer
Abstract
1. Introduction
2. Results
2.1. Characterization of a Panel of Patient-Derived Fibroblast Cell Cultures
2.2. Phenotyping of Molecular Markers of Fibroblasts in Patient-Derived Cultures
2.3. Cancer-Associated Fibroblast Cell Surface Markers
2.4. Determination of Sensitivity of Breast Tumor Cells to Anticancer Agents
2.5. Potential for Clustering of Fibroblasts into Spheroids
2.6. Analysis of the Effect of Hypoxia-Activated CAF on Breast Tumor Cells When Co-Cultured in the Tumor-Stromal Spheroid Model
3. Discussion
4. Materials and Methods
4.1. Primary Cell Culture
4.2. Cell Culture
4.3. Hematoxylin and Eosin Staining of Cell Cultures
4.4. xCELLigence Assay
4.5. Immunocytochemistry
4.5.1. Counting the Number of Cells on a Preparation in ImageJ
4.5.2. Counting MFI of the Fluorescent Signal on a Preparation in ImageJ
4.6. Flow Cytometry
4.7. MTT Assay
4.8. Spheroid Formation
4.8.1. Stromal Spheroid
4.8.2. Heterotypic Spheroid
4.9. Live/Dead Staining
4.10. Investigation of the Potential of Cells in Spheroids for Invasion and Migration
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
α-SMA | alpha-smooth muscle actin |
2D-models | two-dimensional cellular culture |
3D-models | three-dimensional cellular culture |
3D-2-models | three-dimensional cellular culture from tumor and stromal cells |
BC | breast cancer |
BSA | bovine serum albumin |
CAFs | cancer-associated fibroblasts |
CD24 | mucin-like highly glycosylated molecule |
CD44 | cell-surface glycoprotein involved in cell–cell interactions, cell adhesion and migration |
CD90 | Thy-1 cell surface antigen |
E-cad | E-cadherin |
ECM | extracellular matrix |
EGF | epidermal growth factor |
EGFR | epidermal growth factor receptor |
EpCAM | epithelial cell adhesion molecule |
FBS | fetal bovine serum |
FDA | fluorescein diacetate |
FGF | fibroblast growth factor |
FSP1/S100A4 | fibroblast specific protein 1/S100 calcium binding protein A4 |
MFI | mean fluorescent intensity |
MelCAM | melanoma cell adhesion molecule |
N-cad | N-cadherin |
PI | propidium iodide |
PDGFRα | platelet-derived growth factor receptor A |
scRNA-Seq | single-cell RNA sequencing |
TME | tumor microenvironment |
References
- Giaquinto, A.N.; Sung, H.; Newman, L.A.; Freedman, R.A.; Smith, R.A.; Star, J.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics 2024. CA A Cancer J. Clin. 2024, 74, 477–495. [Google Scholar] [CrossRef] [PubMed]
- De Visser, K.E.; Joyce, J.A. The Evolving Tumor Microenvironment: From Cancer Initiation to Metastatic Outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef]
- Zheng, J.; Hao, H. The Importance of Cancer-Associated Fibroblasts in Targeted Therapies and Drug Resistance in Breast Cancer. Front. Oncol. 2024, 13, 1333839. [Google Scholar] [CrossRef]
- Dvorak, H.F. Tumors: Wounds That Do Not Heal—Redux. Cancer Immunol. Res. 2015, 3, 1–11. [Google Scholar] [CrossRef]
- Talbott, H.E.; Mascharak, S.; Griffin, M.; Wan, D.C.; Longaker, M.T. Wound Healing, Fibroblast Heterogeneity, and Fibrosis. Cell Stem Cell 2022, 29, 1161–1180. [Google Scholar] [CrossRef]
