Platelet-Related Biomarkers and Efficacy of Antiplatelet Therapy in Patients with Aortic Stenosis and Coronary Artery Disease
Abstract
1. Introduction
2. Results
2.1. Clinical and Laboratory Characteristics
2.2. Echocardiographic Characteristics of the AS Group
2.3. Platelet Aggregometry
2.4. Biomarkers Serum Levels: AS with CAD vs. CAD
2.5. Correlation Analysis
2.6. Results of 12-Month Follow-Up
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Clinical Assessment
4.3. Transthoracic Echocardiography
4.4. Biomarkers—Fluorescent Bead-Based Luminex Assays
4.5. Platelet Function Tests—Optical Aggregometry
4.6. A 12-Month Follow-Up
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AS | aortic stenosis |
AVA | aortic valve area |
BMI | body mass index |
CAD | coronary artery disease |
CCS | Canadian Cardiovascular Society |
CD | cluster of differentiation |
COPD | chronic obstructive pulmonary disease |
E/E′ | ratio of early mitral inflow velocity to early diastolic mitral annular velocity |
EDD | end-diastolic diameter |
EDV | end-diastolic volume |
EF | ejection fraction |
ESD | end-systolic diameter |
ESV | end-systolic volume |
eGFR | estimated glomerular filtration rate |
GLS | global longitudinal strain |
HDL | high-density lipoprotein |
IVS | interventricular septum thickness |
LA area | left atrium area |
LDL | low-density lipoprotein |
LV | left ventricular |
MACCE | major adverse cardiovascular and cerebrovascular event |
MCV | mean corpuscular volume |
MPV | mean platelet volume |
NYHA | New York Heart Association |
PAD | peripheral artery disease |
PDW | platelet distribution width |
PF4 | platelet factor 4 |
Pmax | maximum pressure gradient |
Pmean | mean pressure gradient |
PW | posterior wall thickness |
Q1 | first quartile |
Q3 | third quartile |
Svi | stroke volume index |
TM | thrombomodulin |
Vmax | maximum velocity |
VICs | valvular interstitial cells |
Zva | valvulo-arterial impedance |
References
- Bouchareb, R.; Boulanger, M.C.; Tastet, L.; Mkannez, G.; Nsaibia, M.J.; Hadji, F.; Dahou, A.; Messadeq, Y.; Arsenault, B.J.; Pibarot, P.; et al. Activated platelets promote an osteogenic programme and the progression of calcific aortic valve stenosis. Eur. Heart J. 2019, 40, 1362–1373. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.R.; Clavel, M.A.; Mathieu, P.; Iung, B.; Lancellotti, P.; Otto, C.M.; Pibarot, P. Calcific aortic stenosis. Nat. Rev. Dis. Primers. 2016, 2, 16006. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; Pesce, M. The Complex Interplay of Inflammation, Metabolism, Epigenetics, and Sex in Calcific Disease of the Aortic Valve. Front. Cardiovasc. Med. 2022, 8, 791646. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Xiong, Z.; Christopher, O.; Huang, Z.; Xu, C.; Liu, M.; Li, M.; Guo, Z.; Liao, X.; Zhuang, X. Low-Density Lipoprotein Cholesterol, Type 2 Diabetes and Progression of Aortic Stenosis: The RED-CARPET Heart Valve Subgroup Cohort Study. Rev. Cardiovasc. Med. 2024, 25, 276. [Google Scholar] [CrossRef] [PubMed]
