Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4
Abstract
1. Introduction
2. Results
2.1. Overall Structure of the Apo FhCaBP4
2.2. Structural Comparison of FhCaBP4 with Its Homolog
2.3. Calcium-Induced Structural and Dynamical Changes
2.4. Drug-Binding and Thermal Stability Analysis
3. Discussion
4. Materials and Methods
4.1. Cloning and Recombinant Expression of FhCaBP4
4.2. Protein Purification and Crystallization
4.3. X-Ray Data Collection
4.4. Structure Solution and Refinement
4.5. Structural Analysis
4.6. Statistical Analysis
4.7. Molecular Modeling
4.8. MD Simulation
4.9. Microscale Thermophoresis (MST) Assays
4.10. Thermal Shift Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caravedo, M.A.; Cabada, M.M. Human fascioliasis: Current epidemiological status and strategies for diagnosis, treatment, and control. Res. Rep. Trop. Med. 2020, 11, 149–158. [Google Scholar] [CrossRef]
- Mehmood, K.; Zhang, H.; Sabir, A.J.; Abbas, R.Z.; Ijaz, M.; Durrani, A.Z.; Saleem, M.H.; Rehman, M.U.; Iqbal, M.K.; Wang, Y. A review on epidemiology, global prevalence and economical losses of fasciolosis in ruminants. Microb. Pathog. 2017, 109, 253–262. [Google Scholar] [CrossRef]
- Kelley, J.M.; Elliott, T.P.; Beddoe, T.; Anderson, G.; Skuce, P.; Spithill, T.W. Current threat of triclabendazole resistance in Fasciola hepatica. Trends Parasitol. 2016, 32, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-J.; Rosa, B.A.; Fernandez-Baca, M.V.; Ore, R.A.; Martin, J.; Ortiz, P.; Hoban, C.; Cabada, M.M.; Mitreva, M. Independent origins and non-parallel selection signatures of triclabendazole resistance in Fasciola hepatica. Nat. Commun. 2025, 16, 2996. [Google Scholar] [CrossRef] [PubMed]
- Beesley, N.J.; Cwiklinski, K.; Allen, K.; Hoyle, R.C.; Spithill, T.W.; La Course, E.J.; Williams, D.J.; Paterson, S.; Hodgkinson, J.E. A major locus confers triclabendazole resistance in Fasciola hepatica and shows dominant inheritance. PLoS Pathog. 2023, 19, e1011081. [Google Scholar] [CrossRef] [PubMed]
- Flores-Velázquez, L.M.; Ruiz-Campillo, M.T.; Herrera-Torres, G.; Martínez-Moreno, Á.; Martínez-Moreno, F.J.; Zafra, R.; Buffoni, L.; Rufino-Moya, P.J.; Molina-Hernández, V.; Pérez, J. Fasciolosis: Pathogenesis, host-parasite interactions, and implication in vaccine development. Front. Vet. Sci. 2023, 10, 1270064. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.; Cwiklinski, K.; Lalor, R.; O’Connell, B.; Robinson, M.W.; Gerlach, J.; Joshi, L.; Kilcoyne, M.; Dalton, J.P.; O’Neill, S.M. Fasciola hepatica Extracellular Vesicles isolated from excretory-secretory products using a gravity flow method modulate dendritic cell phenotype and activity. PLoS Neglected Trop. Dis. 2020, 14, e0008626. [Google Scholar] [CrossRef] [PubMed]
- Trelis, M.; Sánchez-López, C.M.; Sánchez-Palencia, L.F.; Ramírez-Toledo, V.; Marcilla, A.; Bernal, D. Proteomic analysis of extracellular vesicles from Fasciola hepatica hatching eggs and juveniles in culture. Front. Cell. Infect. Microbiol. 2022, 12, 903602. [Google Scholar] [CrossRef] [PubMed]
- Gramberg, S.; Puckelwaldt, O.; Schmitt, T.; Lu, Z.; Haeberlein, S. Spatial transcriptomics of a parasitic flatworm provides a molecular map of drug targets and drug resistance genes. Nat. Commun. 2024, 15, 8918. [Google Scholar] [CrossRef]
- Cwiklinski, K.; de la Torre-Escudero, E.; Trelis, M.; Bernal, D.; Dufresne, P.; Brennan, G.; O’Neill, S.; Tort, J.; Paterson, S.; Marcilla, A. The extracellular vesicles of the helminth pathogen, Fasciola hepatica: Biogenesis pathways and cargo molecules involved in parasite pathogenesis. Mol. Cell. Proteom. 2015, 14, 3258–3273. [Google Scholar] [CrossRef]