- Ding, J.-H.; Xiao, Y.; Zhao, S.; Xu, Y.; Xiao, Y.-L.; Shao, Z.-M.; Jiang, Y.-Z.; Di, G.-H. Integrated Analysis Reveals the Molecular Features of Fibrosis in Triple-Negative Breast Cancer. Mol. Ther.-Oncolytics 2022, 24, 624–635. [Google Scholar] [CrossRef]
- Quintela-Fandino, M.; Bermejo, B.; Zamora, E.; Moreno, F.; García-Saenz, J.Á.; Pernas, S.; Martínez-Jañez, N.; Jiménez, D.; Adrover, E.; De Andrés, R.; et al. High Mechanical Conditioning by Tumor Extracellular Matrix Stiffness Is a Predictive Biomarker for Antifibrotic Therapy in HER2-Negative Breast Cancer. Clin. Cancer Res. 2024, 30, 5094–5104. [Google Scholar] [CrossRef]
- Lugo-Cintrón, K.M.; Gong, M.M.; Ayuso, J.M.; Tomko, L.A.; Beebe, D.J.; Virumbrales-Muñoz, M.; Ponik, S.M. Breast Fibroblasts and ECM Components Modulate Breast Cancer Cell Migration through the Secretion of MMPs in a 3D Microfluidic Co-Culture Model. Cancers 2020, 12, 1173. [Google Scholar] [CrossRef]
- Jia, H.; Chen, X.; Zhang, L.; Chen, M. Cancer Associated Fibroblasts in Cancer Development and Therapy. J. Hematol. Oncol. 2025, 18. [Google Scholar] [CrossRef] [PubMed]
- Mathieson, L.; Koppensteiner, L.; Dorward, D.A.; O’Connor, R.A.; Akram, A.R. Cancer-Associated Fibroblasts Expressing Fibroblast Activation Protein and Podoplanin in Non-Small Cell Lung Cancer Predict Poor Clinical Outcome. Br. J. Cancer 2024, 130, 1758–1769. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, T.; Yuan, Y.; Zhu, Y. What Is New in Cancer-Associated Fibroblast Biomarkers? Cell Commun. Signal. 2023, 21, 96. [Google Scholar] [CrossRef]
- Cords, L.; De Souza, N.; Bodenmiller, B. Classifying Cancer-Associated Fibroblasts—The Good, the Bad, and the Target. Cancer Cell 2024, 42, 1480–1485. [Google Scholar] [CrossRef]
- Kanzaki, R.; Pietras, K. Heterogeneity of Cancer-associated Fibroblasts: Opportunities for Precision Medicine. Cancer Sci. 2020, 111, 2708–2717. [Google Scholar] [CrossRef]
- Liu, Y.; Sinjab, A.; Min, J.; Han, G.; Paradiso, F.; Zhang, Y.; Wang, R.; Pei, G.; Dai, Y.; Liu, Y.; et al. Conserved Spatial Subtypes and Cellular Neighborhoods of Cancer-Associated Fibroblasts Revealed by Single-Cell Spatial Multi-Omics. Cancer Cell 2025, 43, 905–924.e6. [Google Scholar] [CrossRef]
- Costa, A.; Kieffer, Y.; Scholer-Dahirel, A.; Pelon, F.; Bourachot, B.; Cardon, M.; Sirven, P.; Magagna, I.; Fuhrmann, L.; Bernard, C.; et al. Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell 2018, 33, 463–479.e10. [Google Scholar] [CrossRef]
- Kazakova, A.N.; Lukina, M.M.; Anufrieva, K.S.; Bekbaeva, I.V.; Ivanova, O.M.; Shnaider, P.V.; Slonov, A.; Arapidi, G.P.; Shender, V.O. Exploring the Diversity of Cancer-Associated Fibroblasts: Insights into Mechanisms of Drug Resistance. Front. Cell Dev. Biol. 2024, 12, 1403122. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, A.; Graves, D.; Korrer, M.; Wang, Y.; Roy, S.; Naveed, A.; Xu, Y.; Luginbuhl, A.; Curry, J.; Gibson, M.; et al. Immunostimulatory Cancer-Associated Fibroblast Subpopulations Can Predict Immunotherapy Response in Head and Neck Cancer. Clin. Cancer Res. 2022, 28, 2094–2109. [Google Scholar] [CrossRef] [PubMed]