- Parisi, V.; Leosco, D.; Ferro, G.; Bevilacqua, A.; Pagano, G.; de Lucia, C.; Perrone Filardi, P.; Caruso, A.; Rengo, G.; Ferrara, N. The lipid theory in the pathogenesis of calcific aortic stenosis. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Yuan, Z.; Li, F.; Cai, Z. Oxidative stress and valvular endothelial cells in aortic valve calcification. Biomed. Pharmacother. 2023, 163, 114775. [Google Scholar] [CrossRef] [PubMed]
- Bańka, P.; Wybraniec, M.; Bochenek, T.; Gruchlik, B.; Burchacka, A.; Swinarew, A.; Mizia-Stec, K. Influence of Aortic Valve Stenosis and Wall Shear Stress on Platelets Function. J. Clin. Med. 2023, 12, 6301. [Google Scholar] [CrossRef] [PubMed]
- Kanda, H.; Yamakuchi, M.; Matsumoto, K.; Mukaihara, K.; Shigehisa, Y.; Tachioka, S.; Okawa, M.; Takenouchi, K.; Oyama, Y.; Hashiguchi, T.; et al. Dynamic changes in platelets caused by shear stress in aortic valve stenosis. Clin. Hemorheol. Microcirc. 2021, 77, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Pareti, F.I.; Lattuada, A.; Bressi, C.; Zanobini, M.; Sala, A.; Steffan, A.; Ruggeri, Z.M. Proteolysis of von Willebrand factor and shear stress-induced platelet aggregation in patients with aortic valve stenosis. Circulation 2000, 102, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, K.S.; Gotlieb, A.I. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Investig. 2005, 85, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Bortot, M.; Ashworth, K.; Sharifi, A.; Walker, F.; Crawford, N.C.; Neeves, K.B.; Bark, D., Jr.; Di Paola, J. Turbulent Flow Promotes Cleavage of VWF (von Willebrand Factor) by ADAMTS13 (A Disintegrin and Metalloproteinase with a Thrombospondin Type-1 Motif, Member 13). Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1831–1842. [Google Scholar] [CrossRef] [PubMed]
- Vahidkhah, K.; Cordasco, D.; Abbasi, M.; Ge, L.; Tseng, E.; Bagchi, P.; Azadani, A.N. Flow-Induced Damage to Blood Cells in Aortic Valve Stenosis. Ann. Biomed. Eng. 2016, 44, 2724–2736. [Google Scholar] [CrossRef] [PubMed]
- Lichtenberger, L.M.; Fang, D.; Bick, R.J.; Poindexter, B.J.; Phan, T.; Bergeron, A.L.; Pradhan, S.; Dial, E.J.; Vijayan, K.V. Unlocking Aspirin’s Chemopreventive Activity: Role of Irreversibly Inhibiting Platelet Cyclooxygenase-1. Cancer Prev. Res. 2017, 10, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Dorsam, R.T.; Kunapuli, S.P. Central role of the P2Y12 receptor in platelet activation. J. Clin. Investig. 2004, 113, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Sellers, S.L.; Gulsin, G.S.; Zaminski, D.; Bing, R.; Latib, A.; Sathananthan, J.; Pibarot, P.; Bouchareb, R. Platelets: Implications in Aortic Valve Stenosis and Bioprosthetic Valve Dysfunction from Pathophysiology to Clinical Care. JACC Basic Transl. Sci. 2021, 6, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- Vincentelli, A.; Susen, S.; Le Tourneau, T.; Six, I.; Fabre, O.; Juthier, F.; Bauters, A.; Decoene, C.; Goudemand, J.; Prat, A.; et al. Acquired von Willebrand syndrome in aortic stenosis. N. Engl. J. Med. 2003, 349, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Waldschmidt, L.; Seiffert, M. Heyde syndrome: Treat aortic valve disease to stop gastrointestinal bleeding? Eur. Heart J. 2023, 44, 3178–3180. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Park, K.W.; Lee, H.; Hwang, D.; Yang, H.M.; Rha, S.W.; Bae, J.W.; Lee, N.H.; Hur, S.H.; Han, J.K.; et al. Aspirin Versus Clopidogrel for Long-Term Maintenance Monotherapy After Percutaneous Coronary Intervention: The HOST-EXAM Extended Study. Circulation 2023, 147, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.K.; Kang, J.; Park, K.W.; Rhee, T.M.; Yang, H.M.; Won, K.B.; Rha, S.W.; Bae, J.W.; Lee, N.H.; Hur, S.H.; et al. Aspirin versus clopidogrel for chronic maintenance monotherapy after percutaneous coronary intervention (HOST-EXAM): An investigator-initiated, prospective, randomised, open-label, multicentre trial. Lancet 2021, 397, 2487–2496. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.H.; Park, Y.H.; Lee, J.Y.; Jeong, J.O.; Kim, C.J.; Yun, K.H.; Lee, H.C.; Chang, K.; Park, M.W.; Bae, J.W.; et al. Efficacy and safety of clopidogrel versus aspirin monotherapy in patients at high risk of subsequent cardiovascular event after percutaneous coronary intervention (SMART-CHOICE 3): A randomised, open-label, multicentre trial. Lancet 2025, 405, 1252–1263. [Google Scholar] [CrossRef] [PubMed]
- Loghmani, H.; Conway, E.M. Exploring traditional and nontraditional roles for thrombomodulin. Blood 2018, 132, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Laszik, Z.G.; Zhou, X.J.; Ferrell, G.L.; Silva, F.G.; Esmon, C.T. Down-regulation of endothelial expression of endothelial cell protein C receptor and thrombomodulin in coronary atherosclerosis. Am. J. Pathol. 2001, 159, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.J.; Li, Y.H.; Shi, G.Y.; Liu, S.L.; Chang, P.C.; Kuo, C.H.; Wu, H.L. Thrombomodulin domains attenuate atherosclerosis by inhibiting thrombin-induced endothelial cell activation. Cardiovasc. Res. 2011, 92, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.A.; Rauova, L.; Poncz, M. Role of the platelet chemokine platelet factor 4 (PF4) in hemostasis and thrombosis. Thromb. Res. 2010, 125, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Greinacher, A.; Warkentin, T.E. Platelet factor 4 triggers thrombo-inflammation by bridging innate and adaptive immunity. Int. J. Lab. Hematol. 2023, 45 (Suppl. 2), 11–22. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Furie, B.C.; Furie, B. The biology of P-selectin glycoprotein ligand-1: Its role as a selectin counterreceptor in leukocyte-endothelial and leukocyte-platelet interaction. Thromb. Haemost. 1999, 81, 1–7. [Google Scholar] [PubMed]
- Théorêt, J.F.; Yacoub, D.; Hachem, A.; Gillis, M.A.; Merhi, Y. P-selectin ligation induces platelet activation and enhances microaggregate and thrombus formation. Thromb. Res. 2011, 128, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, Y.; Kawashima, S.; Mori, T.; Terashima, M.; Ichikawa, S.; Ejiri, J.; Awano, K. Soluble CD40 ligand and interleukin-6 in the coronary circulation after acute myocardial infarction. Int. J. Cardiol. 2006, 112, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Cognasse, F.; Duchez, A.C.; Audoux, E.; Ebermeyer, T.; Arthaud, C.A.; Prier, A.; Eyraud, M.A.; Mismetti, P.; Garraud, O.; Bertoletti, L.; et al. Platelets as Key Factors in Inflammation: Focus on CD40L/CD40. Front. Immunol. 2022, 13, 825892. [Google Scholar] [CrossRef] [PubMed]
