Next Article in Journal
Lipopolysaccharide: Recent Advances in Its Biosynthesis and Controlling Cell Envelope Homeostasis
Previous Article in Journal
Transcriptomic Signatures and Molecular Pathways in Hidradenitis Suppurativa—A Narrative Review
Previous Article in Special Issue
Insights into the Molecular Mechanisms and Signaling Pathways of Epithelial to Mesenchymal Transition (EMT) in the Pathophysiology of Endometriosis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Precision Therapeutic and Preventive Molecular Strategies for Endometriosis-Associated Infertility

by
Inès Limam
1,
Mohamed Abdelkarim
2,
Khadija Kacem-Berjeb
3,4,
Mohamed Khrouf
4,5,
Anis Feki
6,
Marouen Braham
3,4 and
Nozha Chakroun
3,4,*
1
LR99ES11, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 1006, Tunisia
2
Population Health, Environmental Aggressors, Alternative Therapies, Faculty of Medicine of Tunis, Tunis El Manar University, Tunis 1006, Tunisia
3
Department of Reproductive Medecine, Aziza Othmana University-Hospital, Health Ministry, Tunis 1008, Tunisia
4
LR16SP01 Procréation-Infertilité, Aziza Othmana University-Hospital, Tunis El Manar University, Tunis 1008, Tunisia
5
Centre FERTILLIA de Médecine de la Reproduction-Clinique la Rose, Tunis 1053, Tunisia
6
Department of Gynecology and Obstetrics, University Hospital of Fribourg, 1708 Fribourg, Switzerland
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2025, 26(16), 7706; https://doi.org/10.3390/ijms26167706
Submission received: 18 June 2025 / Revised: 11 July 2025 / Accepted: 17 July 2025 / Published: 9 August 2025
(This article belongs to the Special Issue Endometriosis: Focusing on Molecular and Cellular Research)

Abstract

Endometriosis, a chronic estrogen-dependent disorder defined by ectopic endometrial-like tissue growth, causes pelvic pain and infertility in reproductive-age women. Despite its prevalence, the underlying mechanisms driving lesion persistence and reproductive impairment remain unclear. This review synthesizes recent pathophysiological advances, highlighting how hormonal dysregulation, immune dysfunction, epigenetic alterations, and oxidative stress collectively foster lesion persistence and treatment resistance. Critically, these molecular disturbances disrupt critical reproductive functions—including oocyte quality, endometrial receptivity, and embryo implantation. We further explore emerging non-hormonal therapeutic strategies, including MAPK and PI3K/AKT inhibitors as well as epigenetic agents targeting HOXA10 methylation and microRNA modulation, which offer fertility-sparing alternatives to conventional hormonal suppression. To enhance clinical translation, we propose a multi-level prevention framework—encompassing at the primary level, risk reduction; at the secondary level, biomarker-guided intervention; and at the tertiary level, fertility preservation—to anticipate disease progression and personalize reproductive care. By delineating shared pathways between endometriosis and infertility, this work advances precision medicine approaches for affected patients.

Graphical Abstract

1. Introduction

Endometriosis—a chronic inflammatory disorder driven by estrogen-dependent growth of ectopic endometrial tissue—remains a formidable clinical challenge, profoundly impacting the physical, psychological, and reproductive health of 190 million women worldwide [1,2]. Despite affecting approximatively 10% of reproductive-age women and up to 50% of infertility cases, its elusive pathogenesis results in diagnostic delays averaging 7–10 years and limited therapeutic efficacy beyond symptomatic control [3]. Classical theories about its pathogenesis—such as retrograde menstruation, metaplasia, and benign metastasis—have laid important foundations, but recent molecular insights have revealed a far more complex systemic disorder [4]. Crucially, molecular dysregulation lies at the heart of this disease. Aberrant estrogen signaling, progesterone resistance, and immune dysfunction collaborate to create a self-sustaining microenvironment that promotes lesion survival, angiogenesis, and therapeutic evasion [5,6]. These same mechanisms directly impair key reproductive functions and contribute to infertility, not merely through anatomical distortion, but by disrupting oocyte competence, endometrial receptivity, and embryo–maternal crosstalk. Even the mildest disease can inflict molecular scars that compromise pregnancy chances.
This review deciphers how endometriosis hijacks reproductive biology at the molecular level. We first unravel the pathogenic triad (hormonal, immune, and epigenetic disturbances) fueling lesion persistence. We then expose their direct effects on fertility—from folliculogenesis to implantation. By connecting these dots, we highlight actionable therapeutic windows and advocate for precision care tailored to women’s reproductive aspirations.

2. Molecular Mechanisms of Endometriosis

The pathogenesis of endometriosis is driven by a complex interplay of hormonal, immune, oxidative, and epigenetic dysregulation. Estrogen dominance and progesterone resistance sustain lesion growth, while chronic inflammation—mediated by interleukin (IL)-1β and tumor necrosis factor (TNF)-α—amplifies tissue injury. Deficient natural killer (NK) cell surveillance, oxidative DNA damage, angiogenic remodeling, and epithelial-to-mesenchymal transition (EMT) enhance immune evasion and invasiveness. Together, these dysregulated processes form a self-reinforcing loop, perpetuating lesions and impairing fertility. The subsections below detail the key molecular pathways in this pathogenic cascade.

2.1. Hormonal Dysregulation: Estrogen Dominance and Progesterone Resistance

Endometriotic implants acquire biochemical autonomy, behaving like ectopic endocrine units that escape normal ovarian regulation. This autonomy arises from a combination of enzyme induction, receptor alteration, and epigenetic dysregulation, which collectively drive local estrogen excess and progesterone resistance [7].
Estrogen synthesis is amplified through two main routes. First, prostaglandin-E2 (PGE2) stimulates steroidogenic factor-1 (SF-1), enhancing Cytochrome P450 19A1 (CYP19A1; aromatase) expression and creating a feedback loop with estradiol and cyclo-oxygenase-2 [8,9,10]. Second, a sulfatase pathway complements de novo synthesis: steroid sulfatase releases estrone from circulating estrone-sulfate imported via the transporter solute carrier family 10 member 6 (SLC10A6), ensuring precursor availability even in low androgen conditions [11,12,13]. Simultaneously, reduced 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2) activity limits estradiol inactivation, prolonging estrogenic signaling [14,15].
Estrogen-mediated responses are also altered. A shift toward estrogen receptor β (ERβ) over ERα in stromal cells promotes inflammation and inhibits apoptosis, supporting lesion persistence [16,17,18,19,20]. ERβ also activates the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome via caspase-1, increasing IL-1β and linking estrogen signaling to sterile inflammation [21,22,23]. In parallel, cytoplasmic ERβ disrupts TNF-α-induced apoptosis by interacting with Apoptosis signal-regulating kinase 1 (ASK1), serine/threonine kinase receptor-associated Protein (STRAP), and 14-3-3 proteins [24,25,26]. Additionally, G-protein-coupled estrogen receptor (GPER, also known as GPR30) accelerates estrogen-driven signaling by mobilizing cAMP and transactivating SF-1, further boosting aromatase transcription [27,28,29,30]. This may explain the responsiveness to xenoestrogens such as bisphenol A (BPA) and Selective Estrogen Receptor Modulators (SERMs) like tamoxifen.
Progesterone resistance is largely epigenetic. Promoter hypermethylation and histone deacetylase (HDAC)-mediated repression of the progesterone receptor gene reduce progesterone receptor isoform B (PR-B) expression, a hallmark of resistance [31,32,33,34]. Estrogen contributes by upregulating DNA methyltransferase 1 (DNMT1), silencing Runt-related transcription factor (RUNX3) via promoter hypermethylation [35]. BPA reinforces this through a WD repeat domain 5 (WDR5)/ten–eleven translocation methylcytosine dioxygenase 2 (TET2) axis, which increases ERβ transcription [36].
Metabolic–epigenetic crosstalk has recently emerged as a further amplifier. Cellular prion protein (PrPC), an estrogen-induced gene, represses peroxisome proliferator-activated receptor-α (PPAR-α), driving cholesterol accumulation and further boosting aromatase activity [37]. Estradiol then increases PrPC levels, closing a self-perpetuating metabolic loop [38,39,40].
Collectively, enhanced enzymatic activity, receptor remodeling, and epigenetic changes generate a persistent estrogen-dominant, progesterone-resistant environment that initiates and sustains downstream cellular dysregulation.

2.2. Epigenetic Reprogramming and Non-Coding RNAs

Endometriosis is characterized by persistent transcriptional rewiring that is largely driven by epigenetic and post-transcriptional mechanisms. These alterations precede lesion visibility and shape the hormonal, inflammatory, and immune landscape of affected tissues.
While numerous epigenetic regulators have been described, Table 1 summarizes a selected subset—primarily those with documented effects on genes involved in endometrial receptivity, hormone sensitivity, or immune modulation. These elements are particularly relevant for infertility and will be further discussed as potential therapeutic targets in later sections.
This regulatory framework lays the molecular foundation upon which chronic signaling cascades operate, notably those involved in intracellular survival, proliferation, and invasion, as explored in the following subsection.

2.3. Intracellular Signaling Pathways

Endometriotic cells operate within a reprogrammed intracellular environment, shaped by constitutively active signaling pathways that reinforce their survival, invasiveness, and resistance. Two core axes—the PI3K/AKT/mTOR and Wnt/β-catenin pathways—form the backbone of this deregulated signaling network [58,59,60,61,62].
Hyperactivated PI3K/AKT/mTOR signaling enhances glucose uptake, stimulates aerobic glycolysis, promotes angiogenesis, and weakens immune detection [63,64,65]. It also impairs progesterone signaling, deepening the hormonal resistance initiated by epigenetic silencing [66].
In parallel, dysregulated Wnt/β-catenin signaling triggers nuclear translocation of β-catenin, which partners with TCF/LEF transcription factors to activate genes involved in motility, extracellular matrix remodeling, and EMT (epithelial–mesenchymal transition), including MMP-2 and MMP-9 [61,67].
These pathways intersect with the TGF-β axis, a central orchestrator of EMT and fibrosis. SMAD complexes, activated downstream of TGF-β, cooperate with β-catenin and phosphorylated AKT to upregulate SNAIL, SLUG, and ZEB1/2; repress E-cadherin; and induce vimentin and N-cadherin—hallmarks of increased cell motility and reduced adhesion [68].
Altogether, PI3K/AKT, Wnt/β-catenin, and TGF-β signaling form an integrated circuit that processes hormonal, inflammatory, and metabolic cues. This molecular machinery confers plasticity and invasiveness, transforming endometrial cells into a resilient, immune-evasive phenotype that thrives in the hostile peritoneal microenvironment.

2.4. Inflammation, Immune Cell Recruitment, and Neuro-Immune Crosstalk

Endometriotic lesions develop within a chronic inflammatory microenvironment shaped by oxidative stress, cytokine overload, and immune cell infiltration. In addition to fueling local proliferation, these cues recruit both innate and adaptive immune cells and initiate neurogenic pathways that contribute to pain and tissue remodeling. The peritoneal fluid of women with endometriosis is enriched in activated macrophages, dendritic cells, mast cells, neutrophils, and CD4+/CD8+ lymphocytes, all of which infiltrate ectopic sites and amplify cytokine production [69,70,71]. Single-cell RNA sequencing (scRNA-seq) has recently identified a macrophage subset within lesions that resembles tumor-associated macrophages. These cells suppress cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) and ATP-binding cassette transporter G1 (ABCG1) transporters, accumulate intracellular lipids, and enhance IL-1β, IL-6, and PGE2 synthesis [72]. The upstream regulators liver X receptor (LXR) and peroxisome proliferator-activated receptor (PPAR), which modulate lipid metabolism, emerge as potential therapeutic targets.
Danger signals such as hypoxia and oxidative cell debris further promote IL-1β, IL-6, IL-8, TNF-α, and IL-17A release. IL-17A, in particular, promotes vascular endothelial growth factor (VEGF) transcription and enhances MMP production, and when neutralized, reduces vascularization and lesion size in vivo [73,74,75,76]. In parallel, IL-1β and TNF-α reinforce inflammation by upregulating cyclo-oxygenase-2 (COX2) and stimulating PGE2 production, thus sustaining local estrogen biosynthesis [30,77,78,79].
Complement signaling is also implicated. Activation of the c5a receptor (C5aR1) on macrophages and Schwann cells boosts inflammasome responses and sensitizes pain pathways [80]. Deep lesions also contain tryptase-positive mast cells, which activate protease-activated receptor-2 (PAR-2), promote fibrosis, and sustain neurogenic inflammation [81].
These inflammatory and immune signals converge on the TGF-β axis. TGF-β-induced SMAD complexes, in cooperation with AKT and β-catenin, upregulate SNAIL, SLUG, and ZEB1/2 while repressing E-cadherin. This promotes fibroblast-to-myofibroblast conversion, collagen deposition, and matrix stiffening [82,83]. TGF-β also expands FOXP3+ regulatory T cells and inhibits cytotoxic immune responses, creating a tolerogenic niche [84,85,86].
Neuro-immune crosstalk further supports lesion persistence. Inflammatory cytokines stimulate the release of nerve growth factor (NGF) and brain-derived neurotrophic factor, leading to sensory nerve sprouting and heightened nociceptor sensitivity [87]. The resulting peritoneal niche is thus proinflammatory, neurotrophic, and angiogenic—favoring lesion survival, invasion, and pain.

2.5. Oxidative Stress and Peritoneal Toxicity

Retrograde menstruation and lesion hemorrhage expose the peritoneal cavity to hemolyzed erythrocytes, triggering iron release through macrophage-mediated clearance. This overwhelms iron-binding proteins and initiates Fenton reactions that produce hydroxyl radicals. Elevated levels of ferritin, transferrin, and free iron in the peritoneal fluid coincide with increased lipid peroxides and protein carbonyls, markers of oxidative injury [88,89,90,91,92].
This oxidative stress compromises the mitochondrial membrane potential and disrupts electron transport while promoting cytochrome c release, impairing DNA repair mechanisms [93,94,95]. Damaged macromolecules serve as danger-associated molecular patterns (DAMPs) that further activate macrophages and reinforce inflammation [96].
Beyond damage, reactive oxygen species (ROS) act as epigenetic modulators, altering DNA methylation at antioxidative gene loci via Ten–Eleven Translocation (TET) dioxygenase enzymes and supporting pro-survival transcriptional programs [97]. Systemically, ROS damage granulosa cells, impair the mitochondrial distribution [98], deplete glutathione, and destabilize the meiotic spindle—key contributors to poor oocyte quality [99].
In the peritoneal niche, oxidative damage also remodels the extracellular matrix by modifying structural proteins and activating redox-sensitive proteases, facilitating cellular invasion—a process expanded in the following section.

2.6. Extracellular Matrix Remodeling, EMT, and Fibrogenesis

Extracellular matrix (ECM) remodeling in endometriosis represents a dynamic interplay between degradation and fibrotic reconstruction. Rather than detailing each molecular cascade, we have summarized the key pathways and mediators involved in ECM breakdown, EMT, and fibrogenesis in the table below (Table 2). These events collectively remodel the lesion microenvironment into a fibrotic and immune-evasive niche that fosters lesion survival and impairs surgical outcomes. Notably, several of the implicated pathways—such as TGF-β, lysyl oxidase (LOX)/LOX-like, and urokinase-type plasminogen activator receptor (uPAR)—overlap with angiogenic and immune signaling, reinforcing their central role in disease progression.

2.7. Aberrant Vascular Remodeling and Non-Canonical Angiogenic Pathways

Endometriotic angiogenesis diverges markedly from physiological endometrial vascularization. Hypoxia and oxidative stress stabilize hypoxia-inducible factor-1 α (HIF-1α), which cooperates with inflammatory cytokines to induce VEGF-A expression. However, the resulting microvessels are structurally abnormal—disorganized, leaky, and poorly covered by pericytes [113,114]. Additional non-canonical pathways—including slit guidance ligand 2 (Slit2)/Roundabout guidance receptor 1 (ROBO1), prokineticin-1 (PROK1)/prokineticin-1 receptor (PROKR1), and Notch/delta-like ligand 4 (Dll4) suppression— further disrupt vessel patterning and branching, as detailed in Figure 1 [115,116,117,118]. This abnormal vascular network perpetuates hypoxia, prolongs HIF-1α activation, and creates a permissive niche for stromal invasion, immune infiltration, and nerve fiber ingrowth. These features reinforce chronic inflammation and pain, forming an integral part of the self-sustaining inflammatory loop that promotes lesion persistence and compromises reproductive function.

3. Molecular Bridges Between Endometriosis and Infertility

Infertility in endometriosis reflects a progressive, system-wide dysfunction that impairs every stage of the reproductive process—from early follicular development to embryo implantation. Cytokines, iron-induced oxidative stress, hormonal imbalance, and epigenetic changes extend beyond visible lesions, altering the molecular landscape of tissues that appear normal upon imaging or laparoscopy. Recent advances in single-cell mapping, metabolomics, and spatial transcriptomics reveal a shared signature of inflammation, oxidative damage, and hormonal stress across the ovary, fallopian tube, and uterus [119]. Figure 2 illustrates six interconnected mechanisms that collectively compromise reproductive function.

3.1. Ovarian Folliculogenesis and Reserve Erosion

The ovarian environment in endometriosis is exposed to chronic inflammation and oxidative stress, which, together, disrupt folliculogenesis and accelerate reserve depletion. Cytokines such as TNF-α and IL-1β impair granulosa cell function, downregulating key genes, including FSH receptor (FSHR) and aromatase (CYP19A1), which are essential for follicle maturation and estrogen synthesis [120,121,122,123,124]. Endometriomas exert both mechanical pressure on and biochemical damage to the surrounding ovarian cortex. Their cystic fluid—rich in free iron, proteases, and ROS—induces stromal fibrosis, follicular apoptosis, and premature activation of primordial follicles, gradually exhausting the reserve. Clinically, this manifests as lower serum anti-Müllerian hormone (AMH) and reduced antral follicle counts, two markers of diminished ovarian function [125,126]. Although surgical excision of endometriomas may be necessary, especially for large or symptomatic lesions, it risks removing healthy tissue, further reducing the ovarian reserve. This underscores the need for careful preoperative evaluation in reproductive-age women and supports fertility-preserving options, such as cyst-sparing surgery, ovarian tissue cryopreservation, or medical suppression before and after intervention [127].

3.2. Oxidative Damage to Oocytes and Early Embryos

Oxidative stress in endometriosis directly compromises oocyte integrity. Exposure to pathological levels of ROS (≈150 µM H2O2) disrupts mitochondrial distribution, disorganizes the actin–microtubule network, and impairs kinetochore alignment, reducing fertilization [128,129,130,131,132,133,134]. Consequently, early embryos from affected women show increased fragmentation and developmental arrest, reflecting residual oxidative and spindle damage [135].

3.3. Tubal Ciliary Dysfunction and Peritoneal Toxicity

In endometriosis, inflammation spreads beyond lesions, affecting the fallopian tubes and peritoneal cavity and disrupting fertilization and early embryo transport. Elevated levels of IL-6 and TNF-α impair both ciliary motion and smooth muscle contraction, two essential mechanisms for gamete capture and embryo transit [136,137,138]. Chronic exposure to cytokine and prostaglandin damages the ciliated epithelium and reduces tubal motility, further compromising transport [138,139]. Fibrosis and adhesions form physical obstacles that block sperm–oocyte interactions and hinder embryo passage. The resultant peritoneal fluid is rich in cytokines, proteases, and ROS, which creates a toxic microenvironment that harms fertilization and early embryonic development [140,141,142].

3.4. Endometrial Receptivity Breakdown

Because the embryo reaches the uterus just days after fertilization, the brief “window of implantation” forms a critical link between fertilization, blastocyst development, and uterine attachment. Disruption at this stage can quickly compromise fertility. Successful implantation requires a properly primed endometrium [143], yet in women with endometriosis, key receptivity markers undergo epigenetic silencing [144,145]. Among them, the transcription factor HOXA10 plays a central role in stromal differentiation and integrin expression. Its silencing reduces integrin αvβ3, leukemia inhibitory factor (LIF), and glycodelin—all essential for embryo adhesion [44,146,147]. Transcriptomic analyses show that the overexpression of miR-135a/b reinforces HOXA10 silencing, intensifying the epigenetic brake on implantation competence [45]. Concurrently, diminished PR-B expression limits stromal decidualization and contributes to progesterone resistance [148,149]. These changes are reinforced by the aberrant activation of PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways, which further impair endometrial receptivity [150,151].

3.5. Maternal–Fetal Immune Imbalance and Implantation Failure

Once the blastocyst attaches to a receptive endometrium, the maternal immune system must swiftly shift from surveillance to tolerance at the maternal–fetal interface. In endometriosis, failure of this transition represents a second major bottleneck contributing to implantation failure [152,153]. Dysfunctional uterine natural killer (uNK) cells exhibit altered cytokine secretion and reduced angiogenic capacity, compromising spiral artery remodeling and early placental development [154]. Concurrently, deficient regulatory T cells (Tregs) disrupt maternal immune tolerance, increasing the risk of embryo rejection [155,156]. A skew toward pro-inflammatory Th17 cells—driven by an upregulated IL-23/Th17 axis—exacerbates oxidative stress and destabilizes the implantation micro-environment [157]. Clinical studies in women with repeated implantation failure confirm an elevated Th17/Treg ratio and heightened endometrial inflammation [158], highlighting the immunologic barrier to successful nidation.