- Carson, J.; Thomas, C.M.; McGinty, A.; Takata, G.; Timson, D.J. The tegumental allergen-like proteins of Schistosoma mansoni: A biochemical study of SmTAL4-TAL13. Mol. Biochem. Parasitol. 2018, 221, 14–22. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Thomas, C.M.; Timson, D.J.; Van Raaij, M.J. Fasciola hepatica calcium-binding protein FhCaBP2: Structure of the dynein light chain-like domain. Parasitol. Res. 2016, 115, 2879–2886. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.M.; Timson, D.J. FhCaBP2: A Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Parasitology 2015, 142, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.; Thomas, C.M.; Timson, D.J. FhCaBP1 (FH22): A Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Exp. Parasitol. 2016, 170, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Banford, S.; Drysdale, O.; Hoey, E.M.; Trudgett, A.; Timson, D.J. FhCaBP3: A Fasciola hepatica calcium binding protein with EF-hand and dynein light chain domains. Biochimie 2013, 95, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Orr, R.; Kinkead, R.; Newman, R.; Anderson, L.; Hoey, E.M.; Trudgett, A.; Timson, D.J. FhCaBP4: A Fasciola hepatica calcium-binding protein with EF-hand and dynein light chain domains. Parasitol. Res. 2012, 111, 1707–1713. [Google Scholar] [CrossRef]
- Ehsan, M.; Hu, R.-S.; Hou, J.-L.; Elsheikha, H.M.; Li, X.-D.; Liang, P.-H.; Zhu, X.-Q. Fasciola gigantica tegumental calcium-binding EF-hand protein 4 exerts immunomodulatory effects on goat monocytes. Parasites Vectors 2021, 14, 276. [Google Scholar] [CrossRef]
- Barbar, E. Dynein light chain LC8 is a dimerization hub essential in diverse protein networks. Biochemistry 2008, 47, 503–508. [Google Scholar] [CrossRef]
- Jo, C.H.; Son, J.; Kim, S.; Oda, T.; Kim, J.; Lee, M.-R.; Sato, M.; Kim, H.T.; Unzai, S.; Park, S.-Y. Structural insights into a 20.8-kDa tegumental-allergen-like (TAL) protein from Clonorchis sinensis. Sci. Rep. 2017, 7, 1764. [Google Scholar] [CrossRef]
- Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 1.8; Schrödinger, LLC: New York, NY, USA, 2015.
- Holm, L.; Rosenstrom, P. Dali server: Conservation mapping in 3D. Nucleic Acids Res. 2010, 38, W545–W549. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Thomas, C.M.; Fitzsimmons, C.M.; Dunne, D.W.; Timson, D.J. Comparative biochemical analysis of three members of the Schistosoma mansoni TAL family: Differences in ion and drug binding properties. Biochimie 2015, 108, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.M.; Timson, D.J. A mysterious family of calcium-binding proteins from parasitic worms. Biochem. Soc. Trans. 2016, 44, 1005–1010. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Gifford, J.L.; Walsh, M.P.; Vogel, H.J. Structures and metal-ion-binding properties of the Ca2+-binding helix–loop–helix EF-hand motifs. Biochem. J. 2007, 405, 199–221. [Google Scholar] [CrossRef] [PubMed]
- Takeda, S.; Yamashita, A.; Maeda, K.; Maéda, Y. Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 2003, 424, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyaya, R.; Meador, W.E.; Means, A.R.; Quiocho, F.A. Calmodulin structure refined at 1.7 Å resolution. J. Mol. Biol. 1992, 228, 1177–1192. [Google Scholar] [CrossRef]
- Kim, S.; Cullis, D.N.; Feig, L.A.; Baleja, J.D. Solution structure of the Reps1 EH domain and characterization of its binding to NPF target sequences. Biochemistry 2001, 40, 6776–6785. [Google Scholar] [CrossRef]
- Yperman, K.; Papageorgiou, A.C.; Merceron, R.; De Munck, S.; Bloch, Y.; Eeckhout, D.; Jiang, Q.; Tack, P.; Grigoryan, R.; Evangelidis, T. Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding. Nat. Commun. 2021, 12, 3050. [Google Scholar] [CrossRef] [PubMed]
- Mayer, B.J. Endocytosis: EH domains lend a hand. Curr. Biol. 1999, 9, R70–R73. [Google Scholar] [CrossRef] [PubMed]
- Grabarek, Z. Structural basis for diversity of the EF-hand calcium-binding proteins. J. Mol. Biol. 2006, 359, 509–525. [Google Scholar] [CrossRef] [PubMed]
- Petri, E.T.; Ćelić, A.; Kennedy, S.D.; Ehrlich, B.E.; Boggon, T.J.; Hodsdon, M.E. Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2+-dependent regulation of polycystin-2 channel activity. Proc. Natl. Acad. Sci. USA 2010, 107, 9176–9181. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.A.; Durussel, I.; Scott, D.J.; Berchtold, M.W. Remodeling of the AB site of rat parvalbumin and oncomodulin into a canonical EF-hand. Eur. J. Biochem. 1999, 264, 790–799. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Chin, D.; Means, A.R. Calmodulin: A prototypical calcium sensor. Trends Cell Biol. 2000, 10, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Yamniuk, A.P.; Vogel, H.J. Calmodulin’s flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol. Biotechnol. 2004, 27, 33–57. [Google Scholar] [CrossRef]
