Lipopolysaccharide: Recent Advances in Its Biosynthesis and Controlling Cell Envelope Homeostasis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.S.; Bull, H.G.; Galloway, S.M.; Kelly, T.M.; Mohan, S.; Radika, K.; Raetz, C.R. UDP-N-acetylglucosamine acyltransferase of Escherichia coli. The first step endotoxin biosynthesis is thermodynamically unfavorable. J. Biol. Chem. 1993, 268, 19858–19865. [Google Scholar] [CrossRef] [PubMed]
- Raetz, C.R.H.; Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 2002, 71, 635–700. [Google Scholar] [CrossRef]
- Klein, G.; Wieczorek, A.; Szuster, M.; Raina, S. Checkpoints that regulate balanced biosynthesis of lipopolysaccharide and its essentiality in Escherichia coli. Int. J. Mol. Sci. 2022, 23, 189. [Google Scholar] [CrossRef]
- Park, B.S.; Lee, J.O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 2013, 45, e66. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.; Wang, Y.; Gao, W.; Ding, J.; Li, P.; Hu, L.; Shao, F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014, 514, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Radka, C.D.; Rock, C.O. Mining fatty acid biosynthesis for new antimicrobials. Annu. Rev. Microbiol. 2022, 76, 281–304. [Google Scholar] [CrossRef]
- Li, S.J.; Cronan, J.E., Jr. Growth rate regulation of Escherichia coli acetylcoenzyme A carboxylase catalyzes the first committed step of lipid biosynthesis. J. Bacteriol. 1993, 175, 332–340. [Google Scholar] [CrossRef]
- Cai, C.; Huang, Y.; Zhang, L.; Zhang, L. The molecular basis of the β-ketoacyl-APC synthase FabH in catalyzing C-C bond formation of acetoacetyl-ACP. ACS Catal. 2025, 15, 5028–5038. [Google Scholar] [CrossRef]
- Yao, J.; Rock, C.O. Phosphatidic acid synthesis in bacteria. Biochim. Biophys. Acta 2013, 1831, 495–502. [Google Scholar] [CrossRef]
- Heath, R.J.; Rock, C.O. Regulation of fatty acid elongation and initiation by acyl-acyl carrier protein in Escherichia coli. J. Biol. Chem. 1996, 271, 1833–1836. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.S.; Cronan, J.E., Jr. Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein. J. Bacteriol. 2001, 183, 1499–14503. [Google Scholar] [CrossRef]
- Mohan, S.; Kelly, T.M.; Eveland, S.S.; Raetz, C.R.; Anderson, M.S. An Escherichia coli gene (fabZ) encoding (3R)-hydroxymyristoyl acyl carrier protein dehydrase. Relation to fabA and suppression of mutations in lipid A biosynthesis. J. Biol. Chem. 1994, 269, 32896–32903. [Google Scholar] [CrossRef]
- Klein, G.; Müller-Loennies, S.; Lindner, B.; Kobylak, N.; Brade, H.; Raina, S. Molecular and structural basis of inner core lipopolysaccharide alterations in Escherichia coli: Incorporation of glucuronic acid and phosphoethanolamine in the heptose region. J. Biol. Chem. 2013, 288, 8111–8127. [Google Scholar] [CrossRef]
- Frirdich, E.; Whitfield, C. Lipopolysaccharide inner core oligosaccharide structure and outer membrane stability in human pathogens belonging to Enterobacteriaceae. J. Endotoxin Res. 2005, 11, 133–144. [Google Scholar]
- Valvano, M.A. Remodeling of the Gram-negative bacterial Kdo2-lipid A and its functional implications. Microbiology 2022, 168, 001159. [Google Scholar] [CrossRef]