3.6. Genetic Susceptibility and Metabolic Rewiring

Even after fertilization and a brief immune truce, genetic predisposition and metabolic disruption can still compromise embryonic development and placentation [159]. Genome-wide association studies (GWAS) have identified susceptibility loci such as wnt family member 4 (WNT4), Vezatin adherens junctions transmembrane protein (VEZT), and cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1), which shape uterine development, endometrial receptivity, and cell proliferation [160,161,162]. Endometriotic lesions rewire metabolism, especially tryptophan and arginine pathways, which fuel immune imbalance, oxidative stress, and chronic inflammation [163,164,165]. Targeted metabolomic analysis of follicular fluid has revealed disruptions in sphingolipid and ceramide pathways, correlating with poorer in vitro fertilization (IVF) outcomes [166]. In the eutopic endometrium, reduced LIF–signal transducer and activator of transcription 3 (STAT3) activity and weakened progesterone response impair implantation, especially in women with repeated failure [167]. These findings connect immune, hormonal, and metabolic stress into a common pathway that undermines fertility.

4. Emerging Therapeutic Targets in Endometriosis-Associated Infertility

Recent advances in the molecular basis of endometriosis have fueled the development of targeted therapies aimed at preserving or restoring fertility rather than just managing symptoms. This shift marks a move from traditional symptom-oriented approaches to mechanism-based interventions that directly address the root causes of lesion persistence and reproductive dysfunction [168]. Several emerging non-hormonal approaches now focus on key molecular pathways—such as inflammation, oxidative stress, angiogenesis, and immune imbalance—that drive disease progression (Figure 3).

4.1. Targeting Estrogen Receptor Beta (ERβ) Signaling

Endometriotic lesions consistently exhibit a dysregulated estrogen receptor profile, marked by a heightened ERβ-to-ERα ratio. This receptor imbalance fosters a microenvironment of sustained inflammation, apoptotic resistance, progesterone insensitivity, and angiogenesis. Through transcriptional reprogramming, ERβ activation promotes lesion survival and impairs receptivity. Selective ERβ antagonists have shown promising results in preclinical models, reducing lesion size and partially restoring progesterone responsiveness [169,170]. Unlike systemic estrogen suppression, these agents modulate local estrogen signaling without compromising ovulation, making them particularly attractive for fertility-preserving interventions.
In parallel, intracrine steroidogenesis and receptor-subtype modulation are being explored to rebalance endometrial hormonal signaling. Selective estrogen receptor modulators (SERMs), selective androgen receptor modulators (SARMs), and selective androgen receptor degraders (SARDs) target pathways that interact with enzymes such as aromatase, steroid sulfatase, and aldo-keto reductase family 1 member C3 (AKR1C3), which regulate local estrogen and androgen biosynthesis. By modulating hormonal, immune, and vascular crosstalk, these therapies aim to reestablish a receptive endometrial microenvironment and improve fertility outcomes [171].
Taken together, ERβ-targeted therapies offer a mechanistically precise, fertility-friendly alternative to conventional hormone suppression.

4.2. Inhibition of Inflammatory Kinase Pathways

Key intracellular kinase cascades—NF-κB, MAPK, and PI3K/AKT/mTOR—are persistently activated in endometriotic lesions, sustaining inflammation, proliferation, and progesterone resistance [172,173,174,175]. NF-κB enhances cytokine production and immune evasion, while the MAPK axis (extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK, p38) promotes epithelial growth and matrix degradation. The PI3K/AKT/mTOR pathway fuels stromal expansion, neovascularization, and hormonal insensitivity.
Pharmacological inhibition of these kinases shows promise in preclinical studies. Mitogen-acctivated protein kinase kinase (MEK) inhibitors (e.g., U0126) and NF-κB pathway blockers (e.g., BAY11-7082) reduce lesion volume and inflammatory infiltration, downregulating proliferating cell nuclear antigen (PCNA) and MMP9 expression [176]. mTOR inhibitors such as everolimus and rapamycin—already used in oncology—also suppress lesion growth and improve implantation outcomes, especially when combined with hormonal agents [177].
Oxidative stress appears to amplify kinase activity, partly via deubiquitinase cylindromatosis (CYLD), a redox-sensitive inhibitor of NF-κB [178], further linking inflammation to redox imbalance. Taken together, kinase inhibitors represent a promising class of non-hormonal agents capable of curbing lesion progression, restoring endocrine responsiveness, and enhancing the fertility potential.

4.3. Non-Hormonal Immunomodulation and Immune-Checkpoint Targets

Immune dysfunction in endometriosis involves chronic inflammation, impaired clearance, and local tolerance that permits ectopic lesion survival. Immune checkpoints, particularly programmed cell death protein 1 (PD-1) and its ligand PD-L1, have emerged as novel targets for restoring immune surveillance, reducing inflammation, and enhancing endometrial receptivity [179,180]. Similarly, the CD47–signal-regulatory protein alpha (SIRPα) axis allows stromal cells to evade macrophage-mediated phagocytosis. Blocking CD47 enhances macrophage-mediated clearance and induces ectopic cell apoptosis [181].
Non-hormonal immunomodulators also show therapeutic promise. TNF-α inhibitors such as etanercept and infliximab have demonstrated efficacy in reducing lesion volume and pelvic pain in animal models, while recombinant TNFRSF1A (r-hTBP1) improves outcomes without affecting estrogen signaling, supporting fertility preservation [182,183,184]. IL-8 blockade with AMY109 has shown a favorable safety profile in Phase 1 trials and does not interfere with menstrual cycling [185]. However, some cytokine-targeted therapies, such as interferon-α2b, have failed to show benefit and may increase the recurrence risk [186].

4.4. Epigenetic Therapies and Non-Coding RNA Modulators

Epigenetic remodeling plays a crucial role in disrupting progesterone responsiveness and endometrial receptivity in endometriosis-associated infertility. Aberrant DNA methylation and histone deacetylation frequently silence genes such as HOXA10 and PR-B, which are both essential for stromal decidualization [34,187,188,189]. By reversing these repressive marks, HDAC inhibitors and demethylating agents like 5-azacytidine have shown potential for restoring implantation-related gene expression in vitro [190].
In parallel, non-coding RNAs—especially miRNAs—modulate a broad range of pathological pathways, from inflammation to fibrosis. Several miRNAs dysregulated in endometriosis, including let-7b, miR-135a/b, and miR-29c, influence gene networks involved in hormone signaling and endometrial remodeling [191]. In preclinical models, silencing of miR-451a reduced lesion size and downregulated targets such as 14-3-3 protein zeta/delta (YWHAZ), MAPK1, β-catenin (CTNNB1), and IL-6 [192]. Other regulatory axes—like circ_0007331/miR-200c-3p/HIF-1α—have been shown to drive angiogenesis and invasion, and their inhibition curbs disease progression [193]. Fibrotic remodeling, a key feature of deep infiltrating lesions, can also be alleviated via exosomal delivery of miR-214, which suppresses connective tissue growth factor (CTGF) and collagen type I alpha 1 chain (COL1A1) [194]. Additionally, miR-205-5p was reported to limit stromal invasion by targeting angiopoietin-2 (ANGPT2) and dampening AKT/ERK signaling, with lower expression levels correlating with greater disease severity in patient samples [195]. These molecular findings support the rationale for developing RNA-based and epigenetic therapies as precision tools to correct aberrant signaling and improve reproductive outcomes without relying on systemic hormonal suppression.

4.5. Antioxidant-Based Strategies and Redox Modulation

Oxidative stress is increasingly being recognized as a key contributor to the reproductive complications observed in endometriosis, including oocyte damage, impaired fertilization, and embryo developmental arrest. Elevated levels of ROS disrupt mitochondrial function, impair chromosomal alignment, and activate inflammatory pathways such as MAPK and NF-κB, aggravating hormonal resistance [95].
In response, antioxidative therapies have gained attention as adjunct strategies to restore redox balance and support fertility. Early studies suggest that vitamins C and E can reduce the levels of oxidative markers and improve oocyte quality, especially in the context of assisted reproductive technologies (ART), where the oxidative burden is elevated [196,197]. Coenzyme Q10 has also shown promise by supporting mitochondrial bioenergetics and supporting embryo development under oxidative stress [196]. Melatonin, another potent antioxidant, improves mitochondrial function and reduces inflammation in preclinical endometriosis models [198,199,200].
Among glutathione precursors, N-acetylcysteine (NAC) has demonstrated both anti-inflammatory and fertility-enhancing effects, improving oocyte quality and fertilization rates in IVF settings [201]. Plant-derived polyphenols exhibit a broad spectrum of bioactive properties, including antioxidative, anti-inflammatory, antiproliferative, and anti-angiogenic effects across various disease contexts, such as cancer and reproductive disorders [202,203,204,205]. Among them, resveratrol has been particularly studied in endometriosis for its ability to enhance endometrial receptivity and reduce lesion vascularization, contributing to better implantation outcomes [204,206,207].
Despite limited clinical data, these compounds represent promising adjuncts for managing oxidative-stress-related infertility in endometriosis. However, further studies are needed to confirm their impact on reproductive outcomes [208].

4.6. Anti-Angiogenic and Vascular Normalization Therapies

Aberrant angiogenesis is central to endometriotic lesion growth, ensuring vascular support for ectopic tissue survival and invasion. This process is largely driven by the overexpression of VEGF and its receptor VEGFR2 in the peritoneal environment [209]. Thus, targeting this axis offers a non-hormonal strategy to halt disease progression.
In preclinical models, VEGF inhibitors such as aflibercept, a recombinant VEGF trap, significantly reduced lesion volume lesion size, VEGF expression, and microvessel density, outperforming leuprolide acetate in relation to several histological markers [210]. In parallel, the bradykinin B1 receptor antagonist R-954 decreased VEGF/VEGFR expression, cyst formation, cytokine production, and inflammatory infiltration without disturbing estrous cyclicity, indicating its fertility-friendly profile [211,212].
Dopamine agonists like cabergoline and quinagolide also block the VEGF/VEGFR2 pathway. In women with endometriosis-associated hyperprolactinemia, quinagolide reduced both lesion vascularization and overall lesion volume [213,214].
Table 3 summarizes the most promising fertility-oriented therapeutic candidates under investigation, highlighting their mechanisms of action and translational potential.
Despite their therapeutic promise, several barriers limit their clinical implementation. These include suboptimal pharmacokinetics, delivery challenges, and concerns about long-term safety and off-target effects—particularly for RNA-based agents [218,219,220,221]. Regulatory frameworks also require extensive toxicological and immunogenicity testing before approval [222,223]. Moreover, the high cost of development and underinvestment in non-hormonal endometriosis research continue to hamper fertility-focused clinical trials [224,225]. Overcoming these hurdles will require coordinated investment, regulatory innovation, and trial designs that prioritize reproductive outcomes.

5. From Risk Reduction to Fertility Preservation: Biomarker-Guided Strategies in Endometriosis Care

Despite major advances in the molecular understanding of endometriosis, preventive strategies—particularly those aiming to preserve fertility—remain insufficiently developed. Incorporating biomarkers into preventive care offers a paradigm shift toward earlier identification of at-risk individuals and improved reproductive outcomes [226]. Yet, no single biomarker has demonstrated adequate accuracy or disease specificity to be used as a standalone diagnostic or triage tool. Many candidates are non-specific and also elevated in other inflammatory or physiological states, leading to their limited clinical use.
Recent developments in high-throughput omics technologies—including proteomics, transcriptomics, and metabolomics—have accelerated the discovery of clinically relevant biomarkers [227]. This section highlights their emerging role across three levels of prevention: stratifying risk before symptom onset (primary), preserving ovarian function in early-stage disease (secondary), and personalizing reproductive management after treatment (tertiary) [228].

5.1. Primary Prevention: Risk Stratification and Early Identification

Primary prevention targets disease onset in asymptomatic individuals, particularly those with familial predisposition or early-life risk factors. Well-known risk factors include early menarche, short menstrual cycles, nulliparity, and a family history—all of which contribute to prolonged estrogen exposure and retrograde menstruation [229,230]. Preventive strategies such as physical activity, early contraceptive use, and inflammation control during adolescence may help attenuate hormonal and immune disruptions.
Given the rapid evolution of biomarker research, this section highlights recent high-quality studies—particularly those involving large cohorts or rigorous validation. While not exhaustive, it highlights the genomic, epigenetic, proteomic, and miRNA-based biomarkers under active investigation. Multi-marker combinations are being explored to improve their specificity and clinical relevance for early diagnosis and patient stratification [231,232].
Adenomyosis and endometriosis may coexist, especially in young nulliparous women with dysmenorrhea or endometriomas. External adenomyosis, often underdiagnosed in adolescents, may signal early endometriosis, supporting its inclusion in risk-based screening [233].
Genome-wide association studies (GWAS) have identified susceptibility variants in genes such as WNT4, growth regulation by estrogen in breast cancer 1 (GREB1), and VEZT, which regulate genital tract development, hormonal signaling, and tissue remodeling [234,235,236,237]. More recently, multi-ancestry GWAS, supported by transcriptome-wide (TWAS) and proteome-wide (PWAS) analyses, have revealed over 45 susceptibility loci, including ancestry-specific signals such as POLR2M in African-ancestry populations. These integrative omics approaches have confirmed known genes (e.g., WNT4, GREB1, CDC42) and identified novel ones such as R-spondin 3 (RSPO3), implicating pathways like Wnt signaling, immune modulation, and altered cell migration [238].
In parallel, epigenetic markers—particularly DNA methylation—are under investigation as predictive indicators. HOXA10 promoter hypermethylation, a key regulator of endometrial receptivity, is found in both eutopic and ectopic tissues, although its sensitivity in early disease remains variable [43]. More recently, cell-free DNA (cfDNA) has emerged as a minimally invasive biomarker. Elevated cfDNA levels—up to 3.9-fold higher in patients—combined with altered methylation in genes such as ribosomal RNA-processing protein 1 (RRP1), disco-interacting protein 2 homolog C (DIPC2), ubiquitin-specific peptidase 1 (USP1), and DNMT1, highlight its potential for early-stage detection [239].
Circulating miRNAs are gaining attention as early stratification tools. A five-miRNA panel (miR-17-5p, miR-20a-5p, miR-199a-3p, miR-143-3p, and let-7b-5p) distinguished cases with 96% sensitivity and 79% specificity [240], while a separate six-miRNA signature achieved an AUC of 0.94 for early-stage disease [241]. Additional miRNAs related to inflammation, fibrosis, and hormonal signaling further reinforce their diagnostic potential [242,243].
Proteomic studies offer complementary insights. A large-scale plasma analysis involving over 800 women identified a 10-protein panel (e.g., selenoprotein P, neuropilin-1, complement C9, protein S) that discriminated cases with an AUC up to 0.997 [244]. Another study analyzing pre-diagnostic blood samples found elevated levels of innate immune proteins (e.g., S100A9, ICAM2, TOP1, CD5L), suggesting that immune activation may precede clinical symptoms [245].
Although classical inflammatory markers like IL-8 and CA-125 lack specificity [246], their diagnostic value increases when combined with molecular panels [247,248]. Notably, circulating endometrial cells (CECs) have shown superior diagnostic performance [249,250]. In one study, CECs were detected in 89.5% of patients, outperforming CA-125, especially in early disease [251]. Moreover, heat-shock protein 70 (Hsp70)-positive CECs, as reported by Guder et al., may serve as non-invasive biomarkers, highlighting a possible mesenchymal stem-like origin of lesions [252].
Beyond molecular screening, modifying environmental exposure is essential. Endocrine-disrupting chemicals (EDCs)—including dioxins, phthalates, and BPA—can epigenetically reprogram endometrial tissue, compromising receptivity and implantation [31,253,254,255,256]. Reducing exposure during gestation and adolescence may represent a feasible public health measure risk [257,258,259]. Nutritional interventions, such as diets rich in omega-3 fatty acids and antioxidants may help modulate oxidative and inflammatory pathways implicated in disease initiation [215,260,261].
These biomarker-driven approaches contribute to identifying high-risk individuals before symptom onset and may inform early-stage interventions focused on fertility preservation.

5.2. Secondary Prevention: Halting Disease Progression and Preserving Ovarian Function

Secondary prevention in women already diagnosed with endometriosis focuses on halting disease progression and preserving their ovarian reserve before irreversible damage occurs. This approach emphasizes timely interventions guided by molecular biomarkers and personalized strategies [262,263]. A decline in serum AMH is one of the earliest indicators of a reduced ovarian reserve and may precede changes in follicle count or menstrual regularity. Low levels of AMH and elevated FSH have been consistently linked to diminished reserves in affected women [264,265,266]. Insulin-like peptide 3 (INSL3) has emerged as a complementary marker of ovarian stromal aging and functionality, although clinical validation of this is ongoing [267].
Epigenetic changes, particularly hypermethylation of HOXA10, have been associated with progesterone resistance and aberrant Wnt/β-catenin signaling. This methylation pattern is frequently observed in eutopic but not ectopic tissue, correlating with impaired implantation potential. Therapeutic agents such as Gonadotropin-Releasing Hormone (GnRH) analogs, letrozole, and metformin have shown the ability to restore HOXA10 expression, supporting its dual diagnostic and therapeutic relevance [43].
miRNAs are increasingly being used to monitor disease activity and reproductive function. Circulating and peritoneal miRNA profiles reflect inflammatory and angiogenic signaling [268,269,270]. miR-451a, in particular, may support non-hormonal therapeutic approaches by targeting multiple pathways [192]. Serum extracellular vesicles containing lesion-derived miRNAs may inform optimal ART timing [271]. A saliva-based miRNA panel has also demonstrated high diagnostic performance for infertility, enabling non-invasive and personalized fertility assessment [272,273].
Oxidative stress within the ovarian microenvironment is another factor affecting oocyte quality and IVF outcomes. Elevated 8-hydroxy-2′-deoxyguanosine (8-OhdG) and imbalanced glutathione (GSH)/glutathione disulfide (GSSG) ratios in follicular fluid are associated with DNA damage and reduced embryo viability [142,264,274]. Follicular fluid miRNA profiles, which correlate with these oxidative markers, may serve as integrated indicators of oocyte competence [275].
The endometrial microbiome influences implantation, immune tolerance, and endometrial receptivity [276]. Lactobacillus-dominant (LDM) profiles are associated with higher pregnancy and live-birth rates, while non-Lactobacillus-dominant microbiomes—rich in Gardnerella, Prevotella, or Acinetobacter—have been linked to implantation failure and poor endometrial receptivity [277,278]. In women with repeated implantation failure (RIF), dysbiosis correlates with reduced expression of LIF, HOXA11, and VEGF.
Microbiota-targeted interventions have shown potential in this context. Transvaginal Lactobacillus supplementation improved pregnancy rates in ART-failure patients [279], while Lactobacillus gasseri reduced lesion growth in animal models by enhancing IL-2 and NK cell activity [280]. Broader studies also implicate urogenital dysbiosis in chronic inflammation and lesion recurrence [281,282]. Although clinical management remains limited, strategies such as probiotics, prebiotics, or microbial transplantation are under evaluation and may contribute to fertility preservation in selected cases. Future research should also focus on characterizing the composition of the upper female reproductive-tract microbiota and elucidating the mechanisms underlying its relationship with endometriosis pathophysiology.
Multi-omic approaches, discussed in Section 5.1, are now applied to dynamically monitor biological activity and therapeutic windows in active disease [283]. These insights contribute to the early identification of therapeutic opportunities in patients at risk of ovarian decline.

5.3. Tertiary Prevention: Preventing Recurrence and Individualizing Long-Term Fertility Planning

Tertiary prevention focuses on minimizing the recurrence risk and supporting long-term fertility planning following surgical or medical management. Given the chronic and relapsing nature of the disease, maintenance therapy is essential to sustain remission, protect reproductive potential, and maintain quality of life [262].
Hormonal maintenance therapy, using combined oral contraceptives, progestins, or levonorgestrel-releasing intrauterine systems (LNG-IUS), remains the cornerstone of post-surgical management and has proven efficacy in reducing recurrence and preserving ovarian function [284,285,286,287,288]. These agents suppress ovulation and cyclic estrogen fluctuations, thereby reducing inflammation and lesion reactivation risk.
For patients with ovarian endometriomas, long-term hormonal suppression also mitigates the risks of inflammation-induced follicular damage and surgical insult to the ovarian cortex. Current strategies advocate individualized regimens based on the clinical phenotype, reproductive goals, and treatment tolerance.
In addition to hormonal maintenance, complementary therapies are increasingly being explored to enhance recovery and long-term disease control. Acupuncture has shown benefit in reducing pain following surgery, with a recent meta-analysis reporting significant efficacy over sham treatment [289]. Nutritional and supplemental strategies—including vitamin E, omega-3 polyunsaturated fatty acids (PUFAs), curcumin, and probiotics—exert anti-inflammatory and antioxidative effects. In a randomized controlled trial, vitamin E significantly reduced endometriosis-related pelvic pain (standardized mean difference = −1.63; p < 0.00001) [290]. While clinical data are still limited, preclinical studies support the role of ω-3 PUFAs, curcumin, and probiotics in suppressing lesion development and modulating immune responses [291,292]. These integrative strategies may offer supportive benefits in post-operative care and warrant further clinical evaluation.
Incorporating emerging molecular markers of disease activity may further enhance the early detection of recurrence and timely intervention. Molecular diagnostics—such as miRNA panels, angiogenic markers (e.g., VEGF-A, miR-486-5p), and inflammatory mediators (IL-6, IL-8)—may improve recurrence detection and risk stratification [30,168,269].
Fertility preservation remains a core component of tertiary prevention, particularly in women delaying conception. Cryopreservation of oocytes or embryos is increasingly being recommended before repeat surgery, especially in cases of declining AMH, bilateral endometriomas, or diminished ovarian reserves [293,294,295,296]. Longitudinal assessment of AMH, INSL3, and follicular fluid biomarkers (e.g., oxidative stress markers, follicular miRNAs) can help determine the optimal timing for ART or preservation procedures [262,267,297].
Beyond pharmacologic and surgical strategies, patient education and clinician awareness remain essential to improving reproductive outcomes. Early diagnosis, prompt initiation of maintenance therapy, and personalized fertility planning can significantly reduce long-term sequelae. Multidisciplinary models of care involving reproductive endocrinologists, fertility specialists, and pain-management teams are increasingly being advocated for comprehensive patient-centered support.
Table 4 summarizes the key molecular and clinical tools that have been explored for prevention and fertility preservation in endometriosis. Organized by prevention level, it compiles hormonal therapies, molecular biomarkers, complementary strategies, and emerging diagnostics across diverse sample types. The overview highlights the growing potential for stratified and integrative approaches tailored to the biological stage of the disease and individual fertility goals.
Together, these evolving strategies reflect a transition toward individualized, biomarker-guided reproductive care that extends beyond episodic treatment to encompass dynamic, long-term patient monitoring and fertility preservation.

