Identification of Differentially Expressed Genes and Pathways in Non-Diabetic CKD and Diabetic CKD by Integrated Human Transcriptomic Bioinformatics Analysis
Abstract
1. Introduction
2. Results
2.1. Dataset Compilation and Selection
2.2. Differential Expression Analysis Results
2.2.1. Chronic Kidney Disease Glomeruli and Tubulointerstitium Transcriptomic Profile Differences Between Cohorts
2.2.2. Similarities and Differences of Diabetic CKD Transcriptomic Profile with Non-Diabetic Cohort/Subcohorts
2.2.3. Expression Changes Across CKD Subtypes
2.3. Enriched Pathways in Chronic Kidney Diseases
3. Discussion
4. Materials and Methods
4.1. Data Selection
4.1.1. Databases Used and Search Strategies
4.1.2. Inclusion and Exclusion Criteria
4.1.3. Description and Selections of the Cohorts
4.2. Data Treatment and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGEs | advanced glycation end-products |
AI | autoimmune |
ANCA | anti-neutrophil cytoplasm antibodies |
BSA | bovine serum albumin |
CKD | chronic kidney disease |
DEGs | differentially expressed genes |
DPP4 | dipeptidyl peptidase 4 |
ECM | extracellular matrix |
FDR | false discovery rate |
GEO | gene expression omnibus |
GSEA | gene set enrichment analysis |
GWAS | genome-wide association studies |
HT | hypertensive |
logFC | log fold change |
NADH | nicotinamide adenine dinucleotide |
SGLT2 | sodium–glucose cotransporter 2 |
T2D | type 2 diabetes mellitus |
TCA | tricarboxylic acid |
References
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Hallan, S.I.; Matsushita, K.; Sang, Y.; Mahmoodi, B.K.; Black, C.; Ishani, A.; Kleefstra, N.; Naimark, D.; Roderick, P.; Tonelli, M.; et al. Age and Association of Kidney Measures with Mortality and End-Stage Renal Disease. JAMA 2012, 308, 2349–2360. [Google Scholar] [CrossRef]
- Ortiz, A.; Covic, A.; Fliser, D.; Fouque, D.; Goldsmith, D.; Kanbay, M.; Mallamaci, F.; Massy, Z.A.; Rossignol, P.; Vanholder, R.; et al. Epidemiology, Contributors to, and Clinical Trials of Mortality Risk in Chronic Kidney Failure. Lancet 2014, 383, 1831–1843. [Google Scholar] [CrossRef]
- Obrador, G.T.; Schultheiss, U.T.; Kretzler, M.; Langham, R.G.; Nangaku, M.; Pecoits-Filho, R.; Pollock, C.; Rossert, J.; Correa-Rotter, R.; Stenvinkel, P.; et al. Genetic and Environmental Risk Factors for Chronic Kidney Disease. Kidney Int. Suppl. 2017, 7, 88–106. [Google Scholar] [CrossRef]
- Satko, S.G.; Freedman, B.I. The Familial Clustering of Renal Disease and Related Phenotypes. Med. Clin. N. Am. 2005, 89, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Cañadas-Garre, M.; Anderson, K.; Cappa, R.; Skelly, R.; Smyth, L.J.; McKnight, A.J.; Maxwell, A.P. Genetic Susceptibility to Chronic Kidney Disease—Some More Pieces for the Heritability Puzzle. Front. Genet. 2019, 10, 453. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A.R.; Christiansen, J.S.; Andersen, J.K.; Kreiner, S.; Deckert, T. Diabetic Nephropathy in Type 1 (Insulin-Dependent) Diabetes: An Epidemiological Study. Diabetologia 1983, 25, 496–501. [Google Scholar] [CrossRef] [PubMed]
- O’Seaghdha, C.M.; Fox, C.S. Genome-Wide Association Studies of Chronic Kidney Disease: What Have We Learned? Nat. Rev. Nephrol. 2011, 8, 89–99. [Google Scholar] [CrossRef]
- Regele, F.; Jelencsics, K.; Shiffman, D.; Paré, G.; McQueen, M.J.; Mann, J.F.E.; Oberbauer, R. Genome-Wide Studies to Identify Risk Factors for Kidney Disease with a Focus on Patients with Diabetes. Nephrol. Dial. Transpl. 2015, 30 (Suppl. S4), iv26–iv34. [Google Scholar] [CrossRef]
- Giri, B.; Dey, S.; Das, T.; Sarkar, M.; Banerjee, J.; Dash, S.K. Chronic Hyperglycemia Mediated Physiological Alteration and Metabolic Distortion Leads to Organ Dysfunction, Infection, Cancer Progression and Other Pathophysiological Consequences: An Update on Glucose Toxicity. Biomed. Pharmacother. 2018, 107, 306–328. [Google Scholar] [CrossRef]