- Osawa, M.; Kuwamoto, S.; Izumi, Y.; Yap, K.L.; Ikura, M.; Shibanuma, T.; Yokokura, H.; Hidaka, H.; Matsushima, N. Evidence for calmodulin inter-domain compaction in solution induced by W-7 binding. FEBS Lett. 1999, 442, 173–177. [Google Scholar] [CrossRef]
- Park, S.-K.; Friedrich, L.; Yahya, N.A.; Rohr, C.M.; Chulkov, E.G.; Maillard, D.; Rippmann, F.; Spangenberg, T.; Marchant, J.S. Mechanism of praziquantel action at a parasitic flatworm ion channel. Sci. Transl. Med. 2021, 13, eabj5832. [Google Scholar] [CrossRef] [PubMed]
- Marchant, J.S. Progress interrogating TRPMPZQ as the target of praziquantel. PLoS Negl. Trop. Dis. 2024, 18, e0011929. [Google Scholar] [CrossRef]
- Zam, W.O. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 1997, 276, 20. [Google Scholar] [CrossRef]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser crystallographic software. Appl. Crystallogr. 2007, 40, 658–674. [Google Scholar] [CrossRef]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.B.; Arendall, W.B.; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Higgins, D.G. Clustal Omega, accurate alignment of very large numbers of sequences. In Multiple Sequence Alignment Methods; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2014; Volume 1079, pp. 105–116. [Google Scholar]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef] [PubMed]
- Capra, J.A.; Singh, M. Predicting functionally important residues from sequence conservation. Bioinformatics 2007, 23, 1875–1882. [Google Scholar] [CrossRef]
- Dehouck, Y.; Kwasigroch, J.M.; Rooman, M.; Gilis, D. BeAtMuSiC: Prediction of changes in protein–protein binding affinity on mutations. Nucleic Acids Res. 2013, 41, W333–W339. [Google Scholar] [CrossRef]
- Rosner, B.; Glynn, R.J.; Ting Lee, M.-L. Incorporation of clustering effects for the Wilcoxon rank sum test: A large-sample approach. Biometrics 2003, 59, 1089–1098. [Google Scholar] [CrossRef]
- Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
Apo | |
---|---|
Data collection | |
Wavelength (Å) | 1.000 |
Space group | P212121 |
Cell dimensions | |
a, b, c (Å) | 62.25, 71.59, 93.80 |
α, β, γ (°) | 90, 90, 90 |
Resolution (Å) | 42–1.93 (1.999–1.93) |
Unique reflections | 32,204 (3178) |
Completeness | 99.95 (99.78) |
Redundancy | 2.0 (2.0) |
I/σ(I) | 9.45 (1.25) |
Rmerge (%) | 0.04585 (0.4531) |
Refinement statistics | |
Resolution (Å) | 42–1.93 |
Reflections used in refinement | 32,198 |
Rwork/Rfree (%) | 0.2026/0.2441 |
R.m.s deviations | |
Bond lengths (Å) | 0.008 |
Bond angles (°) | 1.04 |
Ramachandran plot (%) | |
Favored | 98.65 |
Allowed | 1.35 |
Sample | Ti Value 1 (°C) | Ti Value 2 (°C) |
---|---|---|
FhCaBP4 WT | 49.5 ± 0.5 | 68.0 ± 0.4 |
FhCaBP4 + Ca2+ | 76.2 ± 1.1 | |
FhCaBP4 + PZQ | 49.1 ± 1.8 | 69.5 ± 1.3 |
FhCaBP4 + CPZ | 47.8 ± 1.8 | 69.3 ± 0.7 |
FhCaBP4 + TFP | 46.8 ± 1.2 | 68.5 ± 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, B.; Park, S.; Park, I.; Shin, H.; Bang, K.; Kim, S.; Hwang, K.Y. Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4. Int. J. Mol. Sci. 2025, 26, 7584. https://doi.org/10.3390/ijms26157584
Shin B, Park S, Park I, Shin H, Bang K, Kim S, Hwang KY. Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4. International Journal of Molecular Sciences. 2025; 26(15):7584. https://doi.org/10.3390/ijms26157584
Chicago/Turabian StyleShin, Byeongmin, Seonha Park, Ingyo Park, Hongchul Shin, Kyuhyeon Bang, Sulhee Kim, and Kwang Yeon Hwang. 2025. "Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4" International Journal of Molecular Sciences 26, no. 15: 7584. https://doi.org/10.3390/ijms26157584
APA StyleShin, B., Park, S., Park, I., Shin, H., Bang, K., Kim, S., & Hwang, K. Y. (2025). Structural Insights and Calcium-Switching Mechanism of Fasciola hepatica Calcium-Binding Protein FhCaBP4. International Journal of Molecular Sciences, 26(15), 7584. https://doi.org/10.3390/ijms26157584