- Raetz, C.R.; Reynolds, C.M.; Trent, M.S.; Bishop, R.E. Lipid A modification systems in Gram-negative bacteria. Annu. Rev. Biochem. 2007, 76, 295–329. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.M.; Kalb, S.R.; Cotter, R.J.; Raetz, C.R. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. J. Biol. Chem. 2005, 280, 21202–21211. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.; Lindner, B.; Brade, H.; Raina, S. Molecular basis of lipopolysaccharide heterogeneity in Escherichia coli: Envelope stress-responsive regulators control the incorporation of glycoforms with a third 3-deoxy-α-D-manno-oct-2-ulosonic acid and rhamnose. J. Biol. Chem. 2011, 286, 42787–42807. [Google Scholar] [CrossRef]
- Kanjilal-Kolar, S.; Raetz, C.R. Dodecaprenyl phosphate-galacturonic acid as a donor substrate for lipopolysaccharide core glycosylation in Rhizobium leguminosarum. J. Biol. Chem. 2006, 281, 12876–12887. [Google Scholar] [CrossRef]
- Kawasaki, K.; Teramoto, M.; Tatsui, R.; Amamoto, S. Lipid A 3′-O-deacylation by Salmonella outer membrane enzyme LpxR modulates the ability of lipid A to stimulate Toll-like receptor 4. Biochem. Biophys. Res. Commun. 2012, 428, 343–347. [Google Scholar] [CrossRef]
- Whaley, S.G.; Radka, C.D.; Subramanian, C.; Frank, M.W.; Rock, C.O. Malonyl-acyl carrier protein decarboxylase activity promotes fatty acid and cell envelope biosynthesis in Proteobacteria. J. Biol. Chem. 2021, 297, 101434. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.; Kobylak, N.; Lindner, B.; Stupak, A.; Raina, S. Assembly of lipopolysaccharide in Escherichia coli requires the essential LapB heat shock protein. J. Biol. Chem. 2014, 289, 14829–14853. [Google Scholar] [CrossRef] [PubMed]
- Ogura, T.; Inoue, K.; Tatsuta, T.; Suzaki, T.; Karata, K.; Young, K.; Su, L.H.; Fierke, C.A.; Jackman, J.E.; Raetz, C.R.H.; et al. Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol. Microbiol. 1999, 31, 833–844. [Google Scholar] [CrossRef]
- Möller, A.M.; Brückner, S.; Tilg, L.J.; Kutscher, B.; Nowaczyk, M.M.; Narberhaus, F. LapB (YciM) orchestrates protein-protein interactions at the interface of lipopolysaccharide and phospholipid biosynthesis. Mol. Microbiol. 2023, 119, 29–43. [Google Scholar] [CrossRef]
- Wieczorek, A.; Sendobra, A.; Maniyeri, A.; Sugalska, M.; Klein, G.; Raina, S. A new factor LapD is required for the regulation of LpxC amounts and lipopolysaccharide trafficking. Int. J. Mol. Sci. 2022, 23, 9706. [Google Scholar] [CrossRef]
- Stanley, H.M.; Trent, M.S. Loss of YhcB results in overactive fatty acid biosynthesis. mBio 2024, 15, e0079024. [Google Scholar] [CrossRef] [PubMed]
- Shu, S.; Tsutsui, Y.; Nathawat, R.; Mi, W. Dual function of LapB (YciM) in regulating Escherichia coli lipopolysaccharide synthesis. Proc. Natl. Acad. Sci. USA 2024, 121, e2321510. [Google Scholar] [CrossRef]
- Mettlach, J.A.; Cian, M.B.; Chakraborty, M.; Dalebroux, Z.D. Signaling through the Salmonella PbgA-LapB regulatory complex activates LpxC proteolysis and limits lipopolysaccharide biogenesis during stationary-phase growth. J. Bacteriol. 2024, 206, e0030823. [Google Scholar] [CrossRef]
- Jung, K.H.; Lee, S.Y.; Park, S.E.; Kang, Y.W.; Park, H.H. Structural analysis of LabB from Klebsiella pneumoniae reveals an alternative dimeric conformation generated by the sliding of TPR motifs. Biochem. Biophys. Res. Commun. 2025, 775, 152151. [Google Scholar] [CrossRef]