- Islam, S.; Moinuddin; Mir, A.R.; Arfat, M.Y.; Alam, K.; Ali, A. Studies on Glycoxidatively Modified Human IgG: Implications in Immuno-Pathology of Type 2 Diabetes Mellitus. Int. J. Biol. Macromol. 2017, 104, 19–29. [Google Scholar] [CrossRef]
- Düsing, P.; Zietzer, A.; Goody, P.R.; Hosen, M.R.; Kurts, C.; Nickenig, G.; Jansen, F. Vascular Pathologies in Chronic Kidney Disease: Pathophysiological Mechanisms and Novel Therapeutic Approaches. J. Mol. Med. 2021, 99, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Bai, H.; Jin, H.; Zhang, T.; Shi, B.; Cai, M.; Wang, Y. Outcomes in Kidney Transplantation with Mycophenolate Mofetil-Based Maintenance Immunosuppression in China: A Large-Sample Retrospective Analysis of a National Database. Transpl. Int. 2020, 33, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yuan, F.; Wu, T.; Lu, L.; Liu, J.; Feng, W.; Chen, S.Y. Sulforaphane Protects against Ethanol-Induced Apoptosis in Neural Crest Cells through Restoring Epithelial-Mesenchymal Transition by Epigenetically Modulating the Expression of Snail1. Biochim. Biophys. Acta. Mol. Basis Dis. 2019, 1865, 2586–2594. [Google Scholar] [CrossRef] [PubMed]
- Van Buren, P.N.; Toto, R. Hypertension in Diabetic Nephropathy: Epidemiology, Mechanisms, and Management. Adv. Chronic Kidney Dis. 2011, 18, 28–41. [Google Scholar] [CrossRef]
- Cooper, M.E. Pathogenesis, Prevention, and Treatment of Diabetic Nephropathy. Lancet 1998, 352, 213–219. [Google Scholar] [CrossRef]
- Gewin, L.S. TGF-β and Diabetic Nephropathy: Lessons Learned over the Past 20 Years. Am. J. Med. Sci. 2020, 359, 70–72. [Google Scholar] [CrossRef]
- Van Der Pijl, J.W.; Daha, M.R.; Van Den Born, J.; Verhagen, N.A.M.; Lemkes, H.H.P.J.; Bucala, R.; Berden, J.H.M.; Zwinderman, A.H.; Bruijn, J.A.; Van Es, L.A.; et al. Extracellular Matrix in Human Diabetic Nephropathy: Reduced Expression of Heparan Sulphate in Skin Basement Membrane. Diabetologia 1998, 41, 791–798. [Google Scholar] [CrossRef]
- Kim, S.H.; Turnbull, J.; Guimond, S. Extracellular Matrix and Cell Signalling: The Dynamic Cooperation of Integrin, Proteoglycan and Growth Factor Receptor. J. Endocrinol. 2011, 209, 139–151. [Google Scholar] [CrossRef]
- Wan, J.; Wang, Y.; Cai, G.; Liang, J.; Yue, C.; Wang, F.; Song, J.; Wang, J.; Liu, M.; Luo, J.; et al. Elevated Serum Concentrations of HE4 as a Novel Biomarker of Disease Severity and Renal Fibrosis in Kidney Disease. Oncotarget 2016, 7, 67748–67759. [Google Scholar] [CrossRef]
- Li, X.; Zhang, T.; Geng, J.; Wu, Z.; Xu, L.; Liu, J.; Tian, J.; Zhou, Z.; Nie, J.; Bai, X. Advanced Oxidation Protein Products Promote Lipotoxicity and Tubulointerstitial Fibrosis via CD36/β-Catenin Pathway in Diabetic Nephropathy. Antioxid. Redox Signal. 2019, 31, 521–538. [Google Scholar] [CrossRef] [PubMed]
- Taneda, S.; Pippin, J.W.; Sage, E.H.; Hudkins, K.L.; Takeuchi, Y.; Couser, W.G.; Alpers, C.E. Amelioration of Diabetic Nephropathy in SPARC-Null Mice. J. Am. Soc. Nephrol. 2003, 14, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, L.; Raslik, I.; Gröne, H.; Schönherr, E.; Macakova, K.; Ugorcakova, J.; Budny, S.; Schaefer, R.M.; Kresse, H. Small Proteoglycans in Human Diabetic Nephropathy: Discrepancy between Glomerular Expression and Protein Accumulation of Decorin, Biglycan, Lumican, and Fibromodulin. FASEB J. 2001, 15, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Rong, G.; Gu, J.; Fan, C.; Guo, T.; Jiang, T.; Deng, W.; Xie, J.; Su, Z.; Yu, Q.; et al. Nicotinamide N-Methyltransferase Ameliorates Renal Fibrosis by Its Metabolite 1-Methylnicotinamide Inhibiting the TGF-Β1/Smad3 Pathway. FASEB J. 2022, 36, e22084. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, Z.; Du, Y.; Chen, H. Bioinformatics Analysis Reveals Novel Hub Gene Pathways Associated with IgA Nephropathy. Eur. J. Med. Res. 2020, 25, 40. [Google Scholar] [CrossRef]