- Louault, K.; Li, R.-R.; DeClerck, Y.A. Cancer-Associated Fibroblasts: Understanding Their Heterogeneity. Cancers 2020, 12, 3108. [Google Scholar] [CrossRef]
- Huynh, P.T.; Beswick, E.J.; Coronado, Y.A.; Johnson, P.; O’Connell, M.R.; Watts, T.; Singh, P.; Qiu, S.; Morris, K.; Powell, D.W.; et al. CD90+ Stromal Cells Are the Major Source of IL-6 Which Supports Cancer Stem-like Cells and Inflammation in Colorectal Cancer. Int. J. Cancer 2016, 138, 1971–1981. [Google Scholar] [CrossRef]
- Nushtaeva, A.A.; Karpushina, A.A.; Ermakov, M.S.; Gulyaeva, L.F.; Gerasimov, A.V.; Sidorov, S.V.; Gayner, T.A.; Yunusova, A.Y.; Tkachenko, A.V.; Richter, V.A.; et al. Establishment of Primary Human Breast Cancer Cell Lines Using “Pulsed Hypoxia” Method and Development of Metastatic Tumor Model in Immunodeficient Mice. Cancer Cell Int. 2019, 19, 46. [Google Scholar] [CrossRef] [PubMed]
- Nushtaeva, A.; Ermakov, M.; Abdurakhmanova, M.; Troitskaya, O.; Belovezhets, T.; Varlamov, M.; Gayner, T.; Richter, V.; Koval, O. “Pulsed Hypoxia” Gradually Reprograms Breast Cancer Fibroblasts into pro-Tumorigenic Cells via Mesenchymal–Epithelial Transition. Int. J. Mol. Sci. 2023, 24, 2494. [Google Scholar] [CrossRef] [PubMed]
- Nushtaeva, A. The Optimization of Methods for the Establishment of Heterogeneous Three-Dimensional Cellular Models of Breast Cancer. Genes Cells 2023, 17, 91–103. [Google Scholar] [CrossRef]
- Kho, D.; MacDonald, C.; Johnson, R.; Unsworth, C.; O’Carroll, S.; Mez, E.; Angel, C.; Graham, E. Application of xCELLigence RTCA Biosensor Technology for Revealing the Profile and Window of Drug Responsiveness in Real Time. Biosensors 2015, 5, 199–222. [Google Scholar] [CrossRef] [PubMed]
- Pinzon-Herrera, L.; Mendez-Vega, J.; Mulero-Russe, A.; Castilla-Casadiego, D.A.; Almodovar, J. Real-Time Monitoring of Human Schwann Cells on Heparin-Collagen Coatings Reveals Enhanced Adhesion and Growth Factor Response. J. Mater. Chem. B 2020, 8, 8809–8819. [Google Scholar] [CrossRef] [PubMed]
- Koval, O.A.; Sakaeva, G.R.; Fomin, A.S.; Nushtaeva, A.A.; Semenov, D.V.; Kuligina, E.V.; Gulyaeva, L.F.; Gerasimov, A.V.; Richter, V.A. Sensitivity of Endometrial Cancer Cells from Primary Human Tumor Samples to New Potential Anticancer Peptide Lactaptin. J. Cancer Res. Ther. 2015, 11, 345–351. [Google Scholar] [CrossRef]
- Piwocka, O.; Musielak, M.; Piotrowski, I.; Kulcenty, K.; Adamczyk, B.; Fundowicz, M.; Suchorska, W.M.; Malicki, J. Primary Cancer-Associated Fibroblasts Exhibit High Heterogeneity among Breast Cancer Subtypes. Rep. Pract. Oncol. Radiother. 2023, 28, 159–171. [Google Scholar] [CrossRef]
- Ostrowska-Podhorodecka, Z.; Ding, I.; Norouzi, M.; McCulloch, C.A. Impact of Vimentin on Regulation of Cell Signaling and Matrix Remodeling. Front. Cell Dev. Biol. 2022, 10, 869069. [Google Scholar] [CrossRef]
- Jiang, D.; Rinkevich, Y. Defining Skin Fibroblastic Cell Types beyond CD90. Front. Cell Dev. Biol. 2018, 6, 133. [Google Scholar] [CrossRef]