- Brückner, S.; Müller, F.; Schadowski, L.; Kalle, T.; Weber, S.; Marino, E.C.; Kutscher, B.; Möller, A.M.; Adler, S.; Begerow, D.; et al. (p)ppGpp and moonlighting RNases influence the first step of lipopolysaccharide biosynthesis in Escherichia coli. Microlife 2023, 4, uqad031. [Google Scholar] [CrossRef]
- Dewachter, L.; Deckers, B.; Mares-Mejía, I.; Louwagie, E.; Vercauteren, S.; Matthay, P.; Brückner, S.; Möller, A.M.; Narberhaus, F.; Vonesch, S.C.; et al. The role of the essential GTPase ObgE in regulating lipopolysaccharide synthesis in Escherichia coli. Nat. Commun. 2024, 15, 9684. [Google Scholar] [CrossRef]
- Heath, R.J.; Jackowski, S.; Rock, C.O. Guanosine tetraphosphate inhibition of fatty acid and phospholipid synthesis in Escherichia coli is relieved by overexpression of glycerol-3-phosphate acyltransferase (plsB). J. Biol. Chem. 1994, 269, 26584–26590. [Google Scholar] [CrossRef]
- Noga, M.J.; Büke, F.; van den Broek, N.J.F.; Imholz, N.C.E.; Scherer, N.; Yang, F.; Bokinsky, G. Posttranslational control of PlsB is sufficient to coordinate membrane synthesis with growth in Escherichia coli. mBio 2020, 11, e02703–e02719. [Google Scholar] [CrossRef]
- Sorensen, P.G.; Lutkenhaus, J.; Young, K.; Eveland, S.S.; Anderson, M.S.; Raetz, C.R. Regulation of UDP-3-O-[R-3-hydroxymyristoyl]-N-acetylglucosamine deacetylase in Escherichia coli: The second enzymatic step of lipid A biosynthesis. J. Biol. Chem. 1996, 271, 25898–25905. [Google Scholar] [CrossRef]
- Murata, M.; Nakamura, K.; Kosaka, T.; Ota, N.; Osawa, A.; Muro, R.; Fujiyama, K.; Oshima, T.; Mori, H.; Wanner, B.L.; et al. Cell lysis directed by SulA in response to DNA damage in Escherichia coli. Int. J. Mol. Sci. 2021, 22, 4535. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, S.; Lv, Q.; Fang, D.; Zhang, H.; Wang, Z.; Liu, Y. Lon dysfunction-mediated collateral sensitivity drives effective antibiotic combination therapies against tigecycline-resistant pathogen. Cell Rep. 2025, 44, 115987. [Google Scholar] [CrossRef] [PubMed]
- Gorzelak, P.; Klein, G.; Raina, S. Molecular basis of essentiality of early critical steps in the lipopolysaccharide biogenesis in Escherichia coli K-12: Requirement of MsbA, cardiolipin, LpxL, LpxM and GcvB. Int. J. Mol. Sci. 2021, 22, 5099. [Google Scholar] [CrossRef] [PubMed]
- Biernacka, D.; Gorzelak, P.; Klein, G.; Raina, S. Regulation of the first committed step in lipopolysaccharide biosynthesis catalyzed by LpxC requires the essential protein LapC (YejM) and HslVU protease. Int. J. Mol. Sci. 2020, 21, 9088. [Google Scholar] [CrossRef] [PubMed]
- Padayatti, P.S.; Lee, S.C.; Stanfield, R.L.; Wen, P.C.; Tajkhorshid, E.; Wilson, I.A.; Zhang, Q. Structural insights into the lipid A transport pathway in MsbA. Structure 2019, 27, 1114–1123.e3. [Google Scholar] [CrossRef]
- Mi, W.; Li, Y.; Yoon, S.H.; Ernst, R.K.; Walz, T.; Liao, M. Structural basis of MsbA-mediated lipopolysaccharide transport. Nature 2017, 549, 233–237. [Google Scholar] [CrossRef]
- Zhang, T.; Lyu, J.; Yang, B.; Yun, S.D.; Scott, E.; Zhao, M.; Laganowsky, A. Native mass spectrometry and structural studies reveal modulation of MsbA-nucleotide interactions by lipids. Nat. Commun. 2024, 15, 5946. [Google Scholar] [CrossRef]