6. Conclusions and Perspectives

Endometriosis epitomizes a multifactorial and systemic disorder that transcends pelvic confinement and is rooted in the complex interplay of hormonal dysregulation, chronic inflammation, epigenetic reprogramming, oxidative stress, immune dysfunction, and metabolic remodeling. Far beyond its physical manifestations, the disease disrupts the molecular architecture of both eutopic and ectopic tissues, compromising the ovarian reserve, endometrial receptivity, embryo viability, and maternal–fetal immunotolerance. The present review underscores how estrogen dominance, progesterone resistance, and aberrant activation of signaling pathways (e.g., PI3K/AKT, MAPK) jointly sustain lesion survival, angiogenesis, and fibrotic remodeling while also perturbing fertility-related processes at multiple levels. Importantly, infertility in endometriosis is no longer viewed as a mere consequence of anatomical distortion but is increasingly being recognized as the result of deeply embedded molecular dysfunctions affecting gametogenesis, implantation, and systemic homeostasis.
Advances in high-throughput technologies have unveiled a wide spectrum of therapeutic targets—including ERβ modulation, inflammatory kinase inhibition, epigenetic therapies, immune-checkpoint regulators, miRNA-based strategies, and redox modulators—that collectively pave the way for personalized, fertility-preserving interventions. Several of these approaches, although still in the preclinical or early clinical phase, demonstrate tangible potential to move beyond hormone suppression, offering non-hormonal avenues for patients desiring conception. Simultaneously, the emergence of circulating biomarkers, polygenic risk scores, cfDNA methylation patterns, and proteomic signatures has begun to redefine the landscape of early detection and disease monitoring. This molecular arsenal supports the integration of stratified prevention into clinical care—from risk reduction in asymptomatic individuals (primary prevention) through to fertility-preserving interventions in early disease (secondary prevention) and to recurrence surveillance and reproductive planning after treatment (tertiary prevention). Taken together, these insights advocate for a paradigm shift toward translational precision medicine in endometriosis, where diagnostic, therapeutic, and preventive strategies are molecularly guided and patient-centered (Figure 4). To achieve this shift, clinical implementation will require the development of supportive infrastructure, including the integration of molecular diagnostics and longitudinal biomarker monitoring into assisted reproduction and gynecology care settings. Bridging fundamental mechanisms with clinical practice will not only improve reproductive outcomes but also transform endometriosis care into a proactive, multidisciplinary, and personalized continuum.

Author Contributions

All authors—I.L., M.A., K.K.-B., M.K., A.F., M.B. and N.C., contributed to the conceptualization, methodology, investigation, resources, original draft preparation, review and editing, visualization, supervision, project administration, and funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Aziza Othmena Hospital and the Tunisian Ministry of Higher Education and Scientific Research.

Acknowledgments

The authors would like to thank all those who provided administrative and technical support during the preparation of this manuscript. During the preparation of this manuscript, the authors used ChatGPT (OpenAI, GPT-4, 2024) for assistance with text refinement and consistency. The authors have reviewed and edited the output and take full responsibility for the content of this publication.

Conflicts of Interest

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:
17β-HSD217β-Hydroxysteroid Dehydrogenase Type 2
8-OHdG8-Hydroxy-2′-Deoxyguanosine
ABCA1ATP-Binding Cassette Transporter A1
ABCG1ATP-Binding Cassette Transporter G1
AKR1C3Aldo-Keto Reductase Family 1 Member C3
AKTProtein Kinase B
AMHAnti-Müllerian Hormone
ANGPT2Angiopoietin-2
ASK1Apoptosis Signal-Regulating Kinase 1
AT1RAngiotensin II Type 1 Receptor
BPABisphenol A
C5aR1Complement C5a Receptor 1
CD5LCD5 Molecule-Like
CDKN2B-AS1Cyclin-Dependent Kinase Inhibitor 2B Antisense RNA 1
CDC42Cell Division Cycle 42
ceRNACompeting Endogenous RNA
CECsCirculating Endometrial Cells
circRNACircular RNA
COL1A1Collagen Type I Alpha 1 Chain
COX-2Cyclo-Oxygenase-2
CTGFConnective Tissue Growth Factor
CTNNB1Catenin Beta 1 (β-Catenin)
CYLDCylindromatosis (Deubiquitinase)
CYP19A1Cytochrome P450 19A1
DIPC2Disco-Interacting Protein 2 Homolog C
Dll4Delta-Like Ligand 4
DNMT1DNA (Cytosine-5) Methyltransferase 1
EDCEndocrine-Disrupting Chemical
EREstrogen Receptor (generic)
ERαEstrogen Receptor Alpha
ERβEstrogen Receptor Beta
ERK/ERK1/2Extracellular Signal-Regulated Kinase 1/2
ESCEndometrial Stromal Cell
FOXP3+Forkhead Box P3-Positive Regulatory T Cell
FSHRFollicle-Stimulating Hormone Receptor
GnRHGonadotropin-Releasing Hormone
GREB1Growth Regulation by Estrogen in Breast Cancer 1
GPERG-Protein-Coupled Estrogen Receptor
GPR30G-Protein-Coupled Receptor 30
GSHGlutathione (reduced)
GSSGGlutathione Disulfide (oxidized)
GWASGenome-Wide Association Study
HIF-1αHypoxia-Inducible Factor-1 Alpha
HOXA10Homeobox A10
ICAM2Intercellular Adhesion Molecule 2
ILInterleukin
INSL3Insulin-Like Peptide 3
IVFIn Vitro Fertilization
JNKc-Jun N-Terminal Kinase
LIFLeukemia Inhibitory Factor
LNG-IUSLevonorgestrel-Releasing Intrauterine System
lncRNA Long Non-Coding RNA
LOXLysyl Oxidase
LXRLiver X Receptor
MAPKMitogen-Activated Protein Kinase
MAPK1Mitogen-Activated Protein Kinase 1
MEKMitogen-Activated Protein Kinase Kinase
miRNAMicroRNA
mTORMammalian Target of Rapamycin
MMPMatrix Metalloproteinase
NACN-Acetyl-L-Cysteine
NLRP3NACHT, LRR and PYD Domains-Containing Protein 3
NGFNerve Growth Factor
NF-κBNuclear Factor κ-Light-Chain-Enhancer of Activated B Cells
NKNatural Killer (Cell)
PAR-2Protease-Activated Receptor 2
PCBPolychlorinated Biphenyl
PCNAProliferating Cell Nuclear Antigen
PD-1Programmed Cell Death Protein 1
PD-L1Programmed Death-Ligand 1
PI3KPhosphoinositide 3-Kinase
PPARPeroxisome Proliferator-Activated Receptor
PPAR-αPeroxisome Proliferator-Activated Receptor Alpha
PR-BProgesterone Receptor Isoform B
PROK1Prokineticin-1
PROKR1Prokineticin Receptor 1
PrPCCellular Prion Protein
PWASProteome-Wide Association Study
r-hTBP1Recombinant Human TNFRSF1A
ROSReactive Oxygen Species
RRP1Ribosomal RNA-Processing Protein 1
RSPO3R-Spondin 3
RUNX3Runt-Related Transcription Factor 3
S100A9S100 Calcium-Binding Protein A9
SARMSelective Androgen Receptor Modulator
SARDSelective Androgen Receptor Degrader
SERMSelective Estrogen Receptor Modulator
SF-1Steroidogenic Factor 1
SIRPαSignal-Regulatory Protein Alpha
Slit2Slit Guidance Ligand 2
SMAD(S)-Homologues of Mothers Against Decapentaplegic
SNAILSnail Family Transcriptional Repressor 1
SNPSingle-Nucleotide Polymorphism
STAT3Signal Transducer and Activator of Transcription 3
STRAPSerine/Threonine Kinase Receptor-Associated Protein
TETTen–Eleven Translocation Dioxygenase
TET2Ten–Eleven Translocation Methylcytosine Dioxygenase 2
TGF-βTransforming Growth Factor Beta
TIMPsTissue Inhibitors of Metalloproteinases
TOP1DNA Topoisomerase I
TNF-αTumor Necrosis Factor Alpha
TregsRegulatory T Cells
TWASTranscriptome-Wide Association Study
uNKUterine Natural Killer Cell
uPAUrokinase-Type Plasminogen Activator
uPARUrokinase-Type Plasminogen Activator Receptor
USP1Ubiquitin-Specific Peptidase 1
VEGFVascular Endothelial Growth Factor
VEZTVezatin Adherens Junctions Transmembrane Protein
WDR5WD Repeat Domain 5
WntWingless-Related Integration Site (Wnt) Family
WNT4Wnt Family Member 4
YWHAZ14-3-3 Protein Zeta/Delta
ZEB1/2Zinc Finger E-Box-Binding Homeobox 1 and 2