- Blaschuk, O.W. Potential Therapeutic Applications of N-Cadherin Antagonists and Agonists. Front. Cell Dev. Biol. 2022, 10. [Google Scholar] [CrossRef]
- Chen, J.; Xu, Q.; Liu, D.; Li, X.; Guo, M.; Chen, X.; Liao, J.; Lei, R.; Li, W.; Huang, H.; et al. CD146 Promotes Malignant Progression of Breast Phyllodes Tumor through Suppressing DCBLD2 Degradation and Activating the AKT Pathway. Cancer Commun. 2023, 43, 1244–1266. [Google Scholar] [CrossRef]
- Huang, F.; Shi, Q.; Li, Y.; Xu, L.; Xu, C.; Chen, F.; Wang, H.; Liao, H.; Chang, Z.; Liu, F.; et al. HER2/EGFR–AKT Signaling Switches TGFβ from Inhibiting Cell Proliferation to Promoting Cell Migration in Breast Cancer. Cancer Res. 2018, 78, 6073–6085. [Google Scholar] [CrossRef]
- Younesi, F.S.; Miller, A.E.; Barker, T.H.; Rossi, F.M.V.; Hinz, B. Fibroblast and Myofibroblast Activation in Normal Tissue Repair and Fibrosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 617–638. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.-H.; Hsiung, S.-C.; Yeh, C.-T.; Yen, C.-F.; Chou, Y.-H.W.; Lei, W.-Y.; Pang, S.-T.; Chuang, C.-K.; Liao, S.-K. Differential Expression of CD44 and CD24 Markers Discriminates the Epitheliod from the Fibroblastoid Subset in a Sarcomatoid Renal Carcinoma Cell Line: Evidence Suggesting the Existence of Cancer Stem Cells in Both Subsets as Studied with Sorted Cells. Oncotarget 2017, 8, 15593–15609. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Musielak, M.; Piwocka, O.; Kulcenty, K.; Ampuła, K.; Adamczyk, B.; Piotrowski, I.; Fundowicz, M.; Kruszyna-Mochalska, M.; Suchorska, W.M.; Malicki, J. Biological Heterogeneity of Primary Cancer-Associated Fibroblasts Determines the Breast Cancer Microenvironment. Am. J. Cancer Res. 2022, 12, 4411–4427. [Google Scholar]
- Im, S.B.; Cho, J.M.; Kim, H.B.; Shin, D.-H.; Kwon, M.S.; Lee, I.Y.; Son, G.M. FSP-1 Expression in Cancer Cells Is Relevant to Long-Term Oncological Outcomes in Nonmetastatic Colorectal Cancer. Korean J. Clin. Oncol. 2022, 18, 66–77. [Google Scholar] [CrossRef]
- Takahashi, N.; Yokoi, S.; Kimura, H.; Naiki, H.; Matsusaka, T.; Yamamoto, Y.; Nakatani, K.; Kasuno, K.; Iwano, M. Renoprotective Effects of Extracellular Fibroblast Specific Protein 1 via Nuclear Factor Erythroid 2-Related Factor-Mediated Antioxidant Activity. Sci. Rep. 2023, 13, 22540. [Google Scholar] [CrossRef]
- Avagliano, A.; Fiume, G.; Ruocco, M.R.; Martucci, N.; Vecchio, E.; Insabato, L.; Russo, D.; Accurso, A.; Masone, S.; Montagnani, S.; et al. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers 2020, 12, 1697. [Google Scholar] [CrossRef]
- Hillsley, A.; Santos, J.E.; Rosales, A.M. A Deep Learning Approach to Identify and Segment Alpha-Smooth Muscle Actin Stress Fiber Positive Cells. Sci. Rep. 2021, 11, 21855. [Google Scholar] [CrossRef] [PubMed]
- Attar, F.A.; Irani, S.; Oloomi, M.; Bolhassani, A.; Geranpayeh, L.; Atyabi, F. Doxorubicin Loaded Exosomes Inhibit Cancer-Associated Fibroblasts Growth: In Vitro and in Vivo Study. Cancer Cell Int. 2025, 25, 72. [Google Scholar] [CrossRef]