- Novischi, S.Y.P.; Karoly-Lakatos, A.; Chok, K.; Bonifer, C.; Becker-Baldus, J.; Glaubitz, C. Probing the allosteric NBD-TMD crosstalk in the ABC transporter MsbA by solid-state NMR. Commun. Biol. 2024, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, C.B.; Plaman, B.A.; Rowe, S.J.; Caruso, A.; Early, S.A.; Ruiz, N.; Kahne, D. Inhibiting lipopolysaccharide biogenesis: The more you know the further you go. Annu. Rev. Biochem. 2025, 94, 137–160. [Google Scholar] [CrossRef] [PubMed]
- Sperandeo, P.; Martorana, A.M.; Zaccaria, M.; Polissi, A. Targeting the LPS export pathway for the development of novel therapeutics. Biochim. Biophys. Acta Mol. Cell Res. 2023, 1870, 119406. [Google Scholar] [CrossRef] [PubMed]
- Chng, S.S.; Xue, M.; Garner, R.A.; Kadokura, H.; Boyd, D.; Beckwith, J.; Kahne, D. Disulfide rearrangement triggered by translocon assembly controls lipopolysaccharide export. Science 2012, 337, 1665–1668. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, H.; Corey, R.A.; Morales, V.; Quentin, Y.; Froment, C.; Caumont-Sarcos, A.; Albenne, C.; Burlet-Schiltz, O.; Ranava, D.; et al. LptM promotes oxidative maturation of the lipopolysaccharide translocon by substrate binding mimicry. Nat. Commun. 2023, 14, 6368. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, C.; Qiao, S.; Yu, S.; Chen, L.; Kim, S.; Wang, K.; Zheng, J.; Zhang, Y.; Wu, F.; et al. Surface lipoprotein sorting by crosstalk between Lpt and Lol pathways in Gram-negative bacteria. Nat. Commun. 2025, 16, 4357. [Google Scholar] [CrossRef]
- Zhao, J.; Cochrane, C.S.; Najeeb, J.; Gooden, D.; Sciandra, C.; Fan, P.; Lemaitre, N.; Newns, K.; Nicholas, R.A.; Guan, Z.; et al. Preclinical safety and efficacy characterization of an LpxC inhibitor against Gram-negative pathogens. Sci. Transl. Med. 2023, 15, eadf5668. [Google Scholar] [CrossRef]
- Dangkulwanich, M.; Raetz, C.R.H.; Williams, A.H. Structure guided design of an antibacterial peptide that targets UDP-N-acetylglucosamine. Sci. Rep. 2019, 9, 3947. [Google Scholar] [CrossRef]
- Han, W.; Ma, X.; Balibar, C.J.; Baxter Rath, C.M.; Benton, B.; Bermingham, A.; Casey, F.; Chie-Leon, B.; Cho, M.K.; Frank, A.O.; et al. Two distinct mechanisms of inhibition of LpxA acetyltransferase essential for lipopolysaccharide biosynthesis. J. Am. Chem. Soc. 2020, 142, 4445–4455. [Google Scholar] [CrossRef]
- Kroeck, K.G.; Sacco, M.D.; Smith, E.W.; Zhang, X.; Shoun, D.; Akhtar, A.; Darch, S.E.; Cohen, F.; Andrews, L.D.; Knox, J.E.; et al. Discovery of dual-activity small-molecule ligands of Pseudomonas aeruginosa LpxA and LpxD using SPR and X-ray crystallography. Sci. Rep. 2019, 9, 15450. [Google Scholar] [CrossRef]
- Huseby, D.L.; Cao, S.; Zamaratski, E.; Sooriyaarachchi, S.; Ahmad, S.; Bergfors, T.; Krasnova, L.; Pelss, J.; Ikaunieks, M.; Loza, E.; et al. Antibiotic class with potent In Vivo activity targeting lipopolysaccharide synthesis in Gram-negative bacteria. Proc. Natl. Acad. Sci. USA 2024, 121, e2317274121. [Google Scholar] [CrossRef]
- Ho, H.; Miu, A.; Alexander, M.K.; Garcia, N.K.; Oh, A.; Zilberleyb, I.; Reichelt, M.; Austin, C.D.; Tam, C.; Shriver, S.; et al. Structural basis for dual-mode inhibition of the ABC transporter MsbA. Nature 2018, 557, 196–201. [Google Scholar] [CrossRef]