References

  1. Giudice, L.C. Endometriosis. N. Engl. J. Med. 2010, 362, 2389–2398. [Google Scholar] [CrossRef]
  2. Zondervan, K.T.; Becker, C.M.; Missmer, S.A. Endometriosis. N. Engl. J. Med. 2020, 382, 1244–1256. [Google Scholar] [CrossRef]
  3. Parasar, P.; Ozcan, P.; Terry, K.L. Endometriosis: Epidemiology, Diagnosis and Clinical Management. Curr. Obstet. Gynecol. Rep. 2017, 6, 34–41. [Google Scholar] [CrossRef] [PubMed]
  4. Lamceva, J.; Uljanovs, R.; Strumfa, I. The Main Theories on the Pathogenesis of Endometriosis. Int. J. Mol. Sci. 2023, 24, 4254. [Google Scholar] [CrossRef]
  5. Bulun, S.E. Endometriosis. N. Engl. J. Med. 2009, 360, 268–279. [Google Scholar] [CrossRef] [PubMed]
  6. Vercellini, P.; Viganò, P.; Somigliana, E.; Fedele, L. Endometriosis: Pathogenesis and Treatment. Nat. Rev. Endocrinol. 2014, 10, 261–275. [Google Scholar] [CrossRef] [PubMed]
  7. Psilopatis, I.; Burghaus, S.; Au, K.; Hofbeck, L.; Windischbauer, L.; Lotz, L.; Beckmann, M.W. The Hallmarks of Endometriosis. Geburtshilfe Frauenheilkd 2024, 84, 555–563. [Google Scholar] [CrossRef]
  8. Amanda, C.R.; Asmarinah; Hestiantoro, A.; Tulandi, T.; Febriyeni. Gene Expression of Aromatase, SF-1, and HSD17B2 in Menstrual Blood as Noninvasive Diagnostic Biomarkers for Endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 301, 95–101. [Google Scholar] [CrossRef]
  9. Bulun, S.E.; Fang, Z.; Imir, G.; Gurates, B.; Tamura, M.; Yilmaz, B.; Langoi, D.; Amin, S.; Yang, S.; Deb, S. Aromatase and Endometriosis. Semin. Reprod. Med. 2004, 22, 45–50. [Google Scholar] [CrossRef]
  10. Chantalat, E.; Valera, M.-C.; Vaysse, C.; Noirrit, E.; Rusidze, M.; Weyl, A.; Vergriete, K.; Buscail, E.; Lluel, P.; Fontaine, C.; et al. Estrogen Receptors and Endometriosis. Int. J. Mol. Sci. 2020, 21, 2815. [Google Scholar] [CrossRef]
  11. Rižner, T.L.; Gjorgoska, M. Steroid Sulfatase and Sulfotransferases in the Estrogen and Androgen Action of Gynecological Cancers: Current Status and Perspectives. Essays Biochem. 2024, 68, 411–422. [Google Scholar] [CrossRef]
  12. Da Costa, K.d.A.; Malvezzi, H.; Dobo, C.; Neme, R.M.; Filippi, R.Z.; Aloia, T.P.A.; Prado, E.R.; Meola, J.; Piccinato, C.d.A. Site-Specific Regulation of Sulfatase and Aromatase Pathways for Estrogen Production in Endometriosis. Front. Mol. Biosci. 2022, 9, 854991. [Google Scholar] [CrossRef]
  13. Secky, L.; Svoboda, M.; Klameth, L.; Bajna, E.; Hamilton, G.; Zeillinger, R.; Jäger, W.; Thalhammer, T. The Sulfatase Pathway for Estrogen Formation: Targets for the Treatment and Diagnosis of Hormone-Associated Tumors. J. Drug Deliv. 2013, 2013, 1–13. [Google Scholar] [CrossRef]
  14. Qi, Q.; Li, Y.; Chen, Z.; Luo, Z.; Zhou, T.; Zhou, J.; Zhang, Y.; Chen, S.; Wang, L. Update on the Pathogenesis of Endometriosis-Related Infertility Based on Contemporary Evidence. Front. Endocrinol. 2025, 16, 1558271. [Google Scholar] [CrossRef]
  15. Stevens Brentjens, L.B.P.M.; Delvoux, B.; den Hartog, J.E.; Obukhova, D.; Xanthoulea, S.; Romano, A.; van Golde, R.J.T. Endometrial Metabolism of 17β-Estradiol during the Window of Implantation in Women with Recurrent Implantation Failure. Gynecol. Obstet. Investig. 2025. [Google Scholar] [CrossRef] [PubMed]
  16. Kobayashi, H.; Kimura, M.; Maruyama, S.; Nagayasu, M.; Imanaka, S. Revisiting Estrogen-Dependent Signaling Pathways in Endometriosis: Potential Targets for Non-Hormonal Therapeutics. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 258, 103–110. [Google Scholar] [CrossRef] [PubMed]
  17. Laganà, A.S.; Garzon, S.; Götte, M.; Viganò, P.; Franchi, M.; Ghezzi, F.; Martin, D.C. The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. Int. J. Mol. Sci. 2019, 20, 5615. [Google Scholar] [CrossRef] [PubMed]
  18. Hu, L.; Zhang, J.; Lu, Y.; Fu, B.; Hu, W. Estrogen Receptor Beta Promotes Endometriosis Progression by Upregulating CD47 Expression in Ectopic Endometrial Stromal Cells. J. Reprod. Immunol. 2022, 151, 103513. [Google Scholar] [CrossRef]
  19. Gou, Y.; Li, X.; Li, P.; Zhang, H.; Xu, T.; Wang, H.; Wang, B.; Ma, X.; Jiang, X.; Zhang, Z. Estrogen Receptor β Upregulates CCL2 via NF-κB Signaling in Endometriotic Stromal Cells and Recruits Macrophages to Promote the Pathogenesis of Endometriosis. Hum. Reprod. 2019, 34, 646–658. [Google Scholar] [CrossRef]
  20. Szukiewicz, D. Insight into the Potential Mechanisms of Endocrine Disruption by Dietary Phytoestrogens in the Context of the Etiopathogenesis of Endometriosis. Int. J. Mol. Sci. 2023, 24, 12195. [Google Scholar] [CrossRef]
  21. Choi, J.; Jo, M.; Lee, E.; Kim, S.E.; Lee, D.-Y.; Choi, D. Inhibition of the NLRP3 Inflammasome by Progesterone Is Attenuated by Abnormal Autophagy Induction in Endometriotic Cyst Stromal Cells: Implications for Endometriosis. Mol. Hum. Reprod. 2022, 28, gaac007. [Google Scholar] [CrossRef] [PubMed]
  22. Irandoost, E.; Najibi, S.; Talebbeigi, S.; Nassiri, S. Focus on the Role of NLRP3 Inflammasome in the Pathology of Endometriosis: A Review on Molecular Mechanisms and Possible Medical Applications. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 621–631. [Google Scholar] [CrossRef] [PubMed]
  23. Liu, S.-G.; Wu, X.-X.; Hua, T.; Xin, X.-Y.; Feng, D.-L.; Chi, S.-Q.; Wang, X.-X.; Wang, H.-B. NLRP3 Inflammasome Activation by Estrogen Promotes the Progression of Human Endometrial Cancer. Onco Targets Ther. 2019, 12, 6927–6936. [Google Scholar] [CrossRef] [PubMed]
  24. Leavy, O. Evading Immunosurveillance in Endometriosis. Nat. Rev. Immunol. 2015, 15, 729. [Google Scholar] [CrossRef]
  25. García-Gómez, E.; Vázquez-Martínez, E.R.; Reyes-Mayoral, C.; Cruz-Orozco, O.P.; Camacho-Arroyo, I.; Cerbón, M. Regulation of Inflammation Pathways and Inflammasome by Sex Steroid Hormones in Endometriosis. Front. Endocrinol. 2020, 10, 935. [Google Scholar] [CrossRef]
  26. Simmen, R.C.M.; Kelley, A.S. Reversal of Fortune: Estrogen Receptor-β in Endometriosis. J. Mol. Endocrinol. 2016, 57, F23–F27. [Google Scholar] [CrossRef]
  27. Azuma, K.; Inoue, S. Genomic and Non-Genomic Actions of Estrogen: Recent Developments. Biomol. Concepts 2012, 3, 365–370. [Google Scholar] [CrossRef]
  28. Greygoose, E.; Metharom, P.; Kula, H.; Seckin, T.K.; Seckin, T.A.; Ayhan, A.; Yu, Y. The Estrogen–Immune Interface in Endometriosis. Cells 2025, 14, 58. [Google Scholar] [CrossRef]
  29. Lin, B.C.; Suzawa, M.; Blind, R.D.; Tobias, S.C.; Bulun, S.E.; Scanlan, T.S.; Ingraham, H.A. Stimulating the GPR30 Estrogen Receptor with a Novel Tamoxifen Analogue Activates SF-1 and Promotes Endometrial Cell Proliferation. Cancer Res. 2009, 69, 5415–5423. [Google Scholar] [CrossRef]
  30. Zhang, M.; Xu, T.; Tong, D.; Li, S.; Yu, X.; Liu, B.; Jiang, L.; Liu, K. Research Advances in Endometriosis-Related Signaling Pathways: A Review. Biomed. Pharmacother. 2023, 164, 114909. [Google Scholar] [CrossRef]
  31. Wu, Y.; Strawn, E.; Basir, Z.; Halverson, G.; Guo, S.-W. Promoter Hypermethylation of Progesterone Receptor Isoform B (PR-B) in Endometriosis. Epigenetics 2006, 1, 106–111. [Google Scholar] [CrossRef]
  32. Colón-Díaz, M.; Báez-Vega, P.; García, M.; Ruiz, A.; Monteiro, J.B.; Fourquet, J.; Bayona, M.; Alvarez-Garriga, C.; Achille, A.; Seto, E.; et al. HDAC1 and HDAC2 Are Differentially Expressed in Endometriosis. Reprod. Sci. 2012, 19, 483–492. [Google Scholar] [CrossRef]
  33. Szukiewicz, D. Aberrant Epigenetic Regulation of Estrogen and Progesterone Signaling at the Level of Endometrial/Endometriotic Tissue in the Pathomechanism of Endometriosis. Vitam. Horm. 2023, 122, 193–235. [Google Scholar] [CrossRef]
  34. Nie, J.; Liu, X.; Guo, S.-W. Promoter Hypermethylation of Progesterone Receptor Isoform B (PR-B) in Adenomyosis and Its Rectification by a Histone Deacetylase Inhibitor and a Demethylation Agent. Reprod. Sci. 2010, 17, 995–1005. [Google Scholar] [CrossRef]
  35. Wang, D.; Guo, C.; Li, Y.; Zhou, M.; Wang, H.; Liu, J.; Chen, P. Oestrogen Up-Regulates DNMT1 and Leads to the Hypermethylation of RUNX3 in the Malignant Transformation of Ovarian Endometriosis. Reprod. Biomed. Online 2022, 44, 27–37. [Google Scholar] [CrossRef]
  36. Wen, X.; Xiong, Y.; Geng, T.; Jin, L.; Liu, H.; Qiao, Y.; Zhou, C.; Zhang, M.; Zhang, Y. BPA Modulates the WDR5/TET2 Complex to Regulate ERβ Expression in Eutopic Endometrium and Drives the Development of Endometriosis. Environ. Pollut. 2021, 268, 115748. [Google Scholar] [CrossRef]
  37. Ding, N.-Z.; Wang, X.-M.; Jiao, X.-W.; Li, R.; Zeng, C.; Li, S.-N.; Guo, H.-S.; Wang, Z.-Y.; Huang, Z.; He, C.-Q. Cellular Prion Protein Is Involved in Decidualization of Mouse Uterus. Biol. Reprod. 2018, 99, 319–325. [Google Scholar] [CrossRef] [PubMed]
  38. Peng, H.-Y.; Lei, S.-T.; Hou, S.-H.; Weng, L.-C.; Yuan, Q.; Li, M.-Q.; Zhao, D. PrPC Promotes Endometriosis Progression by Reprogramming Cholesterol Metabolism and Estrogen Biosynthesis of Endometrial Stromal Cells through PPARα Pathway. Int. J. Biol. Sci. 2022, 18, 1755–1772. [Google Scholar] [CrossRef] [PubMed]
  39. Psilopatis, I.; Theocharis, S.; Beckmann, M.W. The Role of Peroxisome Proliferator-Activated Receptors in Endometriosis. Front. Med. 2024, 11, 1329406. [Google Scholar] [CrossRef] [PubMed]
  40. Zhao, Y.; Wang, Y.; Gu, P.; Tuo, L.; Wang, L.; Jiang, S.-W. Transgenic Mice Applications in the Study of Endometriosis Pathogenesis. Front. Cell Dev. Biol. 2024, 12, 1376414. [Google Scholar] [CrossRef]
  41. Ducreux, B.; Patrat, C.; Firmin, J.; Ferreux, L.; Chapron, C.; Marcellin, L.; Parpex, G.; Bourdon, M.; Vaiman, D.; Santulli, P.; et al. Systematic Review on the DNA Methylation Role in Endometriosis: Current Evidence and Perspectives. Clin. Genet. 2025, 17, 32. [Google Scholar] [CrossRef]
  42. Wu, Y.; Halverson, G.; Basir, Z.; Strawn, E.; Yan, P.; Guo, S.-W. Aberrant Methylation at HOXA10 May Be Responsible for Its Aberrant Expression in the Endometrium of Patients with Endometriosis. Am. J. Obstet. Gynecol. 2005, 193, 371–380. [Google Scholar] [CrossRef]
  43. Elias, M.H.; Lazim, N.; Sutaji, Z.; Abu, M.A.; Abdul Karim, A.K.; Ugusman, A.; Syafruddin, S.E.; Mokhtar, M.H.; Ahmad, M.F. HOXA10 DNA Methylation Level in the Endometrium Women with Endometriosis: A Systematic Review. Biology 2023, 12, 474. [Google Scholar] [CrossRef]
  44. Pîrlog, L.-M.; Pătrășcanu, A.-A.; Ona, M.-D.; Cătană, A.; Rotar, I.C. HOXA10 and HOXA11 in Human Endometrial Benign Disorders: Unraveling Molecular Pathways and Their Impact on Reproduction. Biomolecules 2025, 15, 563. [Google Scholar] [CrossRef]
  45. Petracco, R.; Grechukhina, O.; Popkhadze, S.; Massasa, E.; Zhou, Y.; Taylor, H.S. MicroRNA 135 Regulates HOXA10 Expression in Endometriosis. J. Clin. Endocrinol. Metab. 2011, 96, E1925–E1933. [Google Scholar] [CrossRef]
  46. Mirabutalebi, S.H.; Karami, N.; Montazeri, F.; Fesahat, F.; Sheikhha, M.H.; Hajimaqsoodi, E.; Karimi Zarchi, M.; Kalantar, S.M. The Relationship between the Expression Levels of miR-135a and HOXA10 Gene in the Eutopic and Ectopic Endometrium. Int. J. Reprod. Biomed. 2018, 16, 501–506. [Google Scholar] [CrossRef] [PubMed]
  47. Zhou, T.; Ni, T.; Li, Y.; Zhang, Q.; Yan, J.; Chen, Z.-J. circFAM120A Participates in Repeated Implantation Failure by Regulating Decidualization via the miR-29/ABHD5 Axis. FASEB J. 2021, 35, e21872. [Google Scholar] [CrossRef] [PubMed]
  48. Long, M.; Wan, X.; La, X.; Gong, X.; Cai, X. miR-29c Is Downregulated in the Ectopic Endometrium and Exerts Its Effects on Endometrial Cell Proliferation, Apoptosis and Invasion by Targeting c-Jun. Int. J. Mol. Med. 2015, 35, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
  49. Pei, T.; Liu, C.; Liu, T.; Xiao, L.; Luo, B.; Tan, J.; Li, X.; Zhou, G.; Duan, C.; Huang, W. miR-194-3p Represses the Progesterone Receptor and Decidualization in Eutopic Endometrium from Women with Endometriosis. Endocrinology 2018, 159, 2554–2562. [Google Scholar] [CrossRef]
  50. Zhao, Q.; Han, B.; Zhang, Y.; Su, K.; Wang, C.; Hai, P.; Bian, A.; Guo, R. Effect of miR-194-5p Regulating STAT1/mTOR Signaling Pathway on the Biological Characteristics of Ectopic Endometrial Cells from Mice. Am. J. Transl. Res. 2020, 12, 6136–6148. [Google Scholar]
  51. Wu, Y.; Lin, Y.; Li, S.; Yao, X.; Cheng, M.; Zhu, L.; Liu, H. microRNA-194 Is Increased in Polycystic Ovary Syndrome Granulosa Cell and Induce KGN Cells Apoptosis by Direct Targeting Heparin-Binding EGF-like Growth Factor. Reprod. Biol. Endocrinol. 2021, 19, 170. [Google Scholar] [CrossRef]
  52. Choi, M.; Chang, H.; Heo, J.-H.; Yum, S.; Jo, E.; Kim, M.; Lee, S.-R. Expression Profiling of Coding and Noncoding RNAs in the Endometrium of Patients with Endometriosis. Int. J. Mol. Sci. 2024, 25, 10581. [Google Scholar] [CrossRef]
  53. Liu, S.; Xin, W.; Lu, Q.; Tang, X.; Wang, F.; Shao, W.; Zhang, Y.; Qiu, J.; Hua, K. Knockdown of lncRNA H19 Suppresses Endometriosis in Vivo. Braz. J. Med. Biol. Res. 2021, 54, e10117. [Google Scholar] [CrossRef]
  54. Liu, S.; Xin, W.; Tang, X.; Qiu, J.; Zhang, Y.; Hua, K. LncRNA H19 Overexpression in Endometriosis and Its Utility as a Novel Biomarker for Predicting Recurrence. Reprod. Sci. 2020, 27, 1687–1697. [Google Scholar] [CrossRef]
  55. Hudson, Q.J.; Proestling, K.; Perricos, A.; Kuessel, L.; Husslein, H.; Wenzl, R.; Yotova, I. The Role of Long Non-Coding RNAs in Endometriosis. Int. J. Mol. Sci. 2021, 22, 11425. [Google Scholar] [CrossRef] [PubMed]
  56. Zhao, L.; Gu, C.; Ye, M.; Zhang, Z.; Li, L.; Fan, W.; Meng, Y. Integration Analysis of microRNA and mRNA Paired Expression Profiling Identifies Deregulated microRNA-Transcription Factor-Gene Regulatory Networks in Ovarian Endometriosis. Reprod. Biol. Endocrinol. 2018, 16, 4. [Google Scholar] [CrossRef] [PubMed]
  57. Dana, P.M.; Taghavipour, M.; Mirzaei, H.; Yousefi, B.; Moazzami, B.; Chaichian, S.; Asemi, Z. Circular RNA as a Potential Diagnostic and/or Therapeutic Target for Endometriosis. Biomark. Med. 2020, 14, 1277–1287. [Google Scholar] [CrossRef] [PubMed]
  58. Matsuzaki, S.; Darcha, C. Co-Operation between the AKT and ERK Signaling Pathways May Support Growth of Deep Endometriosis in a Fibrotic Microenvironment in Vitro. Hum. Reprod. 2015, 30, 1606–1616. [Google Scholar] [CrossRef] [PubMed]
  59. Cinar, O.; Seval, Y.; Uz, Y.H.; Cakmak, H.; Ulukus, M.; Kayisli, U.A.; Arici, A. Differential Regulation of Akt Phosphorylation in Endometriosis. Reprod. Biomed. Online 2009, 19, 864–871. [Google Scholar] [CrossRef]
  60. An, M.; Fu, X.; Meng, X.; Liu, H.; Ma, Y.; Li, Y.; Li, Q.; Chen, J. PI3K/AKT Signaling Pathway Associates with Pyroptosis and Inflammation in Patients with Endometriosis. J. Reprod. Immunol. 2024, 162, 104213. [Google Scholar] [CrossRef]
  61. Matsuzaki, S.; Darcha, C. Involvement of the Wnt/β-Catenin Signaling Pathway in the Cellular and Molecular Mechanisms of Fibrosis in Endometriosis. PLoS ONE 2013, 8, e76808. [Google Scholar] [CrossRef]
  62. Zhang, Y.; Sun, X.; Li, Z.; Han, X.; Wang, W.; Xu, P.; Liu, Y.; Xue, Y.; Wang, Z.; Xu, S.; et al. Interactions between miRNAs and the Wnt/β-Catenin Signaling Pathway in Endometriosis. Biomed. Pharmacother. 2024, 171, 116182. [Google Scholar] [CrossRef]
  63. Driva, T.S.; Schatz, C.; Sobočan, M.; Haybaeck, J. The Role of mTOR and eIF Signaling in Benign Endometrial Diseases. Int. J. Mol. Sci. 2022, 23, 3416. [Google Scholar] [CrossRef]
  64. Assaf, L.; Eid, A.A.; Nassif, J. Role of AMPK/mTOR, Mitochondria, and ROS in the Pathogenesis of Endometriosis. Life Sci. 2022, 306, 120805. [Google Scholar] [CrossRef]
  65. Chen, S.; Liu, Y.; Zhong, Z.; Wei, C.; Liu, Y.; Zhu, X. Peritoneal Immune Microenvironment of Endometriosis: Role and Therapeutic Perspectives. Front. Immunol. 2023, 14, 1134663. [Google Scholar] [CrossRef]
  66. Eaton, J.L.; Unno, K.; Caraveo, M.; Lu, Z.; Kim, J.J. Increased AKT or MEK1/2 Activity Influences Progesterone Receptor Levels and Localization in Endometriosis. J. Clin. Endocrinol. Metab. 2013, 98, E1871–E1879. [Google Scholar] [CrossRef]
  67. Ruan, J.; Tian, Q.; Li, S.; Zhou, X.; Sun, Q.; Wang, Y.; Xiao, Y.; Li, M.; Chang, K.; Yi, X. The IL-33-ST2 Axis Plays a Vital Role in Endometriosis via Promoting Epithelial–Mesenchymal Transition by Phosphorylating β-Catenin. Cell Commun. Signal. 2024, 22, 318. [Google Scholar] [CrossRef] [PubMed]
  68. Hui San, S.; Ching Ngai, S. E-Cadherin Re-Expression: Its Potential in Combating TRAIL Resistance and Reversing Epithelial-to-Mesenchymal Transition. Gene 2024, 909, 148293. [Google Scholar] [CrossRef] [PubMed]
  69. Capobianco, A.; Rovere-Querini, P. Endometriosis, a Disease of the Macrophage. Front. Immunol. 2013, 4, 9. [Google Scholar] [CrossRef] [PubMed]
  70. Schulke, L.; Berbic, M.; Manconi, F.; Tokushige, N.; Markham, R.; Fraser, I.S. Dendritic Cell Populations in the Eutopic and Ectopic Endometrium of Women with Endometriosis. Hum. Reprod. 2009, 24, 1695–1703. [Google Scholar] [CrossRef]
  71. Scheerer, C.; Bauer, P.; Chiantera, V.; Sehouli, J.; Kaufmann, A.; Mechsner, S. Characterization of Endometriosis-Associated Immune Cell Infiltrates (EMaICI). Arch. Gynecol. Obstet. 2016, 294, 657–664. [Google Scholar] [CrossRef]
  72. Henlon, Y.; Panir, K.; McIntyre, I.; Hogg, C.; Dhami, P.; Cuff, A.O.; Senior, A.; Moolchandani-Adwani, N.; Courtois, E.T.; Horne, A.W.; et al. Single-Cell Analysis Identifies Distinct Macrophage Phenotypes Associated with Prodisease and Proresolving Functions in the Endometriotic Niche. Proc. Natl. Acad. Sci. USA 2024, 121, e2405474121. [Google Scholar] [CrossRef]
  73. Iwabe, T.; Harada, T.; Tsudo, T.; Nagano, Y.; Yoshida, S.; Tanikawa, M.; Terakawa, N. Tumor Necrosis Factor-Alpha Promotes Proliferation of Endometriotic Stromal Cells by Inducing Interleukin-8 Gene and Protein Expression. J. Clin. Endocrinol. Metab. 2000, 85, 824–829. [Google Scholar] [CrossRef] [PubMed]
  74. Oală, I.E.; Mitranovici, M.-I.; Chiorean, D.M.; Irimia, T.; Crișan, A.I.; Melinte, I.M.; Cotruș, T.; Tudorache, V.; Moraru, L.; Moraru, R.; et al. Endometriosis and the Role of Pro-Inflammatory and Anti-Inflammatory Cytokines in Pathophysiology: A Narrative Review of the Literature. Diagnostics 2024, 14, 312. [Google Scholar] [CrossRef] [PubMed]
  75. Kacem-Berjeb, K.; Braham, M.; Massoud, C.B.; Hannachi, H.; Hamdoun, M.; Chtourou, S.; Debbabi, L.; Bouyahia, M.; Fadhlaoui, A.; Zhioua, F.; et al. Does Endometriosis Impact the Composition of Follicular Fluid in IL6 and AMH? A Case-Control Study. J. Clin. Med. 2023, 12, 1829. [Google Scholar] [CrossRef] [PubMed]