- Gerdes, N.; Seijkens, T.; Lievens, D.; Kuijpers, M.J.; Winkels, H.; Projahn, D.; Hartwig, H.; Beckers, L.; Megens, R.T.; Boon, L.; et al. Platelet CD40 Exacerbates Atherosclerosis by Transcellular Activation of Endothelial Cells and Leukocytes. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Morser, J. Thrombomodulin links coagulation to inflammation and immunity. Curr. Drug Targets 2012, 13, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Bouchareb, R.; Mahmut, A.; Nsaibia, M.J.; Boulanger, M.C.; Dahou, A.; Lépine, J.L.; Laflamme, M.H.; Hadji, F.; Couture, C.; Trahan, S.; et al. Autotaxin Derived from Lipoprotein(a) and Valve Interstitial Cells Promotes Inflammation and Mineralization of the Aortic Valve. Circulation 2015, 132, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Kaden, J.J.; Dempfle, C.E.; Grobholz, R.; Fischer, C.S.; Vocke, D.C.; Kiliç, R.; Sarikoç, A.; Piñol, R.; Hagl, S.; Lang, S.; et al. Inflammatory regulation of extracellular matrix remodeling in calcific aortic valve stenosis. Cardiovasc. Pathol. 2005, 14, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Welsby, I.J.; Krakow, E.F.; Heit, J.A.; Williams, E.C.; Arepally, G.M.; Bar-Yosef, S.; Kong, D.F.; Martinelli, S.; Dhakal, I.; Liu, W.W.; et al. The association of anti-platelet factor 4/heparin antibodies with early and delayed thromboembolism after cardiac surgery. J. Thromb. Haemost. 2017, 15, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Gremmel, T.; Fedrizzi, S.; Weigel, G.; Eichelberger, B.; Panzer, S. Underlying mechanism and specific prevention of hemolysis-induced platelet activation. Platelets 2017, 28, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Helms, C.C.; Marvel, M.; Zhao, W.; Stahle, M.; Vest, R.; Kato, G.J.; Lee, J.S.; Christ, G.; Gladwin, M.T.; Hantgan, R.R.; et al. Mechanisms of hemolysis-associated platelet activation. J. Thromb. Haemost. 2013, 11, 2148–2154. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Kim, J.S.; Kim, H.O.; Lee, S.R.; Rhew, J.H.; Woo, J.S.; Cho, J.H.; Jeong, K.H.; Kim, W. Platelet activity with hemoglobin level in patients with hemodialysis: Prospective study. Medicine 2020, 99, e19336. [Google Scholar] [CrossRef] [PubMed]
- Kakouros, N.; Kickler, T.S.; Laws, K.M.; Rade, J.J. Hematocrit alters VerifyNow P2Y12 assay results independently of intrinsic platelet reactivity and clopidogrel responsiveness. J. Thromb. Haemost. 2013, 11, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