- Alexander, M.K.; Miu, A.; Oh, A.; Reichelt, M.; Ho, H.; Chalouni, C.; Labadie, S.; Wang, L.; Liang, J.; Nickerson, N.N.; et al. Disrupting Gram-negative bacterial outer membrane biosynthesis through inhibition of the lipopolysaccharide transporter MsbA. Antimicrob. Agents Chemother. 2018, 62, e01142-18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Baidin, V.; Pahil, K.S.; Moison, E.; Tomasek, D.; Ramadoss, N.S.; Chatterjee, A.K.; McNamara, C.W.; Young, T.S.; Schultz, P.G.; et al. Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors. Proc. Natl. Acad. Sci. USA. 2018, 115, 6834–6839. [Google Scholar] [CrossRef] [PubMed]
- Thélot, F.A.; Zhang, W.; Song, K.K.; Xu, C.; Huang, J.; Liao, M. Distinct allosteric mechanisms of first-generation MsbA inhibitors. Science 2021, 374, 580–585. [Google Scholar] [CrossRef]
- Vetterli, S.U.; Zerbe, K.; Müller, M.; Urfer, M.; Mondal, M.; Wang, S.Y.; Moehle, K.; Zerbe, O.; Vitale, A.; Pessi, G.; et al. Thanatin targets the intermembrane protein complex required for lipopolysaccharide transport in Escherichia coli. Sci. Adv. 2018, 4, eaau2634. [Google Scholar] [CrossRef]
- Srinivas, N.; Jetter, P.; Ueberbacher, B.J.; Werneburg, M.; Zerbe, K.; Steinmann, J.; Van der Meijden, B.; Bernardini, F.; Lederer, A.; Dias, R.L.; et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 2010, 327, 1010–1013. [Google Scholar] [CrossRef]
- Ghassani, A.; Triponney, P.; Bour, M.; Plésiat, P.; Jeannot, K.; MucoMicrobes Study Group. Mutations in genes lpxL1, bamA, and pmrB impair the susceptibility of cystic fibrosis strains of Pseudomonas aeruginosa to murepavadin. Antimicrob. Agents Chemother. 2024, 68, e0129823. [Google Scholar] [CrossRef] [PubMed]
- Zampaloni, C.; Mattei, P.; Bleicher, K.; Winther, L.; Thäte, C.; Bucher, C.; Adam, J.M.; Alanine, A.; Amrein, K.E.; Baidin, V.; et al. A novel antibiotics class targeting the lipopolysaccharide transport. Nature 2024, 625, 566–571. [Google Scholar] [CrossRef]
- Pahil, K.S.; Gilman, M.S.A.; Baidin, V.; Clairfeuille, T.; Mattei, P.; Bieniossek, C.; Dey, F.; Muri, D.; Baettig, R.; Lobritz, M.; et al. A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature 2024, 625, 572–577. [Google Scholar] [CrossRef]
- Betton, J.M.; Boscus, D.; Missiakas, D.; Raina, S.; Hofnung, M. Probing the structural role of an α β loop of maltose-binding protein by mutagenesis: Heat-shock induction by loop variants of the maltose-binding protein that form periplasmic inclusion bodies. J. Mol. Biol. 1996, 262, 140–150. [Google Scholar] [CrossRef]
- Sineva, E.; Savkina, M.; Ades, S.E. Themes and variations in gene regulation by extracytoplasmic function (ECF) sigma factors. Curr. Opin. Microbiol. 2017, 36, 128–137. [Google Scholar] [CrossRef]
- Klein, G.; Raina, S. Small regulatory bacterial RNAs regulating the envelope stress response. Biochem. Soc. Trans. 2017, 45, 417–425. [Google Scholar] [CrossRef]
- Wei, X.; Gao, J.; Xu, C.; Pan, X.; Jin, Y.; Bai, F.; Cheng, Z.; Lamont, I.L.; Pletzer, D.; Wu, W. Murepavadin induces envelope stress response and enhances the killing efficacies of β-lactam antibiotics by impairing the outer membrane integrity of Pseudomonas aeruginosa. Microbiol. Spectr. 2023, 11, e0125723. [Google Scholar] [CrossRef]