- Nushtaeva, A.A.; Savinkova, M.M.; Ermakov, M.S.; Varlamov, M.E.; Novak, D.D.; Richter, V.A.; Koval, O.A. Breast Cancer Cells in 3D Model Alters Their Sensitivity to Hormonal and Growth Factors. Cell Tiss. Biol. 2022, 16, 555–567. [Google Scholar] [CrossRef]
- Harper, J.M. Primary Cell Culture as a Model System for Evolutionary Molecular Physiology. Int. J. Mol. Sci. 2024, 25, 7905. [Google Scholar] [CrossRef]
- Yılmaz, S. Patient-Derived Primary Cultures in Breast Cancer: A Comparative Study of Isolation and Culture Methods. Lokman Hekim Health Sci. 2025, 5, 23–32. [Google Scholar] [CrossRef]
- Goel, S.; Dey, P.; Dahiya, D.; Bhatia, A. A Not so Worthless Attempt to Develop Primary Culture from Breast FNAC/CNB Samples! Tissue Cell 2021, 71, 101517. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Liu, C.; Li, Y.; Sun, C.; Wu, J.; Wu, Q. Crosstalk and Plasticity Driving between Cancer-Associated Fibroblasts and Tumor Microenvironment: Significance of Breast Cancer Metastasis. J. Transl. Med. 2023, 21, 827. [Google Scholar] [CrossRef]
- Romano, V.; Ruocco, M.R.; Carotenuto, P.; Barbato, A.; Venuta, A.; Acampora, V.; De Lella, S.; Vigliar, E.; Iaccarino, A.; Troncone, G.; et al. Generation and Characterization of a Tumor Stromal Microenvironment and Analysis of Its Interplay with Breast Cancer Cells: An in Vitro Model to Study Breast Cancer-Associated Fibroblast Inactivation. Int. J. Mol. Sci. 2022, 23, 6875. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, V.S.; De Jesus Cardona, C.; Hejret, V.; Tiefenbacher, A.; Mair, T.; Tran, L.; Pfneissl, J.; Draganić, K.; Binder, C.; Kabiljo, J.; et al. Mimicking Tumor Cell Heterogeneity of Colorectal Cancer in a Patient-Derived Organoid-Fibroblast Model. Cell. Mol. Gastroenterol. Hepatol. 2023, 15, 1391–1419. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Quazi, S.; Arora, S.; Osellame, L.D.; Burvenich, I.J.; Janes, P.W.; Scott, A.M. Cancer-Associated Fibroblasts as Therapeutic Targets for Cancer: Advances, Challenges, and Future Prospects. J. Biomed. Sci. 2025, 32, 7. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Q.; Zhang, N.; Du, X.; Xu, G.; Yan, X. CD146, from a Melanoma Cell Adhesion Molecule to a Signaling Receptor. Signal Transduct. Target. Ther. 2020, 5, 148. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Li, W.; Zhao, K.; Wang, J.; Li, S.; Zhao, H. Revisiting the Role of Cancer-Associated Fibroblasts in Tumor Microenvironment. Front. Immunol. 2025, 16, 1582532. [Google Scholar] [CrossRef]
- Kang, M.; Min, C.; Somayadineshraj, D.; Shin, J.H. AI-Driven Classification of Cancer-Associated Fibroblasts Using Morphodynamic and Motile Features. bioRxiv 2024. [Google Scholar] [CrossRef]
- Su, E.Y.; Fread, K.; Goggin, S.; Zunder, E.R.; Cahan, P. Direct Comparison of Mass Cytometry and Single-Cell RNA Sequencing of Human Peripheral Blood Mononuclear Cells. Sci. Data 2024, 11, 559. [Google Scholar] [CrossRef]
- Yang, J.; Xin, B.; Wang, X.; Wan, Y. Cancer-Associated Fibroblasts in Breast Cancer in the Single-Cell Era: Opportunities and Challenges. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2025, 1880, 189291. [Google Scholar] [CrossRef]