- Imai, T.; Hieshima, K.; Haskell, C.; Baba, M.; Nagira, M.; Nishimura, M.; Kakizaki, M.; Takagi, S.; Nomiyama, H.; Schall, T.J.; et al. Identification and Molecular Characterization of Fractalkine Receptor CX3CR1, Which Mediates Both Leukocyte Migration and Adhesion. Cell 1997, 91, 521–530. [Google Scholar] [CrossRef]
- Duarte Abreu, M.A.; de Castro, P.A.S.V.; Moreira, F.R.C.; de Oliveira Ferreira, H.; Simões e Silva, A.C. Potential Role of Novel Cardiovascular Biomarkers in Pediatric Patients with Chronic Kidney Disease. Mini Rev. Med. Chem. 2024, 24, 491–506. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Z.; Zhou, L.; Cai, T.; Liu, B.; Wang, L.; Yang, J. Identification of CCL19 as a Novel Immune-Related Biomarker in Diabetic Nephropathy. Front. Genet. 2022, 13, 830437. [Google Scholar] [CrossRef]
- Winnier, D.A.; Fourcaudot, M.; Norton, L.; Abdul-Ghani, M.A.; Hu, S.L.; Farook, V.S.; Coletta, D.K.; Kumar, S.; Puppala, S.; Chittoor, G.; et al. Transcriptomic Identification of ADH1B as a Novel Candidate Gene for Obesity and Insulin Resistance in Human Adipose Tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES). PLoS ONE 2015, 10, e0119941. [Google Scholar] [CrossRef]
- Gallo, D.; Cocchietto, M.; Masat, E.; Agostinis, C.; Harei, E.; Veronesi, P.; Sava, G. Human Recombinant Lysozyme Downregulates Advanced Glycation Endproduct-Induced Interleukin-6 Production and Release in an in-Vitro Model of Human Proximal Tubular Epithelial Cells. Exp. Biol. Med. 2014, 239, 337–346. [Google Scholar] [CrossRef]
- Lai, S.; Gaudio, C.; Perrotta, A.M.; Iorio, R.; Asllanaj, B.; Ferrigno, L.; Mangiulli, M.; Mariotti, A.; Menè, P.; Mazzaferro, S.; et al. Relationships between Diabetic Nephropathy and Insulin Resistance, Inflammation, Trx, Txnip, CysC and Serum Complement Levels. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 11690–11699. [Google Scholar] [PubMed]
- Susztak, K.; Ciccone, E.; McCue, P.; Sharma, K.; Böttinger, E.P. Multiple Metabolic Hits Converge on CD36 as Novel Mediator of Tubular Epithelial Apoptosis in Diabetic Nephropathy. PLoS Med. 2005, 2, e45. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, K.; Bock, F.; Al-Dabet, M.M.; Gadi, I.; Kohli, S.; Nazir, S.; Ghosh, S.; Ranjan, S.; Wang, H.; Madhusudhan, T.; et al. Caspase-1, but Not Caspase-3, Promotes Diabetic Nephropathy. J. Am. Soc. Nephrol. 2016, 27, 2270–2275. [Google Scholar] [CrossRef]
- Birnbaum, Y.; Bajaj, M.; Yang, H.C.; Ye, Y. Combined SGLT2 and DPP4 Inhibition Reduces the Activation of the Nlrp3/ASC Inflammasome and Attenuates the Development of Diabetic Nephropathy in Mice with Type 2 Diabetes. Cardiovasc. Drugs Ther. 2018, 32, 135–145. [Google Scholar] [CrossRef]
- Chong, W.C.; Shastri, M.D.; Peterson, G.M.; Patel, R.P.; Pathinayake, P.S.; Dua, K.; Hansbro, N.G.; Hsu, A.C.; Wark, P.A.; Shukla, S.D.; et al. The Complex Interplay between Endoplasmic Reticulum Stress and the NLRP3 Inflammasome: A Potential Therapeutic Target for Inflammatory Disorders. Clin. Transl. Immunol. 2021, 10, e1247. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Niño, M.D.; Benito-Martin, A.; Ortiz, A. New Paradigms in Cell Death in Human Diabetic Nephropathy. Kidney Int. 2010, 78, 737–744. [Google Scholar] [CrossRef]
- Lake, B.B.; Menon, R.; Winfree, S.; Hu, Q.; Ferreira, R.M.; Kalhor, K.; Barwinska, D.; Otto, E.A.; Ferkowicz, M.; Diep, D.; et al. An Atlas of Healthy and Injured Cell States and Niches in the Human Kidney. Nature 2023, 619, 585–594. [Google Scholar] [CrossRef]