- Pendyala, L.K.; Loh, J.P.; Lhermusier, T.; Minha, S.; Magalhaes, M.A.; Torguson, R.; Chen, F.; Satler, L.F.; Pichard, A.D.; Waksman, R. Does baseline hematocrit influence the assays of on-treatment platelet reactivity to clopidogrel? Am. Heart J. 2014, 168, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Janssen, P.W.; Bergmeijer, T.O.; Godschalk, T.C.; Le, T.T.; Breet, N.J.; Kelder, J.C.; Hackeng, C.M.; Ten Berg, J.M. The effect of correcting VerifyNow P2Y12 assay results for hematocrit in patients undergoing percutaneous coronary interventions. J. Thromb. Haemost. 2017, 15, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.G.; Suh, J.W.; Sibbing, D.; Kastrati, A.; Ko, Y.G.; Jang, Y.; Cho, Y.S.; Youn, T.J.; Chae, I.H.; Choi, D.J.; et al. A laboratory association between hemoglobin and VerifyNow P2Y12 reaction unit: A systematic review and meta-analysis. Am. Heart J. 2017, 188, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, P.; Zamorano, J.Z.; Habib, G.; Badano, L. (Eds.) The EACVI Textbook of Echocardiography (2 edn). In The European Society of Cardiology Textbooks; Oxford University Press: Oxford, UK, 2016. [Google Scholar] [CrossRef]
- Nielsen, H.L.; Kristensen, S.D.; Thygesen, S.S.; Mortensen, J.; Pedersen, S.B.; Grove, E.L.; Hvas, A.M. Aspirin response evaluated by the VerifyNow Aspirin System and light transmission aggregometry. Thromb. Res. 2008, 123, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.H.; Bliden, K.P.; Antonino, M.J.; Park, K.S.; Tantry, U.S.; Gurbel, P.A. Usefulness of the VerifyNow P2Y12 assay to evaluate the antiplatelet effects of ticagrelor and clopidogrel therapies. Am. Heart J. 2012, 164, 35–42. [Google Scholar] [CrossRef] [PubMed]
AS and CAD (N = 49) | CAD (N = 29) | p Value | |
---|---|---|---|
Male (%), Female% | 27 (55.2%), 22 (44.8%) | 16 (55.1%), 13 (44.9%) | 0.995 |
Age (mean; SD) | 74.76 ± 12.4 | 73.34 ± 4.5 | 0.473 |
Height (cm) | 166.49 ± 9.3 | 166.24 ± 17.4 | 0.668 |
BMI (kg/m2) | 28.12 ± 4.3 | 28.04 ± 3.2 | 0.840 |
NYHA class (mean; SD) | 2.51 ± 0.8 | 1.59 ± 1.1 | 0.001 |
CCS class (mean; SD) | 1.35 ± 1.2 | 1.72 ± 1.4 | 0.224 |
Hypertension (%) | 42 (91.3%) | 27 (93.1%) | 0.780 |
CAD (%) | 35 (71.4%) | 21 (72.4%) | 0.926 |
Diabetes (%) | 13 (27.1%) | 8 (27.6%) | 0.962 |
Dyslipidemia (%) | 41 (87.2%) | 28 (96.6%) | 0.172 |
Hypothyroidism (%) | 9 (19.1%) | 3 (10.3%) | 0.307 |
Smoking (%) | 7 (14.9%) | 12 (41.4%) | 0.010 |
COPD (%) | 3 (6.5%) | 3 (10.3%) | 0.552 |
PAD (%) | 14 (29.8%) | 5 (17.2%) | 0.220 |
AS and CAD (N = 49) | CAD (N = 29) | p Value | |
---|---|---|---|
Red blood cell [106/μL] | 4.32 ± 0.6 | 4.43 ± 0.5 | 0.374 |
Hemoglobin [g/dL) | 13.17 ± 1.8 | 13.32 ± 1.8 | 0.432 |
Hematocrit [%] | 38.77 ± 5 | 40 ± 4 | 0.243 |
MCV [fL] | 87.9 ± 13.3 | 90.35 ± 3.9 | 0.294 |
White blood cell [103/μL] | 7.72 ± 1.9 | 7.11 ± 1.6 | 0.117 |
Neutrophils [103/μL] | 5.02 ± 1.8 | 4.55 ± 1.2 | 0.278 |
Lymphocytes [103/μL] | 1.74 ± 0.6 | 1.81 ± 0.5 | 0.438 |
Platelets [103/μL] | 211.92 ± 61.1 | 217.93 ± 66 | 0.616 |
MPV [fL] | 10.7 ± 0.8 | 10.87 ± 1 | 0.559 |
PDW [%] | 12.56 ± 1.9 | 13.01 ± 2.3 | 0.522 |
INR | 1.05 ± 0.1 | 1.05 ± 0.1 | 0.923 |
APPT [s] | 29.92 ± 4.9 | 30.05 ± 8.5 | 0.661 |
Glucose [mg/dL] | 103.71 ± 23.9 | 103.48 ± 15.1 | 0.678 |
Creatinine [mg/dL] | 1.13 ± 0.6 | 0.9 ± 0.1 | 0.012 |
eGFR Cockcroft-Gault [mL/min] | 64.91 ± 22.2 | 75.21 ± 15.3 | 0.009 |