- Xia, Z.; De Wever, O. The Plasticity of Cancer-Associated Fibroblasts. Trends Cancer 2025. [Google Scholar] [CrossRef] [PubMed]
- Hogstrom, J.; Cruz, K.; Patel, J.; Mehta, T.; Warren, A.; Muranen, T. Abstract 3462: Modeling Drug Resistance in Hormone Receptor Positive Breast Cancer Using Patient Derived Organoid Cultures and Cancer Associated Fibroblasts. Cancer Res. 2022, 82, 3462. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, T.; Sun, L.; Yuan, Y.; Zhu, Y. Potential Mechanisms of Cancer-Associated Fibroblasts in Therapeutic Resistance. Biomed. Pharmacother. 2023, 166, 115425. [Google Scholar] [CrossRef]
- Piwocka, O.; Musielak, M.; Ampuła, K.; Piotrowski, I.; Adamczyk, B.; Fundowicz, M.; Suchorska, W.M.; Malicki, J. Navigating Challenges: Optimising Methods for Primary Cell Culture Isolation. Cancer Cell Int. 2024, 24, 28. [Google Scholar] [CrossRef]
- Yamauchi, M.; Barker, T.H.; Gibbons, D.L.; Kurie, J.M. The Fibrotic Tumor Stroma. J. Clin. Investig. 2018, 128, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.A.G.; Xavier, C.P.R.; Pereira, R.F.; Petrikaitė, V.; Vasconcelos, M.H. 3D Cell Culture Models as Recapitulators of the Tumor Microenvironment for the Screening of Anti-Cancer Drugs. Cancers 2021, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Pulak, R.; Shah, S.; Kim, Y.; D’Souza, G.G. Development of Triple Co-Culture Spheroid Models of Lung and Ovarian Carcinomas for in Vitro Evaluation of Antitumor Therapies. Cancer Res. 2025, 85, 6465. [Google Scholar] [CrossRef]
- Zhang, F.; Jozani, K.A.; Chakravarty, A.; Lin, D.; Hollinger, A.; Rajasekar, S.; Zhang, B. Immune-infiltrated Cancer Spheroid Model with Vascular Recirculation Reveals Temporally Dependent and Tissue-specific Macrophage Recruitment. Adv. Healthc. Mater. 2025, 14, 2402946. [Google Scholar] [CrossRef]
- Nishikiori, N.; Takada, K.; Sato, T.; Miyamoto, S.; Watanabe, M.; Hirakawa, Y.; Sekiguchi, S.; Furuhashi, M.; Yorozu, A.; Takano, K.; et al. Physical Properties and Cellular Metabolic Characteristics of 3D Spheroids Are Possible Definitive Indices for the Biological Nature of Cancer-Associated Fibroblasts. Cells 2023, 12, 2160. [Google Scholar] [CrossRef]
- Xue, W.; Wang, J.; Hou, Y.; Wu, D.; Wang, H.; Jia, Q.; Jiang, Q.; Wang, Y.; Song, C.; Wang, Y.; et al. Lung Decellularized Matrix-Derived 3D Spheroids: Exploring Silicosis through the Impact of the Nrf2/Bax Pathway on Myofibroblast Dynamics. Heliyon 2024, 10, e33585. [Google Scholar] [CrossRef]
- Salmenperä, P.; Kankuri, E.; Bizik, J.; Sirén, V.; Virtanen, I.; Takahashi, S.; Leiss, M.; Fässler, R.; Vaheri, A. Formation and Activation of Fibroblast Spheroids Depend on Fibronectin–Integrin Interaction. Exp. Cell Res. 2008, 314, 3444–3452. [Google Scholar] [CrossRef]
- Granato, G.; Ruocco, M.R.; Iaccarino, A.; Masone, S.; Calì, G.; Avagliano, A.; Russo, V.; Bellevicine, C.; Di Spigna, G.; Fiume, G.; et al. Generation and Analysis of Spheroids from Human Primary Skin Myofibroblasts: An Experimental System to Study Myofibroblasts Deactivation. Cell Death Discov. 2017, 3, 17038. [Google Scholar] [CrossRef]