- Shao, B.Y.; Zhang, S.F.; Li, H.D.; Meng, X.M.; Chen, H.Y. Epigenetics and Inflammation in Diabetic Nephropathy. Front. Physiol. 2021, 12, 649587. [Google Scholar] [CrossRef]
- Xu, C.; Ha, X.; Yang, S.; Tian, X.; Jiang, H. Advances in Understanding and Treating Diabetic Kidney Disease: Focus on Tubulointerstitial Inflammation Mechanisms. Front. Endocrinol. 2023, 14, 1232790. [Google Scholar] [CrossRef]
- Wang, M.; Pang, Y.; Guo, Y.; Tian, L.; Liu, Y.; Shen, C.; Liu, M.; Meng, Y.; Cai, Z.; Wang, Y.; et al. Metabolic Reprogramming: A Novel Therapeutic Target in Diabetic Kidney Disease. Front. Pharmacol. 2022, 13, 970601. [Google Scholar] [CrossRef]
- Adamczak, M.; Surma, S. Metabolic Acidosis in Patients with CKD: Epidemiology, Pathogenesis, and Treatment. Kidney Dis. 2021, 7, 452–467. [Google Scholar] [CrossRef]
- Li, Y.; Sha, Z.; Peng, H. Metabolic Reprogramming in Kidney Diseases: Evidence and Therapeutic Opportunities. Int. J. Nephrol. 2021, 2021, 5497346. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Chen, X. Fatty Acid β-Oxidation in Kidney Diseases: Perspectives on Pathophysiological Mechanisms and Therapeutic Opportunities. Front. Pharmacol. 2022, 13, 805281. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI Gene Expression and Hybridization Array Data Repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Athar, A.; Füllgrabe, A.; George, N.; Iqbal, H.; Huerta, L.; Ali, A.; Snow, C.; Fonseca, N.A.; Petryszak, R.; Papatheodorou, I.; et al. ArrayExpress Update—From Bulk to Single-Cell Expression Data. Nucleic Acids Res. 2019, 47, D711–D715. [Google Scholar] [CrossRef]
- Grayson, P.C.; Eddy, S.; Taroni, J.N.; Lightfoot, Y.L.; Mariani, L.; Parikh, H.; Lindenmeyer, M.T.; Ju, W.; Greene, C.S.; Godfrey, B.; et al. Metabolic Pathways and Immunometabolism in Rare Kidney Diseases. Ann. Rheum. Dis. 2018, 77, 1227–1234. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Rivals, I.; Personnaz, L.; Taing, L.; Potier, M.C. Enrichment or Depletion of a GO Category within a Class of Genes: Which Test? Bioinformatics 2007, 23, 401–407. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrios, C.; Riera, M.; Rodríguez, E.; Márquez, E.; del Risco, J.; Pilco, M.; Huesca, J.; González, A.; Martyn, C.; Pujol, J.; et al. Identification of Differentially Expressed Genes and Pathways in Non-Diabetic CKD and Diabetic CKD by Integrated Human Transcriptomic Bioinformatics Analysis. Int. J. Mol. Sci. 2025, 26, 7421. https://doi.org/10.3390/ijms26157421
Barrios C, Riera M, Rodríguez E, Márquez E, del Risco J, Pilco M, Huesca J, González A, Martyn C, Pujol J, et al. Identification of Differentially Expressed Genes and Pathways in Non-Diabetic CKD and Diabetic CKD by Integrated Human Transcriptomic Bioinformatics Analysis. International Journal of Molecular Sciences. 2025; 26(15):7421. https://doi.org/10.3390/ijms26157421
Chicago/Turabian StyleBarrios, Clara, Marta Riera, Eva Rodríguez, Eva Márquez, Jimena del Risco, Melissa Pilco, Jorge Huesca, Ariadna González, Claudia Martyn, Jordi Pujol, and et al. 2025. "Identification of Differentially Expressed Genes and Pathways in Non-Diabetic CKD and Diabetic CKD by Integrated Human Transcriptomic Bioinformatics Analysis" International Journal of Molecular Sciences 26, no. 15: 7421. https://doi.org/10.3390/ijms26157421
APA StyleBarrios, C., Riera, M., Rodríguez, E., Márquez, E., del Risco, J., Pilco, M., Huesca, J., González, A., Martyn, C., Pujol, J., Buxeda, A., & Crespo, M. (2025). Identification of Differentially Expressed Genes and Pathways in Non-Diabetic CKD and Diabetic CKD by Integrated Human Transcriptomic Bioinformatics Analysis. International Journal of Molecular Sciences, 26(15), 7421. https://doi.org/10.3390/ijms26157421