  76. Godin, S.K.; Wagner, J.; Huang, P.; Bree, D. The Role of Peripheral Nerve Signaling in Endometriosis. FASEB Bioadv. 2021, 3, 802–813. [Google Scholar] [CrossRef]
  77. Ahn, S.H.; Edwards, A.K.; Singh, S.S.; Young, S.L.; Lessey, B.A.; Tayade, C. IL-17A Contributes to the Pathogenesis of Endometriosis by Triggering Proinflammatory Cytokines and Angiogenic Growth Factors. J. Immunol. 2015, 195, 2591–2600. [Google Scholar] [CrossRef]
  78. Hirata, T.; Osuga, Y.; Hamasaki, K.; Yoshino, O.; Ito, M.; Hasegawa, A.; Takemura, Y.; Hirota, Y.; Nose, E.; Morimoto, C.; et al. Interleukin (IL)-17A Stimulates IL-8 Secretion, Cyclooxygensase-2 Expression, and Cell Proliferation of Endometriotic Stromal Cells. Endocrinology 2008, 149, 1260–1267. [Google Scholar] [CrossRef]
  79. Yang, C.-M.; Yang, C.-C.; Hsiao, L.-D.; Yu, C.-Y.; Tseng, H.-C.; Hsu, C.-K.; Situmorang, J.H. Upregulation of COX-2 and PGE2 Induced by TNF-α Mediated Through TNFR1/MitoROS/PKCα/P38 MAPK, JNK1/2/FoxO1 Cascade in Human Cardiac Fibroblasts. J. Inflamm. Res. 2021, 14, 2807–2824. [Google Scholar] [CrossRef]
  80. Titiz, M.; Landini, L.; Souza Monteiro De Araujo, D.; Marini, M.; Seravalli, V.; Chieca, M.; Pensieri, P.; Montini, M.; De Siena, G.; Pasquini, B.; et al. Schwann Cell C5aR1 Co-Opts Inflammasome NLRP1 to Sustain Pain in a Mouse Model of Endometriosis. Nat. Commun. 2024, 15, 10142. [Google Scholar] [CrossRef]
  81. Atiakshin, D.; Patsap, O.; Kostin, A.; Mikhalyova, L.; Buchwalow, I.; Tiemann, M. Mast Cell Tryptase and Carboxypeptidase A3 in the Formation of Ovarian Endometrioid Cysts. Int. J. Mol. Sci. 2023, 24, 6498. [Google Scholar] [CrossRef]
  82. Kim, H.G.; Lim, Y.S.; Hwang, S.; Kim, H.-Y.; Moon, Y.; Song, Y.J.; Na, Y.-J.; Yoon, S. Di-(2-Ethylhexyl) Phthalate Triggers Proliferation, Migration, Stemness, and Epithelial-Mesenchymal Transition in Human Endometrial and Endometriotic Epithelial Cells via the Transforming Growth Factor-β/Smad Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 3938. [Google Scholar] [CrossRef] [PubMed]
  83. Zubrzycka, A.; Migdalska-Sęk, M.; Jędrzejczyk, S.; Brzeziańska-Lasota, E. The Expression of TGF-Β1, SMAD3, ILK and miRNA-21 in the Ectopic and Eutopic Endometrium of Women with Endometriosis. Int. J. Mol. Sci. 2023, 24, 2453. [Google Scholar] [CrossRef] [PubMed]
  84. Young, V.J.; Brown, J.K.; Saunders, P.T.K.; Duncan, W.C.; Horne, A.W. The Peritoneum Is Both a Source and Target of TGF-β in Women with Endometriosis. PLoS ONE 2014, 9, e106773. [Google Scholar] [CrossRef] [PubMed]
  85. Hanada, T.; Tsuji, S.; Nakayama, M.; Wakinoue, S.; Kasahara, K.; Kimura, F.; Mori, T.; Ogasawara, K.; Murakami, T. Suppressive Regulatory T Cells and Latent Transforming Growth Factor-β-Expressing Macrophages Are Altered in the Peritoneal Fluid of Patients with Endometriosis. Reprod. Biol. Endocrinol. 2018, 16, 9. [Google Scholar] [CrossRef]
  86. Agostinis, C.; Balduit, A.; Mangogna, A.; Zito, G.; Romano, F.; Ricci, G.; Kishore, U.; Bulla, R. Immunological Basis of the Endometriosis: The Complement System as a Potential Therapeutic Target. Front. Immunol. 2021, 11, 599117. [Google Scholar] [CrossRef]
  87. Zaninelli, T.H.; Fattori, V.; Heintz, O.K.; Wright, K.R.; Bennallack, P.R.; Sim, D.; Bukhari, H.; Terry, K.L.; Vitonis, A.F.; Missmer, S.A.; et al. Targeting NGF but Not VEGFR1 or BDNF Signaling Reduces Endometriosis-Associated Pain in Mice. J. Adv. Res. 2025, 73, 593–605. [Google Scholar] [CrossRef]
  88. Ansariniya, H.; Yavari, A.; Javaheri, A.; Zare, F. Oxidative Stress-Related Effects on Various Aspects of Endometriosis. Am. J. Reprod. Immunol. 2022, 88, e13593. [Google Scholar] [CrossRef]
  89. Scutiero, G.; Iannone, P.; Bernardi, G.; Bonaccorsi, G.; Spadaro, S.; Volta, C.A.; Greco, P.; Nappi, L. Oxidative Stress and Endometriosis: A Systematic Review of the Literature. Oxid. Med. Cell. Longev. 2017, 2017, 7265238. [Google Scholar] [CrossRef]
  90. Li, S.; Zhou, Y.; Huang, Q.; Fu, X.; Zhang, L.; Gao, F.; Jin, Z.; Wu, L.; Shu, C.; Zhang, X.; et al. Iron Overload in Endometriosis Peritoneal Fluid Induces Early Embryo Ferroptosis Mediated by HMOX1. Cell Death Discov. 2021, 7, 355. [Google Scholar] [CrossRef]
  91. Wyatt, J.; Fernando, S.M.; Powell, S.G.; Hill, C.J.; Arshad, I.; Probert, C.; Ahmed, S.; Hapangama, D.K. The Role of Iron in the Pathogenesis of Endometriosis: A Systematic Review. Hum. Reprod. Open 2023, 2023, hoad033. [Google Scholar] [CrossRef]
  92. Zhou, Y.; Zhao, X.; Zhang, L.; Xia, Q.; Peng, Y.; Zhang, H.; Yan, D.; Yang, Z.; Li, J. Iron Overload Inhibits Cell Proliferation and Promotes Autophagy via PARP1/SIRT1 Signaling in Endometriosis and Adenomyosis. Toxicology 2022, 465, 153050. [Google Scholar] [CrossRef]
  93. Zhou, Y.; Zhang, H.; Yan, H.; Han, P.; Zhang, J.; Liu, Y. Deciphering the Role of Oxidative Stress in Male Infertility: Insights from Reactive Oxygen Species to Antioxidant Therapeutics. Front. Biosci. (Landmark Ed.) 2025, 30, 27046. [Google Scholar] [CrossRef]
  94. Ye, Z.; Cheng, M.; Lian, W.; Leng, Y.; Qin, X.; Wang, Y.; Zhou, P.; Liu, X.; Peng, T.; Wang, R.; et al. GPX4 Deficiency-Induced Ferroptosis Drives Endometrial Epithelial Fibrosis in Polycystic Ovary Syndrome. Redox Biol. 2025, 83, 103615. [Google Scholar] [CrossRef]
  95. Xie, C.; Lu, C.; Lv, N.; Kong, W.; Liu, Y. Identification and Analysis of Oxidative Stress-Related Genes in Endometriosis. Front. Immunol. 2025, 16, 1515490. [Google Scholar] [CrossRef]
  96. Yun, B.H.; Chon, S.J.; Choi, Y.S.; Cho, S.; Lee, B.S.; Seo, S.K. Pathophysiology of Endometriosis: Role of High Mobility Group Box-1 and Toll-Like Receptor 4 Developing Inflammation in Endometrium. PLoS ONE 2016, 11, e0148165. [Google Scholar] [CrossRef]
  97. Lv, H.; Liu, B.; Dai, Y.; Li, F.; Bellone, S.; Zhou, Y.; Mamillapalli, R.; Zhao, D.; Venkatachalapathy, M.; Hu, Y.; et al. TET3-Overexpressing Macrophages Promote Endometriosis. J. Clin. Investig. 2024, 134, e181839. [Google Scholar] [CrossRef]
  98. Limam, I.; Ghali, R.; Abdelkarim, M.; Ouni, A.; Araoud, M.; Abdelkarim, M.; Hedhili, A.; Ben-Aissa Fennira, F. Tunisian Artemisia Campestris L.: A Potential Therapeutic Agent against Myeloma—Phytochemical and Pharmacological Insights. Plant Methods 2024, 20, 59. [Google Scholar] [CrossRef] [PubMed]
  99. Campara, K.; Rodrigues, P.; Viero, F.T.; da Silva, B.; Trevisan, G. A Systematic Review and Meta-Analysis of Advanced Oxidative Protein Products Levels (AOPP) Levels in Endometriosis: Association with Disease Stage and Clinical Implications. Eur. J. Pharmacol. 2025, 996, 177434. [Google Scholar] [CrossRef] [PubMed]
  100. Arendt, W.; Kleszczyński, K.; Gagat, M.; Izdebska, M. Endometriosis and Cytoskeletal Remodeling: The Functional Role of Actin-Binding Proteins. Cells 2025, 14, 360. [Google Scholar] [CrossRef] [PubMed]
  101. Bałkowiec, M.; Maksym, R.B.; Włodarski, P.K. The Bimodal Role of Matrix Metalloproteinases and Their Inhibitors in Etiology and Pathogenesis of Endometriosis. Mol. Med. Rep. 2018, 18, 3123–3136. [Google Scholar] [CrossRef] [PubMed]
  102. Huang, Q.; Song, Y.; Lei, X.; Huang, H.; Nong, W. MMP-9 as a Clinical Marker for Endometriosis: A Meta-Analysis and Bioinformatics Analysis. Front. Endocrinol. 2024, 15, 1475531. [Google Scholar] [CrossRef] [PubMed]
  103. Khalili-Tanha, G.; Radisky, E.S.; Radisky, D.C.; Shoari, A. Matrix Metalloproteinase-Driven Epithelial-Mesenchymal Transition: Implications in Health and Disease. J. Transl. Med. 2025, 23, 436. [Google Scholar] [CrossRef] [PubMed]
  104. Muharam, R.; Bowolaksono, A.; Maidarti, M.; Febri, R.; Mutia, K.; Iffanolida, P.; Ikhsan, M.; Sumapraja, K.; Pratama, G.; Harzif, A.; et al. Elevated MMP-9, Survivin, TGB1 and Downregulated Tissue Inhibitor of TIMP-1, Caspase-3 Activities Are Independent of the Low Levels miR-183 in Endometriosis. Int. J. Women’s Health 2024, 16, 1733–1742. [Google Scholar] [CrossRef]
  105. Luddi, A.; Marrocco, C.; Governini, L.; Semplici, B.; Pavone, V.; Luisi, S.; Petraglia, F.; Piomboni, P. Expression of Matrix Metalloproteinases and Their Inhibitors in Endometrium: High Levels in Endometriotic Lesions. Int. J. Mol. Sci. 2020, 21, 2840. [Google Scholar] [CrossRef]
  106. Gilabert-Estellés, J.; Estellés, A.; Gilabert, J.; Castelló, R.; España, F.; Falcó, C.; Romeu, A.; Chirivella, M.; Zorio, E.; Aznar, J. Expression of Several Components of the Plasminogen Activator and Matrix Metalloproteinase Systems in Endometriosis. Hum. Reprod. 2003, 18, 1516–1522. [Google Scholar] [CrossRef]
  107. Zanon, P.; Terraciano, P.B.; Quandt, L.; Palma Kuhl, C.; Pandolfi Passos, E.; Berger, M. Angiotensin II-AT1 Receptor Signalling Regulates the Plasminogen-Plasmin System in Human Stromal Endometrial Cells Increasing Extracellular Matrix Degradation, Cell Migration and Inducing a Proinflammatory Profile. Biochem. Pharmacol. 2024, 225, 116280. [Google Scholar] [CrossRef]
  108. Limam, I.; Abdelkarim, M.; El Ayeb, M.; Crepin, M.; Marrakchi, N.; Di Benedetto, M. Disintegrin-like Protein Strategy to Inhibit Aggressive Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2023, 24, 12219. [Google Scholar] [CrossRef]
  109. Wu, J.; Wang, J.; Pei, Z.; Zhu, Y.; Zhang, X.; Zhou, Z.; Ye, C.; Song, M.; Hu, Y.; Xue, P.; et al. Endothelial Senescence Induced by PAI-1 Promotes Endometrial Fibrosis. Cell Death Discov. 2025, 11, 89. [Google Scholar] [CrossRef]
  110. Kazmi, I.; Alharbi, K.S.; Al-Abbasi, F.A.; Almalki, W.H.; Kumar G, S.; Yasmeen, A.; Khan, A.; Gupta, G. Role of Epithelial-to-Mesenchymal Transition Markers in Different Stages of Endometriosis: Expression of the Snail, Slug, ZEB1, and Twist Genes. Crit. Rev. Eukaryot. Gene Expr. 2021, 31, 89–95. [Google Scholar] [CrossRef]
  111. Ntzeros, K.; Mavrogianni, D.; Blontzos, N.; Soyhan, N.; Kathopoulis, N.; Papamentzelopoulou, M.-S.; Chatzipapas, I.; Protopapas, A. Expression of ZEB1 in Different Forms of Endometriosis: A Pilot Study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 286, 121–125. [Google Scholar] [CrossRef]
  112. Ruiz, L.A.; Báez-Vega, P.M.; Ruiz, A.; Peterse, D.P.; Monteiro, J.B.; Bracero, N.; Beauchamp, P.; Fazleabas, A.T.; Flores, I. Dysregulation of Lysyl Oxidase Expression in Lesions and Endometrium of Women with Endometriosis. Reprod. Sci. 2015, 22, 1496–1508. [Google Scholar] [CrossRef]
  113. Matsuzaki, S.; Canis, M.; Murakami, T.; Dechelotte, P.; Bruhat, M.A.; Okamura, K. Immunohistochemical Analysis of the Role of Angiogenic Status in the Vasculature of Peritoneal Endometriosis. Fertil. Steril. 2001, 76, 712–716. [Google Scholar] [CrossRef]
  114. Don, E.E.; Middelkoop, M.-A.; Hehenkamp, W.J.K.; Mijatovic, V.; Griffioen, A.W.; Huirne, J.A.F. Endometrial Angiogenesis of Abnormal Uterine Bleeding and Infertility in Patients with Uterine Fibroids-A Systematic Review. Int. J. Mol. Sci. 2023, 24, 7011. [Google Scholar] [CrossRef]
  115. Guo, S.-W.; Zheng, Y.; Lu, Y.; Liu, X.; Geng, J.-G. Slit2 Overexpression Results in Increased Microvessel Density and Lesion Size in Mice with Induced Endometriosis. Reprod. Sci. 2013, 20, 285–298. [Google Scholar] [CrossRef] [PubMed]
  116. Chen, J.; Liu, J.; Gao, S.; Qiu, Y.; Wang, Y.; Zhang, Y.; Gao, L.; Qi, G.; Wu, Y.; Lash, G.E.; et al. Role of Slit2 Upregulation in Recurrent Miscarriage through Regulation of Stromal Decidualization. Placenta 2021, 103, 1–9. [Google Scholar] [CrossRef] [PubMed]
  117. Karaer, A.; Tuncay, G.; Uysal, O.; Semerci Sevimli, T.; Sahin, N.; Karabulut, U.; Sariboyaci, A.E. The Role of Prokineticins in Recurrent Implantation Failure. J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101835. [Google Scholar] [CrossRef] [PubMed]
  118. Körbel, C.; Gerstner, M.D.; Menger, M.D.; Laschke, M.W. Notch Signaling Controls Sprouting Angiogenesis of Endometriotic Lesions. Angiogenesis 2018, 21, 37–46. [Google Scholar] [CrossRef]
  119. Torres, J.P.V.; Eulálio, E.C.; Oliveira, F.d.C.; Ximenes, G.F.; Feitosa Filho, H.N.; de Souza, L.B.; Araujo Júnior, E.; Cavalcante, M.B. Endometriosis and Infertility: A Bibliometric Analysis of the 100 Most-Cited Articles from 2000 to 2023. Gynecol. Obstet. Investig. 2024, 90, 129–142. [Google Scholar] [CrossRef]
  120. Li, Y.; Li, R.; Ouyang, N.; Dai, K.; Yuan, P.; Zheng, L.; Wang, W. Investigating the Impact of Local Inflammation on Granulosa Cells and Follicular Development in Women with Ovarian Endometriosis. Fertil. Steril. 2019, 112, 882–891.e1. [Google Scholar] [CrossRef]
  121. Silva, J.R.V.; Lima, F.E.O.; Souza, A.L.P.; Silva, A.W.B. Interleukin-1β and TNF-α Systems in Ovarian Follicles and Their Roles during Follicular Development, Oocyte Maturation and Ovulation. Zygote 2020, 28, 270–277. [Google Scholar] [CrossRef] [PubMed]
  122. Adamczak, R.; Ukleja-Sokołowska, N.; Lis, K.; Dubiel, M. Function of Follicular Cytokines: Roles Played during Maturation, Development and Implantation of Embryo. Medicina 2021, 57, 1251. [Google Scholar] [CrossRef]
  123. Sanchez, A.M.; Somigliana, E.; Vercellini, P.; Pagliardini, L.; Candiani, M.; Vigano, P. Endometriosis as a Detrimental Condition for Granulosa Cell Steroidogenesis and Development: From Molecular Alterations to Clinical Impact. J. Steroid Biochem. Mol. Biol. 2016, 155, 35–46. [Google Scholar] [CrossRef] [PubMed]
  124. Han, M.-T.; Cheng, W.; Zhu, R.; Wu, H.-H.; Ding, J.; Zhao, N.-N.; Li, H.; Wang, F.-X. The Cytokine Profiles in Follicular Fluid and Reproductive Outcomes in Women with Endometriosis. Am. J. Reprod. Immunol. 2023, 89, e13633. [Google Scholar] [CrossRef] [PubMed]
  125. Vitagliano, A.; Saccardi, C.; Noventa, M.; Di Spiezio Sardo, A.; Saccone, G.; Cicinelli, E.; Pizzi, S.; Andrisani, A.; Litta, P.S. Effects of Chronic Endometritis Therapy on in Vitro Fertilization Outcome in Women with Repeated Implantation Failure: A Systematic Review and Meta-Analysis. Fertil. Steril. 2018, 110, 103–112.e1. [Google Scholar] [CrossRef]
  126. Martire, F.G.; Yacoub, V.; Fuggetta, E.; Carletti, V.; Lazzeri, L.; Centini, G.; D’Abate, C.; Sorrenti, G.; Zupi, E.; Maneschi, F. Ovarian Tissue Removed with Endometrioma May Reflect the Quality of the Adjacent Ovary. Healthcare 2025, 13, 948. [Google Scholar] [CrossRef]
  127. Peoc’h, K.; Puy, V.; Fournier, T. Haem Oxygenases Play a Pivotal Role in Placental Physiology and Pathology. Hum. Reprod. Update 2020, 26, 634–649. [Google Scholar] [CrossRef]
  128. Didziokaite, G.; Biliute, G.; Gudaite, J.; Kvedariene, V. Oxidative Stress as a Potential Underlying Cause of Minimal and Mild Endometriosis-Related Infertility. Int. J. Mol. Sci. 2023, 24, 3809. [Google Scholar] [CrossRef]
  129. Xu, X.; Wang, Z.; Lv, L.; Liu, C.; Wang, L.; Sun, Y.; Zhao, Z.; Shi, B.; Li, Q.; Hao, G. Molecular Regulation of DNA Damage and Repair in Female Infertility: A Systematic Review. Reprod. Biol. Endocrinol. 2024, 22, 103. [Google Scholar] [CrossRef]
  130. Máté, G.; Bernstein, L.R.; Török, A.L. Endometriosis Is a Cause of Infertility. Does Reactive Oxygen Damage to Gametes and Embryos Play a Key Role in the Pathogenesis of Infertility Caused by Endometriosis? Front. Endocrinol. 2018, 9, 725. [Google Scholar] [CrossRef]
  131. Chen, C.; Zhou, Y.; Hu, C.; Wang, Y.; Yan, Z.; Li, Z.; Wu, R. Mitochondria and Oxidative Stress in Ovarian Endometriosis. Free Radic. Biol. Med. 2019, 136, 22–34. [Google Scholar] [CrossRef] [PubMed]
  132. Kobayashi, H.; Imanaka, S.; Nakamura, H.; Tsuji, A. Understanding the Role of Epigenomic, Genomic and Genetic Alterations in the Development of Endometriosis (Review). Mol. Med. Rep. 2014, 9, 1483–1505. [Google Scholar] [CrossRef] [PubMed]
  133. Rajani, S.; Chattopadhyay, R.; Goswami, S.K.; Ghosh, S.; Sharma, S.; Chakravarty, B. Assessment of Oocyte Quality in Polycystic Ovarian Syndrome and Endometriosis by Spindle Imaging and Reactive Oxygen Species Levels in Follicular Fluid and Its Relationship with IVF-ET Outcome. J. Hum. Reprod. Sci. 2012, 5, 187–193. [Google Scholar] [CrossRef] [PubMed]
  134. Mendes Godinho, C.; Soares, S.R.; Nunes, S.G.; Martínez, J.M.M.; Santos-Ribeiro, S. Natural Proliferative Phase Frozen Embryo Transfer—A New Approach Which May Facilitate Scheduling without Hindering Pregnancy Outcomes. Hum. Reprod. 2024, 39, 1089–1097. [Google Scholar] [CrossRef]
  135. Simopoulou, M.; Rapani, A.; Grigoriadis, S.; Pantou, A.; Tsioulou, P.; Maziotis, E.; Tzanakaki, D.; Triantafyllidou, O.; Kalampokas, T.; Siristatidis, C.; et al. Getting to Know Endometriosis-Related Infertility Better: A Review on How Endometriosis Affects Oocyte Quality and Embryo Development. Biomedicines 2021, 9, 273. [Google Scholar] [CrossRef]
  136. Vallvé-Juanico, J.; Houshdaran, S.; Giudice, L.C. The Endometrial Immune Environment of Women with Endometriosis. Hum. Reprod. Update 2019, 25, 565–592. [Google Scholar] [CrossRef]
  137. McGlade, E.A.; Miyamoto, A.; Winuthayanon, W. Progesterone and Inflammatory Response in the Oviduct during Physiological and Pathological Conditions. Cells 2022, 11, 1075. [Google Scholar] [CrossRef]
  138. He, L.; Xu, H.; Liu, M.; Tan, Y.; Huang, S.; Yin, X.; Luo, X.; Chung, H.Y.; Gao, M.; Li, Y.; et al. The Ignored Structure in Female Fertility: Cilia in the Fallopian Tubes. Reprod. Biomed. Online 2025, 50, 104346. [Google Scholar] [CrossRef]
  139. Nutu, M. The Role of Progesterone in the Regulation of Ciliary Activity in the Fallopian Tube; University of Gothenburg: Gothenburg, Sweden, 2009; ISBN 978-91-628-7744-6. [Google Scholar]
  140. Artimovič, P.; Badovská, Z.; Toporcerová, S.; Špaková, I.; Smolko, L.; Sabolová, G.; Kriváková, E.; Rabajdová, M. Oxidative Stress and the Nrf2/PPARγ Axis in the Endometrium: Insights into Female Fertility. Cells 2024, 13, 1081. [Google Scholar] [CrossRef]
  141. Huang, E.; Wang, X.; Chen, L. Regulated Cell Death in Endometriosis. Biomolecules 2024, 14, 142. [Google Scholar] [CrossRef]
  142. Moustakli, E.; Stavros, S.; Katopodis, P.; Skentou, C.; Potiris, A.; Panagopoulos, P.; Domali, E.; Arkoulis, I.; Karampitsakos, T.; Sarafi, E.; et al. Oxidative Stress and the NLRP3 Inflammasome: Focus on Female Fertility and Reproductive Health. Cells 2025, 14, 36. [Google Scholar] [CrossRef]
  143. Jia, Z.; Li, B.; Matsuo, M.; Dewar, A.; Mustafaraj, A.; Dey, S.K.; Yuan, J.; Sun, X. Foxa2-Dependent Uterine Glandular Cell Differentiation Is Essential for Successful Implantation. Nat. Commun. 2025, 16, 2465. [Google Scholar] [CrossRef]