- Du, W.; Novin, A.; Liu, Y.; Afzal, J.; Liu, S.; Suhail, Y.; Kshitiz. Stable and Oscillatory Hypoxia Differentially Regulate Invasibility of Breast Cancer-Associated Fibroblasts. Mechanobiol. Med. 2024, 2, 100070. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Bordoloi, A.D.; Ravensbergen, C.; David, M.K.H.; Mesker, W.; Liefers, G.J.; Ten Dijke, P.; Boukany, P.E. Inter-Spheroid Proximity and Matrix Remodeling Determine CAF-Mediated Cancer Cell Invasion. bioRxiv 2025. [Google Scholar]
- Brechbuhl, H.M.; Barrett, A.S.; Kopin, E.; Hagen, J.C.; Han, A.L.; Gillen, A.E.; Finlay-Schultz, J.; Cittelly, D.M.; Owens, P.; Horwitz, K.B.; et al. Fibroblast Subtypes Define a Metastatic Matrisome in Breast Cancer. JCI Insight 2020, 5, e130751. [Google Scholar] [CrossRef] [PubMed]
- Bakleh, M.Z.; Al Haj Zen, A. The Distinct Role of HIF-1α and HIF-2α in Hypoxia and Angiogenesis. Cells 2025, 14, 673. [Google Scholar] [CrossRef]
- Wang, W.-M.; Zhao, Z.-L.; Zhang, W.-F.; Zhao, Y.-F.; Zhang, L.; Sun, Z.-J. Role of Hypoxia-Inducible Factor-1α and CD146 in Epidermal Growth Factor Receptor-Mediated Angiogenesis in Salivary Gland Adenoid Cystic Carcinoma. Mol. Med. Rep. 2015, 12, 3432–3438. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, N.; Bahaar, H.; Shashank, D.; Cherry, C.E.; Gangadharan, C.; Suresh, A.; Kuriakose, M.A.; Pillai, V.; Das, M.; Smitha, P.K. Establishment and Characterization of Three Novel CAF Cell Lines from HNSCC Patients. bioRxiv 2023. [Google Scholar] [CrossRef]
- Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; et al. A Framework for Advancing Our Understanding of Cancer-Associated Fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Türker Şener, L.; Albeniz, G.; Dinç, B.; Albeniz, I. iCELLigence Real-Time Cell Analysis System for Examining the Cytotoxicity of Drugs to Cancer Cell Lines. Exp. Ther. Med. 2017, 14, 1866–1870. [Google Scholar] [CrossRef] [PubMed]
- Kramer, N.; Walzl, A.; Unger, C.; Rosner, M.; Krupitza, G.; Hengstschläger, M.; Dolznig, H. In Vitro Cell Migration and Invasion Assays. Mutat. Res./Rev. Mutat. Res. 2013, 752, 10–24. [Google Scholar] [CrossRef] [PubMed]
Cell Culture | Primary Biological Material | Characteristics Obtained by Histological Analysis of the Primary Tumor * |
---|---|---|
BC3f | Bl mammae | T2N0M0 |
BC4f | Bl mammae | T1N0M0 |
BrC1f | Bl mammae | - |
BrC4f | Bl mammae | T2N0M0 [21] |
Met-Tem | Bl mammae, docetaxel chemotherapy, radiation therapy | Brain metastasis, chemotherapy trastazumab and pertuzumab |
BN120f | Normal tissue | - |
NSK1f | Normal tissue (skin) | - |
Cell Culture | |||||||
---|---|---|---|---|---|---|---|
Marker | BC3f | BC4f | BrC1f | BrC4f | Met-Tem | BN120f | NSK1f |
Markers of fibroblast-like cells | |||||||
Mel-CAM | low | - | - | high | - | - | low |
Ep-CAM | - | - | - | - | - | - | - |
E-Cad | - | - | low | - | low | low | - |
N-Cad | high | high | high | high | low | high | high |
EGFR | high | + | low | + | low | high | high |