Total cholesterol [mg/dL] | 159.85 ± 40.3 | 144.41 ± 43.7 | 0.062 |
LDL [mg/dL] | 84.48 ± 35.6 | 74.93 ± 39.5 | 0.203 |
HDL [mg/dL] | 54.54 ± 19.1 | 49.1 ± 10.7 | 0.377 |
Triglycerides [mg/dL] | 104.58 ± 29.8 | 101.93 ± 48.4 | 0.147 |
AS and CAD (N = 49) | CAD (N = 29) | p Value | |
---|---|---|---|
Left ventricular parameters | |||
LV EDD [mm] | 48.2 ± 6.4 | 50.62 ± 7.4 | 0.184 |
LV ESD [mm] | 30.41 ± 7.6 | 30.83 ± 7.2 | 0.642 |
IVS [mm] | 14.49 ± 2.7 | 11.66 ± 2.9 | 0.001 |
PW [mm] | 11.29 ± 1.6 | 9.34 ± 1.5 | 0.001 |
LV EDV [mL] | 117.76 ± 40.9 | 114.76 ± 29.4 | 0.873 |
LV ESV [mL] | 55.25 ± 36.6 | 51.38 ± 17 | 0.465 |
LV EF [%] | 55.1 ± 11.5 | 55.17 ± 5.2 | 0.222 |
LV SVi [mL/m2] | 36.31 ± 10.5 | 32.98 ± 6.9 | 0.149 |
LV GLS [%] | −13.99 ± 3.1 | −16.91 ± 3.3 | 0.001 |
Other parameters | |||
Zva [mmHg/mL/m2] | 5.5 ± 1.8 | 4.47 ± 1.1 | 0.003 |
LA area [cm2] | 22.41 ± 3.9 | 21.93 ± 5 | 0.608 |
E/E′ | 15.88 ± 6.6 | 10.43 ± 4.3 | 0.001 |
AS and CAD (N = 49) | CAD (N = 29) | p Value | |
---|---|---|---|
TM [ng/mL] | 7.64 ± 3.5 | 6.28 ± 2.1 | 0.011 |
PF4 [μg/mL] | 25.16 Q1: 8.3; Q3: 29.6 | 12.85 Q1: 5.7; Q3: 14.5 | 0.021 |
P-selectin [ng/mL] | 55.83 ± 20.4 | 54.87 ± 23 | 0.747 |
CD40L [ng/mL] | 4.59 Q1: 2.2; Q3: 6 | 4.85 Q1: 1.8; Q3: 8.2 | 0.656 |
ASPI [ARU] | 474.04 ± 66.7 | 471.31 ± 56.2 | 0.822 |
ADP [PRU] | 224.88 ± 46.4 | 216.62 ± 29.6 | 0.394 |
Hematocrit | Hemoglobin | CD40L | |
---|---|---|---|
P-selectin | r = 0.2659 | r = 0.2471 | r = 0.3617 |
p = 0.019 | p = 0.030 | p = 0.011 | |
PF 4 | N.S. | N.S. | N.S. |
TM | r = −0.3369 | r = −0.2978 | N.S. |
p = 0.003 | p = 0.008 | ||
PRU | r = −0.4871 | r = −0.3797 | N.S. |
p = 0.001 | p = 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bańka, P.; Czepczor, K.; Podolski, M.; Kosowska, A.; Garczorz, W.; Francuz, T.; Wybraniec, M.; Mizia-Stec, K. Platelet-Related Biomarkers and Efficacy of Antiplatelet Therapy in Patients with Aortic Stenosis and Coronary Artery Disease. Int. J. Mol. Sci. 2025, 26, 7083. https://doi.org/10.3390/ijms26157083
Bańka P, Czepczor K, Podolski M, Kosowska A, Garczorz W, Francuz T, Wybraniec M, Mizia-Stec K. Platelet-Related Biomarkers and Efficacy of Antiplatelet Therapy in Patients with Aortic Stenosis and Coronary Artery Disease. International Journal of Molecular Sciences. 2025; 26(15):7083. https://doi.org/10.3390/ijms26157083
Chicago/Turabian StyleBańka, Paweł, Kinga Czepczor, Maciej Podolski, Agnieszka Kosowska, Wojciech Garczorz, Tomasz Francuz, Maciej Wybraniec, and Katarzyna Mizia-Stec. 2025. "Platelet-Related Biomarkers and Efficacy of Antiplatelet Therapy in Patients with Aortic Stenosis and Coronary Artery Disease" International Journal of Molecular Sciences 26, no. 15: 7083. https://doi.org/10.3390/ijms26157083
APA StyleBańka, P., Czepczor, K., Podolski, M., Kosowska, A., Garczorz, W., Francuz, T., Wybraniec, M., & Mizia-Stec, K. (2025). Platelet-Related Biomarkers and Efficacy of Antiplatelet Therapy in Patients with Aortic Stenosis and Coronary Artery Disease. International Journal of Molecular Sciences, 26(15), 7083. https://doi.org/10.3390/ijms26157083