  144. Liu, H.; Huang, X.; Mor, G.; Liao, A. Epigenetic Modifications Working in the Decidualization and Endometrial Receptivity. Cell. Mol. Life Sci. 2019, 77, 2091–2101. [Google Scholar] [CrossRef] [PubMed]
  145. Adamczyk, M.; Wender-Ozegowska, E.; Kedzia, M. Epigenetic Factors in Eutopic Endometrium in Women with Endometriosis and Infertility. Int. J. Mol. Sci. 2022, 23, 3804. [Google Scholar] [CrossRef] [PubMed]
  146. Daftary, G.S.; Troy, P.J.; Bagot, C.N.; Young, S.L.; Taylor, H.S. Direct Regulation of Β3-Integrin Subunit Gene Expression by HOXA10 in Endometrial Cells. Mol. Endocrinol. 2002, 16, 571–579. [Google Scholar] [CrossRef] [PubMed]
  147. Du, H.; Taylor, H.S. The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility. Cold Spring Harb. Perspect. Med. 2016, 6, a023002. [Google Scholar] [CrossRef]
  148. Kaya, H.S.; Hantak, A.M.; Stubbs, L.J.; Taylor, R.N.; Bagchi, I.C.; Bagchi, M.K. Roles of Progesterone Receptor A and B Isoforms during Human Endometrial Decidualization. Mol. Endocrinol. 2015, 29, 882–895. [Google Scholar] [CrossRef]
  149. Liu, H.; Franken, A.; Bielfeld, A.P.; Fehm, T.; Niederacher, D.; Cheng, Z.; Neubauer, H.; Stamm, N. Progesterone-Induced Progesterone Receptor Membrane Component 1 Rise-to-Decline Changes Are Essential for Decidualization. Reprod. Biol. Endocrinol. 2024, 22, 20. [Google Scholar] [CrossRef]
  150. Fabi, F.; Grenier, K.; Parent, S.; Adam, P.; Tardif, L.; Leblanc, V.; Asselin, E. Regulation of the PI3K/Akt Pathway during Decidualization of Endometrial Stromal Cells. PLoS ONE 2017, 12, e0177387. [Google Scholar] [CrossRef]
  151. Tran, D.N.; Hwang, Y.J.; Kim, K.C.; Li, R.; Marquardt, R.M.; Chen, C.; Young, S.L.; Lessey, B.A.; Kim, T.H.; Cheon, Y.-P.; et al. GRB2 Regulation of Essential Signaling Pathways in the Endometrium Is Critical for Implantation and Decidualization. Nat. Commun. 2025, 16, 2192. [Google Scholar] [CrossRef]
  152. Li, X.; Zhou, J.; Fang, M.; Yu, B. Pregnancy Immune Tolerance at the Maternal-Fetal Interface. Int. Rev. Immunol. 2020, 39, 247–263. [Google Scholar] [CrossRef]
  153. Boucher, A.; Brichant, G.; Gridelet, V.; Nisolle, M.; Ravet, S.; Timmermans, M.; Henry, L. Implantation Failure in Endometriosis Patients: Etiopathogenesis. J. Clin. Med. 2022, 11, 5366. [Google Scholar] [CrossRef] [PubMed]
  154. Xie, M.; Li, Y.; Meng, Y.-Z.; Xu, P.; Yang, Y.-G.; Dong, S.; He, J.; Hu, Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front. Immunol. 2022, 13, 918550. [Google Scholar] [CrossRef] [PubMed]
  155. Huang, N.; Chi, H.; Qiao, J. Role of Regulatory T Cells in Regulating Fetal-Maternal Immune Tolerance in Healthy Pregnancies and Reproductive Diseases. Front. Immunol. 2020, 11, 1023. [Google Scholar] [CrossRef] [PubMed]
  156. Li, Z.; Si, P.; Meng, T.; Zhao, X.; Zhu, C.; Zhang, D.; Meng, S.; Li, N.; Liu, R.; Ni, T.; et al. CCR8+ Decidual Regulatory T Cells Maintain Maternal-Fetal Immune Tolerance during Early Pregnancy. Sci. Immunol. 2025, 10, eado2463. [Google Scholar] [CrossRef]
  157. Sisnett, D.J.; Zutautas, K.B.; Miller, J.E.; Lingegowda, H.; Ahn, S.H.; McCallion, A.; Bougie, O.; Lessey, B.A.; Tayade, C. The Dysregulated IL-23/TH17 Axis in Endometriosis Pathophysiology. J. Immunol. 2024, 212, 1428–1441. [Google Scholar] [CrossRef]
  158. Berdiaki, A.; Vergadi, E.; Makrygiannakis, F.; Vrekoussis, T.; Makrigiannakis, A. Title: Repeated Implantation Failure Is Associated with Increased Th17/Treg Cell Ratio, during the Secretory Phase of the Human Endometrium. J. Reprod. Immunol. 2024, 161, 104170. [Google Scholar] [CrossRef]
  159. Vassilopoulou, L.; Matalliotakis, M.; Zervou, M.I.; Matalliotaki, C.; Krithinakis, K.; Matalliotakis, I.; Spandidos, D.A.; Goulielmos, G.N. Defining the Genetic Profile of Endometriosis (Review). Exp. Ther. Med. 2019, 17, 3267–3281. [Google Scholar] [CrossRef]
  160. Pagliardini, L.; Gentilini, D.; Sanchez, A.M.; Candiani, M.; Viganò, P.; Di Blasio, A.M. Replication and Meta-Analysis of Previous Genome-Wide Association Studies Confirm Vezatin as the Locus with the Strongest Evidence for Association with Endometriosis. Hum. Reprod. 2015, 30, 987–993. [Google Scholar] [CrossRef]
  161. Lalami, I.; Abo, C.; Borghese, B.; Chapron, C.; Vaiman, D. Genomics of Endometriosis: From Genome Wide Association Studies to Exome Sequencing. Int. J. Mol. Sci. 2021, 22, 7297. [Google Scholar] [CrossRef]
  162. Sheu, J.J.-C.; Lin, W.-Y.; Liu, T.-Y.; Chang, C.Y.-Y.; Cheng, J.; Li, Y.-H.; Chen, C.-M.; Tseng, C.-C.; Ding, W.Y.; Chung, C.; et al. Ethnic-Specific Genetic Susceptibility Loci for Endometriosis in Taiwanese-Han Population: A Genome-Wide Association Study. J. Hum. Genet. 2024, 69, 573–583. [Google Scholar] [CrossRef] [PubMed]
  163. Kasvandik, S.; Samuel, K.; Peters, M.; Eimre, M.; Peet, N.; Roost, A.M.; Padrik, L.; Paju, K.; Peil, L.; Salumets, A. Deep Quantitative Proteomics Reveals Extensive Metabolic Reprogramming and Cancer-Like Changes of Ectopic Endometriotic Stromal Cells. J. Proteome Res. 2016, 15, 572–584. [Google Scholar] [CrossRef] [PubMed]
  164. Young, V.J.; Brown, J.K.; Maybin, J.; Saunders, P.T.K.; Duncan, W.C.; Horne, A.W. Transforming Growth Factor-β Induced Warburg-Like Metabolic Reprogramming May Underpin the Development of Peritoneal Endometriosis. J. Clin. Endocrinol. Metab. 2014, 99, 3450–3459. [Google Scholar] [CrossRef] [PubMed]
  165. Lu, C.; Xu, J.; Li, K.; Wang, J.; Dai, Y.; Chen, Y.; Chai, R.; Xu, C.; Kang, Y. Chronic Stress Blocks the Endometriosis Immune Response by Metabolic Reprogramming. Int. J. Mol. Sci. 2023, 25, 29. [Google Scholar] [CrossRef]
  166. Karaer, A.; Tuncay, G.; Mumcu, A.; Dogan, B. Metabolomics Analysis of Follicular Fluid in Women with Ovarian Endometriosis Undergoing in Vitro Fertilization. Syst. Biol. Reprod. Med. 2019, 65, 39–47. [Google Scholar] [CrossRef]
  167. Choi, Y.; Kim, H.-R.; Lim, E.J.; Park, M.; Yoon, J.A.; Kim, Y.S.; Kim, E.-K.; Shin, J.-E.; Kim, J.H.; Kwon, H.; et al. Integrative Analyses of Uterine Transcriptome and MicroRNAome Reveal Compromised LIF-STAT3 Signaling and Progesterone Response in the Endometrium of Patients with Recurrent/Repeated Implantation Failure (RIF). PLoS ONE 2016, 11, e0157696. [Google Scholar] [CrossRef]
  168. Sadłocha, M.; Toczek, J.; Major, K.; Staniczek, J.; Stojko, R. Endometriosis: Molecular Pathophysiology and Recent Treatment Strategies—Comprehensive Literature Review. Pharmaceuticals 2024, 17, 827. [Google Scholar] [CrossRef]
  169. Clemenza, S.; Vannuccini, S.; Ruotolo, A.; Capezzuoli, T.; Petraglia, F. Advances in Targeting Estrogen Synthesis and Receptors in Patients with Endometriosis. Expert Opin. Investig. Drugs 2022, 31, 1227–1238. [Google Scholar] [CrossRef]
  170. Harris, H.A.; Bruner-Tran, K.L.; Zhang, X.; Osteen, K.G.; Lyttle, C.R. A Selective Estrogen Receptor-β Agonist Causes Lesion Regression in an Experimentally Induced Model of Endometriosis. Hum. Reprod. 2005, 20, 936–941. [Google Scholar] [CrossRef]
  171. Gibson, D.A.; Simitsidellis, I.; Collins, F.; Saunders, P.T.K. Androgens, Oestrogens and Endometrium: A Fine Balance between Perfection and Pathology. J. Endocrinol. 2020, 246, R75–R93. [Google Scholar] [CrossRef]
  172. Jiang, L.; Wang, S.; Xia, X.; Zhang, T.; Wang, X.; Zeng, F.; Ma, J.; Fang, X. Novel Diagnostic Biomarker BST2 Identified by Integrated Transcriptomics Promotes the Development of Endometriosis via the TNF-α/NF-κB Signaling Pathway. Biochem. Genet. 2025, 63, 354–377. [Google Scholar] [CrossRef]
  173. Xu, X.; Mei, J.; Zhang, B.; Jiang, X.; Wang, L.; Zhang, A.; Li, J.; Chen, S.; He, Y.; Fang, Y.; et al. Association Between Circulating Cytokines and Endometriosis: A Mendelian Randomization Study. J. Cell. Mol. Med. 2025, 29, e70532. [Google Scholar] [CrossRef] [PubMed]
  174. Bora, G.; Yaba, A. The Role of Mitogen-Activated Protein Kinase Signaling Pathway in Endometriosis. J. Obstet. Gynaecol. Res. 2021, 47, 1610–1623. [Google Scholar] [CrossRef] [PubMed]
  175. Wang, B.; Gao, M.; Yao, Y.; Li, H.; Zhang, X. Focusing on the Role of Protein Kinase mTOR in Endometrial Physiology and Pathology: Insights for Therapeutic Interventions. Mol. Biol. Rep. 2024, 51, 359. [Google Scholar] [CrossRef] [PubMed]
  176. Wang, F.; Li, Y.M.; Li, R.Y.; Yang, Y.E.; Wei, M.; Ha, C. U0126 and BAY11-7082 Inhibit the Progression of Endometriosis in a Rat Model by Suppressing the MEK/ERK/NF-κB Pathway. Women’s Health Rep. 2023, 4, 65–77. [Google Scholar] [CrossRef]
  177. Nakamura, A.; Tanaka, Y.; Amano, T.; Takebayashi, A.; Takahashi, A.; Hanada, T.; Tsuji, S.; Murakami, T. mTOR Inhibitors as Potential Therapeutics for Endometriosis: A Narrative Review. Mol. Hum. Reprod. 2024, 30, gaae041. [Google Scholar] [CrossRef]
  178. Huang, Z.; Tan, Y. The Potential of Cylindromatosis (CYLD) as a Therapeutic Target in Oxidative Stress-Associated Pathologies: A Comprehensive Evaluation. Int. J. Mol. Sci. 2023, 24, 8368. [Google Scholar] [CrossRef]
  179. Nakamura, K. Immunotoxicological Disruption of Pregnancy as a New Research Area in Immunotoxicology. J. Immunotoxicol. 2025, 22, 2475772. [Google Scholar] [CrossRef]
  180. Shi, J.; Xu, Q.; Yu, S.; Zhang, T. Perturbations of the Endometrial Immune Microenvironment in Endometriosis and Adenomyosis: Their Impact on Reproduction and Pregnancy. Semin. Immunopathol. 2025, 47, 16. [Google Scholar] [CrossRef]
  181. Li, J.; Yan, S.; Li, Q.; Huang, Y.; Ji, M.; Jiao, X.; Yuan, M.; Wang, G. Macrophage-Associated Immune Checkpoint CD47 Blocking Ameliorates Endometriosis. Mol. Hum. Reprod. 2022, 28, gaac010. [Google Scholar] [CrossRef]
  182. Keleş, C.D.; Vural, B.; Filiz, S.; Vural, F.; Gacar, G.; Eraldemir, F.C.; Kurnaz, S. The Effects of Etanercept and Cabergoline on Endometriotic Implants, Uterus and Ovaries in Rat Endometriosis Model. J. Reprod. Immunol. 2021, 146, 103340. [Google Scholar] [CrossRef]
  183. Lu, D.; Song, H.; Shi, G. Anti-TNF-α Treatment for Pelvic Pain Associated with Endometriosis. Cochrane Database Syst. Rev. 2013, 2013, CD008088. [Google Scholar] [CrossRef]
  184. D’Hooghe, T.M.; Nugent, N.P.; Cuneo, S.; Chai, D.C.; Deer, F.; Debrock, S.; Kyama, C.M.; Mihalyi, A.; Mwenda, J.M. Recombinant Human TNFRSF1A (r-hTBP1) Inhibits the Development of Endometriosis in Baboons: A Prospective, Randomized, Placebo- and Drug-Controlled Study. Biol. Reprod. 2006, 74, 131–136. [Google Scholar] [CrossRef]
  185. Wang, P.-H.; Hsiao, S.-M.; Matsuki, S.; Hanada, R.; Chen, C.-A.; Nishimoto-Kakiuchi, A.; Sekiya, M.; Nakai, K.; Matsushima, J.; Sawada, M. Safety and Pharmacology of AMY109, a Long-Acting Anti-Interleukin-8 Antibody, for Endometriosis: A Double-Blind, Randomized Phase 1 Trial. F&S Rep. 2025; in press. [Google Scholar] [CrossRef]
  186. Acién, P.; Quereda, F.; Campos, A.; Gomez-Torres, M.-J.; Velasco, I.; Gutierrez, M. Use of Intraperitoneal Interferon α-2b Therapy after Conservative Surgery for Endometriosis and Postoperative Medical Treatment with Depot Gonadotropin-Releasing Hormone Analog: A Randomized Clinical Trial. Fertil. Steril. 2002, 78, 705–711. [Google Scholar] [CrossRef] [PubMed]
  187. Cao, Z.; Yan, Q.; Zhang, M.; Zhu, Y.; Liu, J.; Jiang, Y.; Zhen, X.; Xu, M.; Yue, Q.; Zhou, J.; et al. FHL1 Mediates HOXA10 Deacetylation via SIRT2 to Enhance Blastocyst-Epithelial Adhesion. Cell Death Discov. 2022, 8, 461. [Google Scholar] [CrossRef] [PubMed]
  188. Zubrzycka, A.; Zubrzycki, M.; Perdas, E.; Zubrzycka, M. Genetic, Epigenetic, and Steroidogenic Modulation Mechanisms in Endometriosis. J. Clin. Med. 2020, 9, 1309. [Google Scholar] [CrossRef] [PubMed]
  189. Psilopatis, I.; Vrettou, K.; Fleckenstein, F.N.; Theocharis, S. The Impact of Histone Modifications in Endometriosis Highlights New Therapeutic Opportunities. Cells 2023, 12, 1227. [Google Scholar] [CrossRef]
  190. Lu, H.; Yang, X.; Zhang, Y.; Lu, R.; Wang, X. Epigenetic Disorder May Cause Downregulation of HOXA10 in the Eutopic Endometrium of Fertile Women with Endometriosis. Reprod. Sci. 2013, 20, 78–84. [Google Scholar] [CrossRef]
  191. Chandrakanth, A.; Firdous, S.; Vasantharekha, R.; Santosh, W.; Seetharaman, B. Exploring the Effects of Endocrine-Disrupting Chemicals and miRNA Expression in the Pathogenesis of Endometriosis by Unveiling the Pathways: A Systematic Review. Reprod. Sci. 2024, 31, 932–941. [Google Scholar] [CrossRef]
  192. Li, M.; Zhou, Y.; Taylor, H.S. miR-451a Inhibition Reduces Established Endometriosis Lesions in Mice. Reprod. Sci. 2019, 26, 1506–1511. [Google Scholar] [CrossRef]
  193. Dong, L.; Zhang, L.; Liu, H.; Xie, M.; Gao, J.; Zhou, X.; Zhao, Q.; Zhang, S.; Yang, J. Circ_0007331 Knock-down Suppresses the Progression of Endometriosis via miR-200c-3p/HiF-1α Axis. J. Cell. Mol. Med. 2020, 24, 12656–12666. [Google Scholar] [CrossRef]
  194. Wu, D.; Lu, P.; Mi, X.; Miao, J. Exosomal miR-214 from Endometrial Stromal Cells Inhibits Endometriosis Fibrosis. Mol. Hum. Reprod. 2018, 24, 357–365. [Google Scholar] [CrossRef]
  195. Zhou, C.-F.; Liu, M.-J.; Wang, W.; Wu, S.; Huang, Y.-X.; Chen, G.-B.; Liu, L.-M.; Peng, D.-X.; Wang, X.-F.; Cai, X.-Z.; et al. miR-205-5p Inhibits Human Endometriosis Progression by Targeting ANGPT2 in Endometrial Stromal Cells. Stem Cell Res. Ther. 2019, 10, 287, Erratum in Stem Cell Res. Ther. 2020, 11, 188. https://doi.org/10.1186/s13287-020-01686-8. [Google Scholar] [CrossRef] [PubMed]
  196. Budani, M.C.; Tiboni, G.M. Effects of Supplementation with Natural Antioxidants on Oocytes and Preimplantation Embryos. Antioxidants 2020, 9, 612. [Google Scholar] [CrossRef] [PubMed]
  197. Jara-Palacios, M.J.; Gonçalves, S.; Heredia, F.J.; Hernanz, D.; Romano, A. Extraction of Antioxidants from Winemaking Byproducts: Effect of the Solvent on Phenolic Composition, Antioxidant and Anti-Cholinesterase Activities, and Electrochemical Behaviour. Antioxidants 2020, 9, 675. [Google Scholar] [CrossRef] [PubMed]
  198. Sharifi, M.; Rajabpoor Nikoo, N.; Badehnoosh, B.; Shafabakhsh, R.; Asemi, R.; Reiter, R.J.; Asemi, Z. Therapeutic Effects of Melatonin on Endometriosis, Targeting Molecular Pathways: Current Knowledge and Future Perspective. Pathol.—Res. Pract. 2023, 243, 154368. [Google Scholar] [CrossRef]
  199. Li, Y.; Hung, S.-W.; Zhang, R.; Man, G.C.-W.; Zhang, T.; Chung, J.P.-W.; Fang, L.; Wang, C.-C. Melatonin in Endometriosis: Mechanistic Understanding and Clinical Insight. Nutrients 2022, 14, 4087. [Google Scholar] [CrossRef]
  200. Park, S.; Ham, J.; Yang, C.; Park, W.; Park, H.; An, G.; Song, J.; Hong, T.; Park, S.J.; Kim, H.S.; et al. Melatonin Inhibits Endometriosis Development by Disrupting Mitochondrial Function and Regulating tiRNAs. J. Pineal Res. 2023, 74, e12842. [Google Scholar] [CrossRef]
  201. Anastasi, E.; Scaramuzzino, S.; Viscardi, M.F.; Viggiani, V.; Piccioni, M.G.; Cacciamani, L.; Merlino, L.; Angeloni, A.; Muzii, L.; Porpora, M.G. Efficacy of N-Acetylcysteine on Endometriosis-Related Pain, Size Reduction of Ovarian Endometriomas, and Fertility Outcomes. Int. J. Environ. Res. Public Health 2023, 20, 4686. [Google Scholar] [CrossRef]
  202. Limam, I.; Ben Aissa-Fennira, F.; Essid, R.; Chahbi, A.; Kefi, S.; Mkadmini, K.; Elkahoui, S.; Abdelkarim, M. Hydromethanolic Root and Aerial Part Extracts from Echium Arenarium Guss Suppress Proliferation and Induce Apoptosis of Multiple Myeloma Cells through Mitochondrial Pathway. Environ. Toxicol. 2021, 36, 874–886. [Google Scholar] [CrossRef]
  203. Limam, I.; Abdelkarim, M.; Essid, R.; Chahbi, A.; Fathallah, M.; Elkahoui, S.; Ben Aissa-Fennira, F. Olea Europaea L. Cv. Chetoui Leaf and Stem Hydromethanolic Extracts Suppress Proliferation and Promote Apoptosis via Caspase Signaling on Human Multiple Myeloma Cells. Eur. J. Integr. Med. 2020, 37, 101145. [Google Scholar] [CrossRef]
  204. Gołąbek-Grenda, A.; Kaczmarek, M.; Juzwa, W.; Olejnik, A. Natural Resveratrol Analogs Differentially Target Endometriotic Cells into Apoptosis Pathways. Sci. Rep. 2023, 13, 11468. [Google Scholar] [CrossRef] [PubMed]
  205. Ghali, R.; Limam, I.; Kassrani, I.; Araoud, M.; Nouiri, E.; Fennira, F.B.-A.; Abdelkarim, M.; Hedilli, A. LC-MS Profiling and Antioxidant, Antifungal, and Anticancer Potentials of Tunisian Allium Sativum L. Extracts. PLoS ONE 2025, 20, e0325227. [Google Scholar] [CrossRef] [PubMed]
  206. Podgrajsek, R.; Ban Frangez, H.; Stimpfel, M. Molecular Mechanism of Resveratrol and Its Therapeutic Potential on Female Infertility. Int. J. Mol. Sci. 2024, 25, 3613. [Google Scholar] [CrossRef]
  207. Gołąbek-Grenda, A.; Juzwa, W.; Kaczmarek, M.; Olejnik, A. Resveratrol and Its Natural Analogs Mitigate Immune Dysregulation and Oxidative Imbalance in the Endometriosis Niche Simulated in a Co-Culture System of Endometriotic Cells and Macrophages. Nutrients 2024, 16, 3483. [Google Scholar] [CrossRef]
  208. Fan, J.; Chen, C.; Zhong, Y. A Cohort Study on IVF Outcomes in Infertile Endometriosis Patients: The Effects of Rapamycin Treatment. Reprod. Biomed. Online 2024, 48, 103319. [Google Scholar] [CrossRef]
  209. Chen, Q.; Wang, J.; Ding, X.; Zhang, Q.; Duan, P. Emerging Strategies for the Treatment of Endometriosis. Biomed. Technol. 2024, 7, 46–62. [Google Scholar] [CrossRef]
  210. Sanamiri, K.; Mahdian, S.; Moini, A.; Shahhoseini, M. Non-Hormonal Therapy for Endometriosis Based on Angiogenesis, Oxidative Stress and Inflammation. Int. J. Fertil. Steril. 2024, 18, 305–313. [Google Scholar] [CrossRef]
  211. Ates, C.; Dilbaz, B.; Ergani, S.Y.; Atabay, F.; Ates, C.; Dilbaz, B.; Ergani, S.Y.; Atabay, F. The Effect of Antiangiogenic Agent Aflibercept on Surgically Induced Endometriosis in a Rat Model. Cirugía Cir. 2024, 92, 10–19. [Google Scholar] [CrossRef]
  212. França, P.R.d.C.; Paiva, J.P.B.d.; Carvalho, R.R.d.; Figueiredo, C.P.; Sirois, P.; Fernandes, P.D. R-954, a Bradykinin B1 Receptor Antagonist, as a Potential Therapy in a Preclinical Endometriosis Model. Peptides 2024, 181, 171294. [Google Scholar] [CrossRef]
  213. Shahgholi, N.; Noormohammadi, Z.; Moieni, A.; Karimipoor, M. Cabergoline’s Promise in Endometriosis: Restoring Molecular Balance to Improve Reproductive Potential. Gynecol. Obstet. Investig. 2025. [Google Scholar] [CrossRef]
  214. Pellicer, A.; Taylor, H.S.; Alberich-Bayarri, A.; Liu, Y.; Gamborg, M.; Barletta, K.E.; Pinton, P.; Heiser, P.W.; Bagger, Y.Z. Quinagolide Vaginal Ring for Reduction of Endometriotic Lesions: Results from the QLARITY Trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2025, 310, 113946. [Google Scholar] [CrossRef]