Vim | + | + | + | + | + | + | + |
Ki-67 | med | med | high | high | med | -/low | -/low |
Markers of cancer-associated fibroblasts | Normal fibroblasts | ||||||
αSMA | low | med | low | high | med | low | high |
FAPα | med | high | med | med | med | high | high |
FSP1/S100A4 | med | high | low | high | med | low | high |
F-aктин | + | + | + | + | + | + | + |
PDGFRα | - | - | low | - | low | - | - |
CD90 | + | + | + | high | low | + | high |
Type of cancer-associated fibroblasts | Normal fibroblasts | ||||||
Cell culture | |||||||
BC3f | BC4f | BrC1f | BrC4f | Met-Tem | BN120f | NSK1f | |
S3 | S1 | S2 | S4 | S1 | - | - |
Cell Culture | IC50 | ||
---|---|---|---|
Doxorubicin, µM | Cisplatin, µM | Tamoxifen, µM | |
Cancer-associated fibroblasts | |||
BC3f | 1.19 | n/d | 68.4 |
BC4f | 0.69 | 26.15 | 8.4 |
BrC1f | n/d | n/d | n/d |
BrC4f | 0.69 | 34.48 | 26.92 |
Met-Tem | 1.33 | n/d | n/d |
Normal fibroblasts | |||
BN120f | 4.07 | n/d | 19.46 |
NSK1f | 4.8 | 22.4 | 15.6 |
Immortalized breast cancer cell line | |||
MCF7 | 1.16 | n/d | 49.5 |
MDA-MB-231 | 1.06 | n/d | n/d |
Cell Culture | |||||||
---|---|---|---|---|---|---|---|
Type of Cancer-Associated Fibroblasts | Normal Fibroblasts | ||||||
BC3f | BC4f | BrC1f | BrC4f | Met-Tem | BN120f | NSK1f | |
CAF type | S3 | S1 | S2 | S4 | S1 | n/a | n/a |
Functionality | IS | IS and MM | SC/PC | MM | Met | N | N |
Possibility of plasticity | + | + | - | - | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilyina, A.; Leonteva, A.; Berezutskaya, E.; Abdurakhmanova, M.; Ermakov, M.; Mishinov, S.; Kuligina, E.; Vladimirov, S.; Bogachek, M.; Richter, V.; et al. Exploring the Heterogeneity of Cancer-Associated Fibroblasts via Development of Patient-Derived Cell Culture of Breast Cancer. Int. J. Mol. Sci. 2025, 26, 7789. https://doi.org/10.3390/ijms26167789
Ilyina A, Leonteva A, Berezutskaya E, Abdurakhmanova M, Ermakov M, Mishinov S, Kuligina E, Vladimirov S, Bogachek M, Richter V, et al. Exploring the Heterogeneity of Cancer-Associated Fibroblasts via Development of Patient-Derived Cell Culture of Breast Cancer. International Journal of Molecular Sciences. 2025; 26(16):7789. https://doi.org/10.3390/ijms26167789
Chicago/Turabian StyleIlyina, Anna, Anastasia Leonteva, Ekaterina Berezutskaya, Maria Abdurakhmanova, Mikhail Ermakov, Sergey Mishinov, Elena Kuligina, Sergey Vladimirov, Maria Bogachek, Vladimir Richter, and et al. 2025. "Exploring the Heterogeneity of Cancer-Associated Fibroblasts via Development of Patient-Derived Cell Culture of Breast Cancer" International Journal of Molecular Sciences 26, no. 16: 7789. https://doi.org/10.3390/ijms26167789
APA StyleIlyina, A., Leonteva, A., Berezutskaya, E., Abdurakhmanova, M., Ermakov, M., Mishinov, S., Kuligina, E., Vladimirov, S., Bogachek, M., Richter, V., & Nushtaeva, A. (2025). Exploring the Heterogeneity of Cancer-Associated Fibroblasts via Development of Patient-Derived Cell Culture of Breast Cancer. International Journal of Molecular Sciences, 26(16), 7789. https://doi.org/10.3390/ijms26167789