- Dardelle, F.; Phelip, C.; Darabi, M.; Kondakova, T.; Warnet, X.; Combret, E.; Juranville, E.; Novikov, A.; Kerzerho, J.; Caroff, M. Diversity, complexity, and specificity of bacterial lipopolysaccharide (LPS) structures impacting their detection and quantification. Int. J. Mol. Sci. 2024, 25, 3927. [Google Scholar] [CrossRef]
- Krivoruchko, A.A.; Zdorovenko, E.L.; Ivanova, M.F.; Kostina, E.E.; Fedonenko, Y.P.; Shashkov, A.S.; Dmitrenok, A.S.; Ul’chenko, E.A.; Tkachenko, O.V.; Astankova, A.S.; et al. Structure, physicochemical properties and biological activity of lipopolysaccharide from the rhizospheric bacterium Ochrobactrum quorumnocens T1Kr02, containing D-fucose residues. Int. J. Mol. Sci. 2024, 25, 1970. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fu, L.; Zhang, S.; Wang, Y.; Gao, L. How alligator immune peptides kill Gram-negative bacteria: A lipid-scrambling, squeezing, and extracting mechanism revealed by theoretical simulations. Int. J. Mol. Sci. 2023, 24, 10962. [Google Scholar] [CrossRef] [PubMed]
- Maniyeri, A.; Wieczorek, A.; Ayyolath, A.; Sugalska, W.; Klein, G.; Raina, S. Suppressors of lapC mutation identify new regulators of LpxC, which mediates the first committed step in lipopolysaccharide biosynthesis. Int. J. Mol. Sci. 2023, 24, 15174. [Google Scholar] [CrossRef] [PubMed]
- Gourse, R.L.; Chen, A.Y.; Gopalkrishnan, S.; Sanchez-Vazquez, P.; Myers, A.; Ross, W. Transcription responses to ppGpp and DksA. Annu. Rev. Microbiol. 2018, 72, 163–184. [Google Scholar] [CrossRef] [PubMed]
- Wojtkiewicz, P.; Biernacka, D.; Gorzelak, P.; Stupak, A.; Klein, G.; Raina, S. Multicopy suppressor analysis to strain lacking cytoplasmic peptidyl-prolyl cis/trans isomerases identified three new PPIase activities in Escherichia coli that includes the DksA transcription factor. Int. J. Mol. Sci. 2020, 21, 5843. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ortega, J.; van Boxtel, R.; Plisnier, M.; Ingels, D.; Devos, N.; Sijmons, S.; Tommassen, J. Biosynthesis of the inner core of Bordetella pertussis lipopolysaccharides: Effect of mutations on LPS structure, cell division, and Toll-like receptor 4 activation. Int. J. Mol. Sci. 2023, 24, 17313. [Google Scholar] [CrossRef]
- Bácsi, A.; Ágics, B.; Pázmándi, K.; Kocsis, B.; Sándor, V.; Bertók, L.; Bruckner, G.; Sipka, S. Radiation-detoxified form of endotoxin effectively activates Th1 responses and attenuates ragweed-induced Th2-type airway inflammation in mice. Int. J. Mol. Sci. 2024, 25, 1581. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raina, S.; Klein, G. Lipopolysaccharide: Recent Advances in Its Biosynthesis and Controlling Cell Envelope Homeostasis. Int. J. Mol. Sci. 2025, 26, 7705. https://doi.org/10.3390/ijms26167705
Raina S, Klein G. Lipopolysaccharide: Recent Advances in Its Biosynthesis and Controlling Cell Envelope Homeostasis. International Journal of Molecular Sciences. 2025; 26(16):7705. https://doi.org/10.3390/ijms26167705
Chicago/Turabian StyleRaina, Satish, and Gracjana Klein. 2025. "Lipopolysaccharide: Recent Advances in Its Biosynthesis and Controlling Cell Envelope Homeostasis" International Journal of Molecular Sciences 26, no. 16: 7705. https://doi.org/10.3390/ijms26167705
APA StyleRaina, S., & Klein, G. (2025). Lipopolysaccharide: Recent Advances in Its Biosynthesis and Controlling Cell Envelope Homeostasis. International Journal of Molecular Sciences, 26(16), 7705. https://doi.org/10.3390/ijms26167705