  215. Dymanowska-Dyjak, I.; Frankowska, K.; Abramiuk, M.; Polak, G. Oxidative Imbalance in Endometriosis-Related Infertility—The Therapeutic Role of Antioxidants. Int. J. Mol. Sci. 2024, 25, 6298. [Google Scholar] [CrossRef]
  216. Meneghetti, J.K.; Pedrotti, M.T.; Coimbra, I.M.; da Cunha-Filho, J.S.L. Effect of Dietary Interventions on Endometriosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Reprod. Sci. 2024, 31, 3613–3623. [Google Scholar] [CrossRef]
  217. Estole-Casanova, L.A. A Comprehensive Review of the Efficacy and Safety of Dopamine Agonists for Women with Endometriosis-Associated Infertility from Inception to July 31, 2022. Acta Med. 2024, 58, 49–64. [Google Scholar] [CrossRef]
  218. Acharya, B.; Behera, A.; Behera, S.; Moharana, S. Recent Advances in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Reproductive Disorders. ACS Appl. Bio Mater. 2024, 7, 1336–1361. [Google Scholar] [CrossRef] [PubMed]
  219. Taghavipour, M.; Sadoughi, F.; Mirzaei, H.; Yousefi, B.; Moazzami, B.; Chaichian, S.; Mansournia, M.A.; Asemi, Z. Apoptotic Functions of microRNAs in Pathogenesis, Diagnosis, and Treatment of Endometriosis. Cell Biosci. 2020, 10, 12. [Google Scholar] [CrossRef] [PubMed]
  220. Akkaya-Ulum, Y.Z.; Sen, B.; Akbaba, T.H.; Balci-Peynircioglu, B. InflammamiRs in Focus: Delivery Strategies and Therapeutic Approaches. FASEB J. 2024, 38, e23528. [Google Scholar] [CrossRef]
  221. Qian, H.; Maghsoudloo, M.; Kaboli, P.J.; Babaeizad, A.; Cui, Y.; Fu, J.; Wang, Q.; Imani, S. Decoding the Promise and Challenges of miRNA-Based Cancer Therapies: An Essential Update on miR-21, miR-34, and miR-155. Int. J. Med. Sci. 2024, 21, 2781–2798. [Google Scholar] [CrossRef]
  222. Monnaka, V.U.; Hernandes, C.; Heller, D.; Podgaec, S. Overview of miRNAs for the Non-Invasive Diagnosis of Endometriosis: Evidence, Challenges and Strategies. A Systematic Review. Einstein 2021, 19, eRW5704. [Google Scholar] [CrossRef]
  223. Nshimiyimana, P.; Major, I.; Colbert, D.M.; Buckley, C. Progress in the Biomedical Application of Biopolymers: An Overview of the Status Quo and Outlook in Managing Intrauterine Adhesions. Macromol 2025, 5, 25. [Google Scholar] [CrossRef]
  224. Ellis, K.; Munro, D.; Clarke, J. Endometriosis Is Undervalued: A Call to Action. Front. Glob. Women’s Health 2022, 3, 902371. [Google Scholar] [CrossRef]
  225. Yuspa, R. Economic Burden of Endometriosis: A Systematic Review and Meta-Analysis. Asian J. Health Res. 2024, 3, 304–319. [Google Scholar] [CrossRef]
  226. Saunders, P.T.K.; Horne, A.W. Endometriosis: Etiology, Pathobiology, and Therapeutic Prospects. Cell 2021, 184, 2807–2824. [Google Scholar] [CrossRef] [PubMed]
  227. Brulport, A.; Bourdon, M.; Vaiman, D.; Drouet, C.; Pocate-Cheriet, K.; Bouzid, K.; Marcellin, L.; Santulli, P.; Abo, C.; Jeljeli, M.; et al. An Integrated Multi-Tissue Approach for Endometriosis Candidate Biomarkers: A Systematic Review. Reprod. Biol. Endocrinol. 2024, 22, 21. [Google Scholar] [CrossRef] [PubMed]
  228. Schäfer, S.D. Prevention of Endometriosis: Is It Possible? In Endometriosis and Adenomyosis: Global Perspectives Across the Lifespan; Oral, E., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 353–360. ISBN 978-3-030-97236-3. [Google Scholar]
  229. As-Sanie, S.; Mackenzie, S.C.; Morrison, L.; Schrepf, A.; Zondervan, K.T.; Horne, A.W.; Missmer, S.A. Endometriosis: A Review. JAMA 2025, 334, 64–78. [Google Scholar] [CrossRef]
  230. Smolarz, B.; Szyłło, K.; Romanowicz, H. Endometriosis: Epidemiology, Classification, Pathogenesis, Treatment and Genetics (Review of Literature). Int. J. Mol. Sci. 2021, 22, 10554. [Google Scholar] [CrossRef]
  231. Encalada Soto, D.; Rassier, S.; Green, I.C.; Burnett, T.; Khan, Z.; Cope, A. Endometriosis Biomarkers of the Disease: An Update. Curr. Opin. Obstet. Gynecol. 2022, 34, 210–219. [Google Scholar] [CrossRef]
  232. Pant, A.; Moar, K.; Arora, T.K.; Maurya, P.K. Biomarkers of Endometriosis. Clin. Chim. Acta 2023, 549, 117563. [Google Scholar] [CrossRef]
  233. Martire, F.G.; d’Abate, C.; Schettini, G.; Cimino, G.; Ginetti, A.; Colombi, I.; Cannoni, A.; Centini, G.; Zupi, E.; Lazzeri, L. Adenomyosis and Adolescence: A Challenging Diagnosis and Complex Management. Diagnostics 2024, 14, 2344. [Google Scholar] [CrossRef]
  234. Cardoso, J.V.; Perini, J.A.; Machado, D.E.; Pinto, R.; Medeiros, R. Systematic Review of Genome-Wide Association Studies on Susceptibility to Endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 255, 74–82. [Google Scholar] [CrossRef] [PubMed]
  235. Saunders, P.T.K. Insights from Genomic Studies on the Role of Sex Steroids in the Aetiology of Endometriosis. Reprod. Fertil. 2022, 3, R51–R65. [Google Scholar] [CrossRef] [PubMed]
  236. Verma, S.; Guare, L.; Humphrey, L.A.; Rush, M.; Pollie, M.; Jaworski, J.; Akerele, A.; Luo, Y.; Weng, C.; Wei, W.-Q.; et al. Enhancing Genetic Association Power in Endometriosis through Unsupervised Clustering of Clinical Subtypes Identified from Electronic Health Records. medRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
  237. Pujol Gualdo, N.; Džigurski, J.; Rukins, V.; Pajuste, F.-D.; Wolford, B.N.; Võsa, M.; Golob, M.; Haug, L.; Alver, M.; Läll, K.; et al. Atlas of Genetic and Phenotypic Associations across 42 Female Reproductive Health Diagnoses. Nat. Med. 2025, 31, 1626–1634. [Google Scholar] [CrossRef]
  238. Guare, L.A.; Das, J.; Caruth, L.; Rajagopalan, A.; Akerele, A.T.; Brumpton, B.M.; Chen, T.-T.; Kottyan, L.; Lin, Y.-F.; Moreno, E.; et al. Expanding the Genetic Landscape of Endometriosis: Integrative -Omics Analyses Uncover Key Pathways from a Multi-Ancestry Study of over 900,000 Women. medRxiv 2024. [Google Scholar] [CrossRef]
  239. Benkhalifa, M.; Menoud, P.A.; Piquemal, D.; Hazout, J.Y.; Mahjoub, S.; Zarquaoui, M.; Louanjli, N.; Cabry, R.; Hazout, A. Quantification of Free Circulating DNA and Differential Methylation Profiling of Selected Genes as Novel Non-Invasive Biomarkers for Endometriosis Diagnosis. Biomolecules 2025, 15, 69. [Google Scholar] [CrossRef]
  240. Papari, E.; Noruzinia, M.; Kashani, L.; Foster, W.G. Identification of Candidate microRNA Markers of Endometriosis with the Use of Next-Generation Sequencing and Quantitative Real-Time Polymerase Chain Reaction. Fertil. Steril. 2020, 113, 1232–1241. [Google Scholar] [CrossRef]
  241. Moustafa, S.; Burn, M.; Mamillapalli, R.; Nematian, S.; Flores, V.; Taylor, H.S. Accurate Diagnosis of Endometriosis Using Serum microRNAs. Am. J. Obstet. Gynecol. 2020, 223, 557.e1–557.e11. [Google Scholar] [CrossRef]
  242. Ravaggi, A.; Bergamaschi, C.; Galbiati, C.; Zanotti, L.; Fabricio, A.S.C.; Gion, M.; Cappelletto, E.; Leon, A.E.; Gennarelli, M.; Romagnolo, C.; et al. Circulating Serum Micro-RNA as Non-Invasive Diagnostic Biomarkers of Endometriosis. Biomedicines 2024, 12, 2393. [Google Scholar] [CrossRef]
  243. Mohammadi, S.D.; Moeini, A.; Rastegar, T.; Amidi, F.; Saffari, M.; Zhaeentan, S.; Akhavan, S.; Moradi, B.; Heydarikhah, F.; Takzare, N. Diagnostic Accuracy of Plasma microRNA as a Potential Biomarker for Detection of Endometriosis. Syst. Biol. Reprod. Med. 2025, 71, 61–75. [Google Scholar] [CrossRef]
  244. Schoeman, E.M.; Bringans, S.; Peters, K.; Casey, T.; Andronis, C.; Chen, L.; Duong, M.; Girling, J.E.; Healey, M.; Boughton, B.A.; et al. Identification of Plasma Protein Biomarkers for Endometriosis and the Development of Statistical Models for Disease Diagnosis. Hum. Reprod. 2025, 40, 270–279. [Google Scholar] [CrossRef]
  245. Sasamoto, N.; Ngo, L.H.; Vitonis, A.F.; Dillon, S.T.; Aziz, M.; Shafrir, A.L.; Missmer, S.A.; Libermann, T.A.; Terry, K.L. Prospective Evaluation of Plasma Proteins in Relation to Surgical Endometriosis Diagnosis in the Nurses’ Health Study II. eBioMedicine 2025, 115, 105688. [Google Scholar] [CrossRef]
  246. Dominoni, M.; Pasquali, M.F.; Musacchi, V.; De Silvestri, A.; Mauri, M.; Ferretti, V.V.; Gardella, B. Neutrophil to Lymphocytes Ratio in Deep Infiltrating Endometriosis as a New Toll for Clinical Management. Sci. Rep. 2024, 14, 7575. [Google Scholar] [CrossRef]
  247. Wójtowicz, M.; Zdun, D.; Owczarek, A.J.; Skrzypulec-Plinta, V.; Olszanecka-Glinianowicz, M. Evaluation of Proinflammatory Cytokines Concentrations in Plasma, Peritoneal, and Endometrioma Fluids in Women Operated on for Ovarian Endometriosis—A Pilot Study. Int. J. Mol. Sci. 2025, 26, 5117. [Google Scholar] [CrossRef]
  248. Kimber-Trojnar, Ż.; Pilszyk, A.; Niebrzydowska, M.; Pilszyk, Z.; Ruszała, M.; Leszczyńska-Gorzelak, B. The Potential of Non-Invasive Biomarkers for Early Diagnosis of Asymptomatic Patients with Endometriosis. J. Clin. Med. 2021, 10, 2762. [Google Scholar] [CrossRef]
  249. Klezl, P.; Svobodova, P.; Pospisilova, E.; Maly, V.; Bobek, V.; Kolostova, K. Morphology of Mitochondrial Network in Disseminated Endometriosis Cellsin Spontaneous Pneumothorax Diagnostic Process. Cell. Mol. Biol. 2024, 70, 25–29. [Google Scholar] [CrossRef]
  250. Wang, S.; Cheng, H.; Zhu, H.; Yu, X.; Ye, X.; Chang, X. Precise Capture of Circulating Endometrial Cells in Endometriosis. Chin. Med. J. 2024, 137, 1715–1723. [Google Scholar] [CrossRef]
  251. Chen, Y.; Zhu, H.-L.; Tang, Z.-W.; Neoh, K.H.; Ouyang, D.-F.; Cui, H.; Cheng, H.-Y.; Ma, R.-Q.; Ye, X.; Han, R.P.S.; et al. Evaluation of Circulating Endometrial Cells as a Biomarker for Endometriosis. Chin. Med. J. (Engl.) 2017, 130, 2339–2345. [Google Scholar] [PubMed Central]
  252. Guder, C.; Heinrich, S.; Seifert-Klauss, V.; Kiechle, M.; Bauer, L.; Öllinger, R.; Pichlmair, A.; Theodoraki, M.-N.; Ramesh, V.; Bashiri Dezfouli, A.; et al. Extracellular Hsp70 and Circulating Endometriotic Cells as Novel Biomarkers for Endometriosis. Int. J. Mol. Sci. 2024, 25, 11643. [Google Scholar] [CrossRef]
  253. Liang, Y.; Lu, Q.; Chen, M.; Zhao, X.; Chu, C.; Zhang, C.; Yuan, J.; Liu, H.; Lash, G.E. Impact of Endocrine Disrupting Chemicals (EDCs) on Epigenetic Regulation in the Uterus: A Narrative Review. Reprod. Biol. Endocrinol. 2025, 23, 80. [Google Scholar] [CrossRef]
  254. Bromer, J.G.; Wu, J.; Zhou, Y.; Taylor, H.S. Hypermethylation of Homeobox A10 by in Utero Diethylstilbestrol Exposure: An Epigenetic Mechanism for Altered Developmental Programming. Endocrinology 2009, 150, 3376–3382. [Google Scholar] [CrossRef]
  255. Bromer, J.G.; Zhou, Y.; Taylor, M.B.; Doherty, L.; Taylor, H.S. Bisphenol-A Exposure in Utero Leads to Epigenetic Alterations in the Developmental Programming of Uterine Estrogen Response. FASEB J. 2010, 24, 2273–2280. [Google Scholar] [CrossRef]
  256. Vallée, A.; Ceccaldi, P.-F.; Carbonnel, M.; Feki, A.; Ayoubi, J.-M. Pollution and Endometriosis: A Deep Dive into the Environmental Impacts on Women’s Health. BJOG 2024, 131, 401–414. [Google Scholar] [CrossRef]
  257. Di Renzo, G.C.; Conry, J.A.; Blake, J.; DeFrancesco, M.S.; DeNicola, N.; Martin, J.N.; McCue, K.A.; Richmond, D.; Shah, A.; Sutton, P.; et al. International Federation of Gynecology and Obstetrics Opinion on Reproductive Health Impacts of Exposure to Toxic Environmental Chemicals. Int. J. Gynaecol. Obstet. 2015, 131, 219–225. [Google Scholar] [CrossRef]
  258. Dutta, S.; Banu, S.K.; Arosh, J.A. Endocrine Disruptors and Endometriosis. Reprod. Toxicol. 2023, 115, 56–73. [Google Scholar] [CrossRef]
  259. Rumph, J.T.; Stephens, V.R.; Archibong, A.E.; Osteen, K.G.; Bruner-Tran, K.L. Environmental Endocrine Disruptors and Endometriosis. Anim. Models Endometr. 2020, 232, 57–78. [Google Scholar] [CrossRef]
  260. Ruder, E.H.; Hartman, T.J.; Goldman, M.B. Impact of Oxidative Stress on Female Fertility. Curr. Opin. Obstet. Gynecol. 2009, 21, 219–222. [Google Scholar] [CrossRef]
  261. Gupta, S.; Agarwal, A.; Krajcir, N.; Alvarez, J.G. Role of Oxidative Stress in Endometriosis. Reprod. Biomed. Online 2006, 13, 126–134. [Google Scholar] [CrossRef]
  262. Giudice, L.C.; Oskotsky, T.T.; Falako, S.; Opoku-Anane, J.; Sirota, M. Endometriosis in the Era of Precision Medicine and Impact on Sexual and Reproductive Health across the Lifespan and in Diverse Populations. FASEB J. 2023, 37, e23130. [Google Scholar] [CrossRef]
  263. Coccia, M.E.; Nardone, L.; Rizzello, F. Endometriosis and Infertility: A Long-Life Approach to Preserve Reproductive Integrity. Int. J. Environ. Res. Public Health 2022, 19, 6162. [Google Scholar] [CrossRef]
  264. Casalechi, M.; Di Stefano, G.; Fornelli, G.; Somigliana, E.; Viganò, P. Impact of Endometriosis on the Ovarian Follicles. Best Pract. Res. Clin. Obstet. Gynaecol. 2024, 92, 102430. [Google Scholar] [CrossRef]
  265. Tian, Z.; Zhang, Y.; Zhang, C.; Wang, Y.; Zhu, H.-L. Antral Follicle Count Is Reduced in the Presence of Endometriosis: A Systematic Review and Meta-Analysis. Reprod. Biomed. Online 2021, 42, 237–247. [Google Scholar] [CrossRef]
  266. Romanski, P.A.; Brady, P.C.; Farland, L.V.; Thomas, A.M.; Hornstein, M.D. The Effect of Endometriosis on the Antimüllerian Hormone Level in the Infertile Population. J. Assist. Reprod. Genet. 2019, 36, 1179–1184. [Google Scholar] [CrossRef]
  267. Ozcan, P.; Sezer, F.; Altun, A.; Yildiz, C.; Timur, H.T.; Keles, E.C.; Dural, O.; Taha, H.S.; Saridogan, E. Potential Ability of Circulating INSL3 Level for the Prediction of Ovarian Reserve and IVF Success as a Novel Theca Cell–Specific Biomarker in Women with Unexplained Infertility and Diminished Ovarian Reserve. Reprod. Biol. Endocrinol. 2025, 23, 40. [Google Scholar] [CrossRef]
  268. Walasik, I.; Klicka, K.; Grzywa, T.M.; Szymusik, I.; Włodarski, P.; Wielgoś, M.; Pietrzak, B.; Ludwin, A. Circulating miR-3613-5p but Not miR-125b-5p, miR-199a-3p, and miR-451a Are Biomarkers of Endometriosis. Reprod. Biol. 2023, 23, 100796. [Google Scholar] [CrossRef]
  269. Marí-Alexandre, J.; Barceló-Molina, M.; Belmonte-López, E.; García-Oms, J.; Estellés, A.; Braza-Boïls, A.; Gilabert-Estellés, J. Micro-RNA Profile and Proteins in Peritoneal Fluid from Women with Endometriosis: Their Relationship with Sterility. Fertil. Steril. 2018, 109, 675–684.e2. [Google Scholar] [CrossRef]
  270. Nothnick, W.B.; Peterson, R.; Minchella, P.; Falcone, T.; Graham, A.; Findley, A. The Relationship and Expression of miR-451a, miR-25-3p and PTEN in Early Peritoneal Endometriotic Lesions and Their Modulation In Vitro. Int. J. Mol. Sci. 2022, 23, 5862. [Google Scholar] [CrossRef]
  271. Muraoka, A.; Yokoi, A.; Yoshida, K.; Kitagawa, M.; Bayasula; Murakami, M.; Miyake, N.; Sonehara, R.; Nakamura, T.; Osuka, S.; et al. Serum-Derived Small Extracellular Vesicles as Biomarkers for Predicting Pregnancy and Delivery on Assisted Reproductive Technology in Patients with Endometriosis. Front. Endocrinol. 2025, 15, 1442684. [Google Scholar] [CrossRef]
  272. Salmasi, S.; Heidar, M.S.; Khaksary Mahabady, M.; Rashidi, B.; Mirzaei, H. MicroRNAs, Endometrial Receptivity and Molecular Pathways. Reprod. Biol. Endocrinol. 2024, 22, 139. [Google Scholar] [CrossRef]
  273. Dabi, Y.; Suisse, S.; Puchar, A.; Delbos, L.; Poilblanc, M.; Descamps, P.; Haury, J.; Golfier, F.; Jornea, L.; Bouteiller, D.; et al. Endometriosis-Associated Infertility Diagnosis Based on Saliva microRNA Signatures. Reprod. Biomed. Online 2023, 46, 138–149. [Google Scholar] [CrossRef]
  274. Huang, Y.; Cheng, Y.; Zhang, M.; Xia, Y.; Chen, X.; Xian, Y.; Lin, D.; Xie, S.; Guo, X. Oxidative Stress and Inflammatory Markers in Ovarian Follicular Fluid of Women with Diminished Ovarian Reserve during in Vitro Fertilization. J. Ovarian Res. 2023, 16, 206. [Google Scholar] [CrossRef]
  275. Voros, C.; Varthaliti, A.; Athanasiou, D.; Mavrogianni, D.; Papahliou, A.-M.; Bananis, K.; Koulakmanidis, A.-M.; Athanasiou, A.; Athanasiou, A.; Zografos, C.G.; et al. The Whisper of the Follicle: A Systematic Review of Micro Ribonucleic Acids as Predictors of Oocyte Quality and In Vitro Fertilization Outcomes. Cells 2025, 14, 787. [Google Scholar] [CrossRef]
  276. Karadbhajne, P.; More, A.; Dzoagbe, H.Y. The Role of Endometrial Microbiota in Fertility and Reproductive Health: A Narrative Review. Cureus 2025, 17, e78982. [Google Scholar] [CrossRef]
  277. Enciso, M.; Medina-Ruiz, L.; Ferrández-Rives, M.; Jurado-García, I.; Rogel-Cayetano, S.; Aizpurua, J.; Sarasa, J. P-293 Influence of the Endometrial Microbiota Composition on the Clinical Outcomes of Egg Donation PGT-A Cycles with Controlled Endometrial Receptivity. Hum. Reprod. 2024, 39, deae108.660. [Google Scholar] [CrossRef]
  278. Zhang, R.; Wang, M.; Zhong, J.; Xue, H. Altered Endometrial Microbiota Profile Is Associated with Poor Endometrial Receptivity of Repeated Implantation Failure. Am. J. Rep. Immunol. 2024, 92, e70005. [Google Scholar] [CrossRef]
  279. Wei, Q.; Chen, H.; Zou, H.; Zhang, H.; Liu, S.; Zheng, J.; Zhang, S.; Hu, L. Impact of Vaginal Microecological Differences on Pregnancy Outcomes and Endometrial Microbiota in Frozen Embryo Transfer Cycles. J. Assist. Reprod. Genet. 2024, 41, 929–938. [Google Scholar] [CrossRef]
  280. Itoh, H.; Sashihara, T.; Hosono, A.; Kaminogawa, S.; Uchida, M. Lactobacillus gasseri OLL2809 Inhibits Development of Ectopic Endometrial Cell in Peritoneal Cavity via Activation of NK Cells in a Murine Endometriosis Model. Cytotechnology 2011, 63, 205–210. [Google Scholar] [CrossRef]
  281. Ser, H.-L.; Au Yong, S.-J.; Shafiee, M.N.; Mokhtar, N.M.; Ali, R.A.R. Current Updates on the Role of Microbiome in Endometriosis: A Narrative Review. Microorganisms 2023, 11, 360. [Google Scholar] [CrossRef]
  282. Cai, Z.; Zhou, Z.; Huang, S.; Ma, S.; Chen, Y.; Cao, Y.; Ma, Y. Gut Microbiome in Patients with Early-Stage and Late-Stage Endometriosis. BMC Women’s Health 2025, 25, 163. [Google Scholar] [CrossRef]
  283. Ye, L.; Dimitriadis, E. Endometrial Receptivity–Lessons from “Omics”. Biomolecules 2025, 15, 106. [Google Scholar] [CrossRef]
  284. Xu, Z.; Yang, B.; Shan, W.; Liao, J.; Shao, W.; Wu, P.; Zhou, S.; Ning, C.; Luo, X.; Zhu, Q.; et al. Comparison of the Effect of Levonorgestrel-Intrauterine System with or without Oral Megestrol Acetate on Fertility-Preserving Treatment in Patients with Atypical Endometrial Hyperplasia: A Prospective, Open-Label, Randomized Controlled Phase II Study. Gynecol. Oncol. 2023, 174, 133–141. [Google Scholar] [CrossRef]
  285. Cooper, K.G.; Bhattacharya, S.; Daniels, J.P.; Horne, A.W.; Clark, T.J.; Saridogan, E.; Cheed, V.; Pirie, D.; Melyda, M.; Monahan, M.; et al. Long Acting Progestogens versus Combined Oral Contraceptive Pill for Preventing Recurrence of Endometriosis Related Pain: The PRE-EMPT Pragmatic, Parallel Group, Open Label, Randomised Controlled Trial. BMJ 2024, 385, e079006. [Google Scholar] [CrossRef]
  286. Zakhari, A.; Delpero, E.; McKeown, S.; Tomlinson, G.; Bougie, O.; Murji, A. Endometriosis Recurrence Following Post-Operative Hormonal Suppression: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2021, 27, 96–107. [Google Scholar] [CrossRef]
  287. Begum, M.R.; Ehsan, M.; Ehsan, N.; Rashid, F. How to Protect Fertility Potential in Endometriosis. J. S. Asian Fed. Obstet. Gynaecol. 2024, 16, 134–144. [Google Scholar] [CrossRef]
  288. Shi, J.; Zhu, S.; Li, X.; Dai, Y.; Leng, J. The Role of Levonorgestrel-Releasing Intrauterine System for Recurrence Prevention after Conservative Surgery among Patients with Coexistent Ovarian Endometrioma and Diffuse Adenomyosis: A Retrospective Case Control Study with Long-Term Follow Up. J. Gynecol. Obstet. Hum. Reprod. 2023, 52, 102572. [Google Scholar] [CrossRef]
  289. Onishi, A.; Benetti-Pinto, C.L.; Yela, D.A. Hormonal and Complimentary Treatments for Endometriosis: A Narrative Review. Gynecol. Pelvic Med. 2025, 8, 12. [Google Scholar] [CrossRef]
  290. Afreen, S.; Perthiani, A.; Sangster, E.; Lanka, N.; Acharya, P.; Virani, S.; Malasevskaia, I. Comparing Surgical, Acupuncture, and Exercise Interventions for Improving the Quality of Life in Women with Endometriosis: A Systematic Review. Cureus 2024, 16, e65257. [Google Scholar] [CrossRef]
  291. Yalçın Bahat, P.; Ayhan, I.; Üreyen Özdemir, E.; İnceboz, Ü.; Oral, E. Dietary Supplements for Treatment of Endometriosis: A Review. Acta Biomed. 2022, 93, e2022159. [Google Scholar] [CrossRef]
  292. Pan, B.; Bi, B.; Ruan, F.; Jiang, Y. Effects of Vitamin Supplementation on Related Symptoms in Women with Endometriosis: A Systematic Review and Meta-Analysis. Ann. Med. Surg. 2025, 87, 4404. [Google Scholar] [CrossRef]
  293. Gazzo, I.; Moffa, F.; Ferrero, S. Fertility Preservation in Women with Endometriosis: Oocyte Cryopreservation and Other Techniques. Best Pract. Res. Clin. Obstet. Gynaecol. 2024, 95, 102503. [Google Scholar] [CrossRef]
  294. Nicolì, P.; Viganò, P.; Saccone, G.; Di Naro, E.; Vimercati, A.; Cicinelli, E.; Vitagliano, A. Oocyte Cryopreservation for Patients with Endometriosis: Where Are We Now? A Systematic Review. Reprod. Biomed. Online 2025, 51, 104839. [Google Scholar] [CrossRef]
  295. Rangi, S.; Hur, C.; Richards, E.; Falcone, T. Fertility Preservation in Women with Endometriosis. J. Clin. Med. 2023, 12, 4331. [Google Scholar] [CrossRef]
  296. Benaglia, L.; Fornelli, G.; La Vecchia, I.; Sterpi, V.; Basili, L.; Viganò, P.; Somigliana, E. Elective Oocyte Freezing for Fertility Preservation in Endometriosis: Opportunity or Resource Wastage? J. Endometr. Uterine Disord. 2023, 1, 100017. [Google Scholar] [CrossRef]
  297. La Marca, A.; Semprini, M.; Mastellari, E.; Donno, V.; Capuzzo, M.; Alboni, C.; Giulini, S. Fertility Preservation in Women with Endometriosis. Hum. Reprod. Open 2025, 2025, hoaf012. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Aberrant vascular remodeling in endometriosis: integration of canonical and non-canonical angiogenic signals. Hypoxia and oxidative stress stabilize HIF-1α, inducing VEGF-A and disorganized neovascularization. Additional non-canonical pathways—including Slit2/ROBO1, PROK1/PROKR1, and Notch/Dll4 suppression—disrupt vessel architecture and branching. The resulting leaky and unstable vasculature facilitates stromal invasion, immune cell infiltration, and neural ingrowth, contributing to a self-perpetuating inflammatory microenvironment.
Figure 1. Aberrant vascular remodeling in endometriosis: integration of canonical and non-canonical angiogenic signals. Hypoxia and oxidative stress stabilize HIF-1α, inducing VEGF-A and disorganized neovascularization. Additional non-canonical pathways—including Slit2/ROBO1, PROK1/PROKR1, and Notch/Dll4 suppression—disrupt vessel architecture and branching. The resulting leaky and unstable vasculature facilitates stromal invasion, immune cell infiltration, and neural ingrowth, contributing to a self-perpetuating inflammatory microenvironment.
Ijms 26 07706 g001
Figure 2. Interconnected mechanisms driving infertility in endometriosis.
Figure 2. Interconnected mechanisms driving infertility in endometriosis.
Ijms 26 07706 g002
Figure 3. Molecular landscape of non-hormonal therapies in endometriosis.
Figure 3. Molecular landscape of non-hormonal therapies in endometriosis.
Ijms 26 07706 g003
Figure 4. Endometriosis and fertility: molecular complexity and emerging precision approaches. Graphical representation of the multifactorial nature of endometriosis, highlighting key molecular alterations (hormonal imbalance, oxidative stress, inflammation, epigenetic reprogramming), their impact on fertility, and emerging strategies for personalized, fertility-preserving care. Abbreviations: ERβ: estrogen receptor beta; cfDNA: cell-free DNA; PRS: polygenic risk score; ROS: reactive oxygen species.
Figure 4. Endometriosis and fertility: molecular complexity and emerging precision approaches. Graphical representation of the multifactorial nature of endometriosis, highlighting key molecular alterations (hormonal imbalance, oxidative stress, inflammation, epigenetic reprogramming), their impact on fertility, and emerging strategies for personalized, fertility-preserving care. Abbreviations: ERβ: estrogen receptor beta; cfDNA: cell-free DNA; PRS: polygenic risk score; ROS: reactive oxygen species.
Ijms 26 07706 g004
Table 1. Epigenetic and non-coding RNA alterations involved in the pathogenesis of endometriosis and its reproductive consequences.
Table 1. Epigenetic and non-coding RNA alterations involved in the pathogenesis of endometriosis and its reproductive consequences.
Molecular LayerKey ElementsTarget Gene/EffectsMolecular ConsequenceBiological ImpactReferences
DNA
methylation
CpG hypermethylationPromoter regions of HOXA10, PR-BSilencing of genes crucial for endometrial receptivity↓ Receptivity, ↑ progesterone resistance,
↓ decidualization
[31,41,42,43,44]
Histone
modification
HDACs (class I/II), SirtuinsHistone deacetylation, chromatin remodeling proteinsChromatin compaction,
↓ gene expression
Progesterone resistance,
↓ decidualization
[41]
miRNAsmiR-135a/b, miR-29c, miR-194-3pHOXA10, immune-related genes, ECM genesPost-transcriptional silencing, inflammation signaling ECM remodeling,
↓ HOXA10,
↓ Receptivity
[45,46,47,48,49,50,51]
lncRNAsH19miRNA sequestrationInhibition of miRNA function↑ EMT, immune escape[52,53,54,55]
circRNAscirc_0007331miR-200c-3p, HIF-1αRelease of HIF-1α expression↑ Angiogenesis,
↑ steroid resistance
[52,56,57]
Arrows (↑/↓) indicate upregulation or downregulation of the described functional outcomes of the microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Abbreviations (in alphabetical order): CpG (cytosine–phosphate–guanine dinucleotide); ECM (extracellular matrix); EMT (epithelial-to-mesenchymal transition); HDAC (histone deacetylase); HIF-1α (hypoxia-inducible factor 1-alpha); HOXA10 (homeobox A10); PR-B (progesterone receptor isoform B).
Table 2. Molecular drivers of ECM remodeling, EMT, and fibrogenesis.
Table 2. Molecular drivers of ECM remodeling, EMT, and fibrogenesis.
ProcessKey Molecular PlayersFunctional OutcomeReferences
ECM degradationMMP-2, MMP-9ECM breakdown, invasion[100,101,102]
Regulation by TIMPsTIMP gradientsDirectional proteolysis[103,104,105]
uPA/uPAR system activationuPA, uPAR, plasminMMP activation, fibrin/fibronectin degradation[106,107,108]
TGF-β–PAI-1–uPAR axisPAI-1, endothelial senescenceSenescence, early fibrotic changes[109]
Epithelial-to-mesenchymal transition (EMT)↓ E-cadherin, ↑ N-cadherin, vimentinLoss of epithelial identity, invasion[110,111]
Myofibroblast activation via TGF-β/SMADFibroblasts → myofibroblasts, SMAD pathwayExcessive ECM deposition[112]
Matrix stiffening by LOXLOX, collagen I, fibronectin, lamininTissue stiffening, ↑ pain[112]
Angiotensin II/AT1R-induced fibrosisLOX-like proteins, Ang II, AT1RPotentiated fibrosis and lesion progression[107]
Arrows (↑/↓) indicate upregulation or downregulation of the described functional outcomes Abbreviations: Ang II (angiotensin II); AT1R (angiotensin II type 1 receptor); E-cadherin (epithelial cadherin); ECM (extracellular matrix); EMT (Epithelial-to-Mesenchymal Transition); LOX (Lysyl Oxidase); MMP-2 (matrix metalloproteinase-2); MMP-9 (matrix metalloproteinase-9); MMPs (matrix metalloproteinases); N-cadherin (neural cadherin); PAI-1 (plasminogen activator inhibitor-1); SMAD (sma- and mad-related proteins); TGF-β (transforming growth factor beta); TIMP (tissue inhibitor of metalloproteinases); uPA (urokinase-type plasminogen Activator); uPAR (urokinase plasminogen activator receptor); Vimentin (type III intermediate filament protein).
Table 3. Promising molecular targets and their impact on infertility in endometriosis.
Table 3. Promising molecular targets and their impact on infertility in endometriosis.
Therapeutic StrategyMolecular Target/
Mechanism
Effects on Endometriosis/
Fertility
Development PhaseReferences
Selective ERβ antagonistsERβ-mediated inflammation and progesterone resistanceReduce lesion survival; restore PR-B signaling; preserve ovulationPreclinical[17,18,169,170]
Kinase inhibitors (MEK, mTOR, p38, JNK)NF-κB; MAPK/ERK1/2; PI3K/AKT/mTOR pathwaysDecrease lesion growth and inflammation; overcome progesterone resistancePreclinical[168,173,175,176,177]
Immune-checkpoint blockadePD-1/PD-L1 and CD47-SIRPα axesRestore immune clearance; lower lesion burden; enhance tolerancePreclinical[24,179,180,181]
Anti-TNFα therapyTNFα-driven inflammatory pathwaysReduce pain, inflammation, and lesion sizePreclinical
and early clinical
[168,182,183]
Anti-IL-8 therapy (AMY109)IL-8 mediated chemotaxis and fibrogenesisSuppress fibrosis and lesion expansion without disrupting cyclesPhase I clinical trial[185]
Epigenetic modulators (HDACi, DNMTi)HDACs and DNMTs at HOXA10 and PR-B promotersRestore decidualization and uterine receptivityPreclinical[17,187,188,189,190]
Antioxidants (Vit C/E, CoQ10, NAC, melatonin, resveratrol)ROS; MAPK and NF-κB activationImprove oocyte/embryo quality; mitigate oxidative injury and inflammationPreclinical and early clinical[196,208,215,216]
Anti-angiogenic/vascular-normalization agentsVEGF/VEGFR2 cascade; dopamine D2 agonists (cabergoline, quinagolide); bradykinin B1Reduce microvessel density; maintain endocrine function and fertilityPreclinical and Phase 2 clinical trial[209,210,211,212,213,214,217]
miRNA-based therapy (miR-135a/b, miR-451a, miR-214, miR-205-5p)Post-transcriptional control of HOXA10, VEGF, CTGF, ANGPT2, CTNNB1, etc.Reprogram gene networks; suppress angiogenesis, invasion, and fibrosisPreclinical[45,192,193,194,195]
SERMs/SARMs/SARDsER-subtype balance; intracrine steroidogenesis (aromatase, steroid sulfatase, SLC10A6, AKR1C3)Re-calibrate local hormones; improve endometrial receptivityPreclinical and early-to-advanced clinical (Phase II–III) depending on compound[171]
Abbreviations (in alphabetical order): AKR1C3 (aldo-keto reductase family 1 member C3); ANGPT2 (angiopoietin-2); CD47 (cluster of differentiation 47); CoQ10 (coenzyme Q10); CTGF (connective tissue growth factor); CTNNB1 (catenin Beta 1); DNMTi (DNA methyltransferase inhibitor); ERβ (estrogen receptor beta); ERK1/2 (extracellular signal-regulated kinase 1/2); HDACi (histone deacetylase inhibitor); HOXA10 (homeobox A10); IL-8 (interleukin-8); JNK (c-Jun N-terminal kinase); MAPK (mitogen-activated protein kinase); MEK (mitogen-activated protein kinase kinase); miR (microRNA; mTOR (mammalian target of rapamycin); NAC (N-acetyl-L-cysteine); NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells); PD-1 (programmed cell death protein 1); PD-L1 (programmed death-ligand 1); PI3K (phosphoinositide 3-kinase); PR-B (progesterone receptor isoform B); ROS (reactive oxygen species); SARM (selective androgen receptor modulator); SARD (selective androgen receptor degrader); SERM (selective estrogen receptor modulator); SIRPα (signal-regulatory protein alpha); SLC10A6 (solute carrier family 10 member 6); TNF-α (tumor necrosis factor alpha); VEGF (vascular endothelial growth factor); VEGFR2 (vascular endothelial growth factor receptor 2); p38 (p38 Mitogen-activated protein kinase).
Table 4. Biomarker-guided strategies across preventive levels in endometriosis care.
Table 4. Biomarker-guided strategies across preventive levels in endometriosis care.
Prevention LevelBiomarker
Category
Key Biomarkers/
Interventions
Sample TypeClinical ObjectivesValidation StatusReferences
PrimaryGenomicGWAS SNPs: WNT4, GREB1, VEZT, RSPO3, CDC42Blood, tissueRisk stratification, polygenic scoresMulti-cohort GWAS, TWAS, PWAS[234,235,236,237,238]
PrimaryEpigeneticHOXA10 promoter methylationTissueSusceptibility receptivity markerPromising but variable sensitivity[43]
PrimaryCirculating DNAcfDNA: RRP1, DIPC2, USP1, DNMT1Blood (serum)Non-invasive early detectionPreliminary studies[239]
PrimarymiRNA panelsmiR-17-5p, miR-20a-5p, miR-199a-3p, miR-143-3p, let-7b-5p; othersBlood,
serum,
saliva
Early diagnosis, disease discriminationHigh sensitivity/specificity, needs expansion[240,241,242,243]
PrimaryProteomicsSelenoprotein P, Neuropilin-1, C9, Protein S, etc.PlasmaEarly detection, differential diagnosisLarge-scale cohort Validated, AUC up to 0.997[244,245]
PrimaryCell-basedCECs, mHsp70-positive CECsBloodNon-invasive diagnosisPreliminary evidence[249,250,251,252]
PrimaryEnvironmentalEDCs: dioxins, BPA, phthalatesEnvironmental exposure dataRisk reduction, public health interventionAssociative, observational[31,253,254,255,256,257,258,259]
Primary ComplementaryVitamin E, antioxidative polyphenols (resveratrol)Oral, nutritional intakeAnti-inflammatory support, tissue preservationPreliminary evidence
Supported by meta-analyses (vitamin E)
[196,197,204,206,207,215,260,261]
SecondaryHormonalAMH, FSH, INSL3SerumOvarian reserve monitoring, fertility potential assessmentClinically used (AMH, FSH), emerging (INSL3)[263,264,265,266]
SecondaryEpigeneticHOXA10 (methylation, restored by GnRH/Letrozole/Metformin)TissueTheranostic marker, progesterone resistanceExperimental, partially reversed pharmacologically[43]
SecondarymiRNAmiRNA panelsSerum,
saliva
Follicular fluid
Activity/severity monitoring, ART optimization
Embryo competence predictor
Emerging clinical use[45,192,193,194,195,268,269,270,271,272,273,275]
SecondaryOxidative stress8-OHdG, GSH/GSSGFollicular fluidOocyte/embryo viability predictionCorrelational[142,264,274]
SecondaryMicrobiotaLactobacillus profiles, LIF, HOXA11, VEGFVaginal swab, uterusReceptivity marker, microbial interventionPilot trials, animal models[276,277,278,279,280,281,282]
SecondaryMulti-omicIntegrated transcriptomic, proteomic, epigenetic profilesVarious—integrativePrecision-based monitoringOngoing integration[283]
TertiaryHormonal maintenanceCOCs, progestins, LNG-IUSOvarian, endometrial, systemic Reduce recurrence, preserve ovarian function, suppress estrogen fluctuationEstablished in clinical practice[284,285,286,287,288]
TertiaryComplementary therapiesAcupuncture, vitamin E, omega-3 PUFAs, curcumin, probioticsEndometrial, peritoneal Relieve pain, modulate inflammation, support recovery post-surgeryPreliminary RCTs and preclinical support, ongoing clinical validation[289,290,291,292]
TertiaryMolecularmiRNAs, angiogenic markers, inflammatory mediators
AMH, INSL3, follicular markers
Serum, tissues, follicular fluidMonitor residual disease, detect recurrence, guide follow-upEmerging, under active investigation[30,168,262,267,269,293]
TertiaryFunctionalCryopreserved oocytes, embryo viability, clinician–patient planningClinical records, cryobankReproductive planning, educationWidely adopted in selected cases[294,295,296]
Abbreviations: 8-OHdG (8-hydroxy-2′-deoxyguanosine), AMH (anti-müllerian hormone), ART (assisted reproductive technology), BPA (bisphenol A), CDC42 (cell division control protein 42), CECs (circulating endometrial cells), cfDNA (cell-free DNA), COCs (combined oral contraceptives), DNMT1 (DNA methyltransferase 1), DIPC2 (DIP2 disco-interacting protein C2), EDCs (endocrine-disrupting chemicals), FSH (follicle-stimulating hormone), GnRH (gonadotropin-releasing hormone), GREB1 (growth regulation by estrogen in breast cancer 1), GSH (glutathione), GSSG (glutathione disulfide), GWAS (genome-wide association study), HOXA10/HOXA11 (homeobox A10/A11), INSL3 (insulin-like peptide 3), LIF (leukemia inhibitory factor), LNG-IUS (levonorgestrel-releasing intrauterine system), mHsp70 (mitochondrial heat-shock protein 70), miRNA (microRNA), Neuropilin-1 (neuropilin 1, a VEGF co-receptor), PUFAs (polyunsaturated fatty acids), PWAS (proteome-wide association study), RRP1 (ribosomal RNA processing protein 1), RSPO3 (R-spondin 3), SNP (single uucleotide polymorphism), TWAS (transcriptome-wide association study), USP1 (ubiquitin-specific protease 1), VEGF-A (vascular endothelial growth factor A), and VEZT (vesicle transporter gene).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Limam, I.; Abdelkarim, M.; Kacem-Berjeb, K.; Khrouf, M.; Feki, A.; Braham, M.; Chakroun, N. Precision Therapeutic and Preventive Molecular Strategies for Endometriosis-Associated Infertility. Int. J. Mol. Sci. 2025, 26, 7706. https://doi.org/10.3390/ijms26167706

AMA Style

Limam I, Abdelkarim M, Kacem-Berjeb K, Khrouf M, Feki A, Braham M, Chakroun N. Precision Therapeutic and Preventive Molecular Strategies for Endometriosis-Associated Infertility. International Journal of Molecular Sciences. 2025; 26(16):7706. https://doi.org/10.3390/ijms26167706

Chicago/Turabian Style

Limam, Inès, Mohamed Abdelkarim, Khadija Kacem-Berjeb, Mohamed Khrouf, Anis Feki, Marouen Braham, and Nozha Chakroun. 2025. "Precision Therapeutic and Preventive Molecular Strategies for Endometriosis-Associated Infertility" International Journal of Molecular Sciences 26, no. 16: 7706. https://doi.org/10.3390/ijms26167706

APA Style

Limam, I., Abdelkarim, M., Kacem-Berjeb, K., Khrouf, M., Feki, A., Braham, M., & Chakroun, N. (2025). Precision Therapeutic and Preventive Molecular Strategies for Endometriosis-Associated Infertility. International Journal of Molecular Sciences, 26(16), 7706. https://doi.org/10.3390/ijms26167706

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop