Review of Applications of Zeolites in Dermatology: Molecular Perspectives and Translational Potentials
Abstract
1. Introduction
2. Zeolites and Skin Care Formulation
2.1. Structure and Adsorption
Category | Type | Properties | Ref. |
---|---|---|---|
Si/Al Ratio | Low-silica zeolites (Si/Al < 2) | High polarity, strong adsorption of polar molecules like water. | [2,14,26,27] |
Medium-silica zeolites (Si/Al = 2–5) | Intermediate polarity. | [2,14,26,27] | |
High-silica zeolites (Si/Al > 5) | Lower polarity, higher thermal/chemical stability, often hydrophobic. | [2,14,26,27] | |
Pure-silica zeolites (Zeosils) | No aluminum, highly stable and hydrophobic. | [2,14,26,27] | |
Porosity | Cages | Small enclosed voids for molecular sieving. | [2,20,21,24,28] |
Cavities | Larger polyhedral voids facilitating diffusion. | [2,20,21,24,28,29] | |
Channels | Extended pore systems allowing molecular transport. | [2,20,21,24,29] | |
Pore Size | Small pores (3–5 Å, 8–9 TO4 rings) | Suitable for water and small molecules. | [2,16,24,27] |
Medium pores (5–6 Å, 10-ring) | Balances selectivity and transport. | [2,16,24,27] | |
Large pores (6–7.5 Å, 12-ring) | Increased molecular accessibility. | [2,16,27] | |
Extra-large pores (>7.5 Å, >12-rings) | Allow larger molecules to pass through. | [2,16,27] | |
Diffusion Types | Micropore diffusion | Predictable movement within the unit cell. | [2,30] |
Mesopore diffusion | Influenced by adsorbent–adsorbate interactions. | [2,30] | |
Macropore diffusion | Dominated by bulk-phase molecular interaction. | [2,30] | |
Biomedical Applications | Detoxification | Removal of heavy metals and toxins from biological systems. | [2,3,14,30] |
Controlled drug delivery | Slow-release medications, such as erythromycin and zinc in topical acne treatments. | [2,12,13,14,16,18] | |
Selective adsorption of biomolecules | Enabling target therapeutic applications. | [2] | |
Synthesis Methods | Hydrothermal synthesis | Mimics natural crystallization using oxidized silicon and aluminum sources, allowing precise drug interactions and release. | [2,9,14,18] |
Novel synthesis techniques | Includes interzeolite conversions, topotactic transformations, ionothermal synthesis, and microwave-assisted synthesis to enhance properties. | [2] | |
Post-Synthetic Modifications | Ion exchange | Incorporating therapeutic metals (e.g., silver, copper) to enhance antimicrobial activity. | [2,9,12,23,24,31,32] |
Surface functionalization | Modifying the zeolite surface to improve hydrophobicity and selectivity. | [2,7,13,14,22] | |
Calcination and steaming | Increasing mesoporosity and adsorption efficiency through controlled thermal treatments. | [2,13,14] | |
Shaping and structuring | Granulating zeolites into beads or pellets for improved handling in topical and industrial applications. | [2,7,9,14] |
2.2. Heavy Metal Adsorption
2.3. Clinoptilolite
2.3.1. Antioxidant and Detoxification Properties
Antioxidant Effects
- Reducing Lipid Oxidation: By lowering LDL cholesterol levels, clinoptilolite indirectly enhances antioxidant effects, reducing oxidative stress [25].
- Modulating Hydrogen Peroxide Levels: Tumour cells exhibit elevated hydrogen peroxide (H2O2) levels, which regulate key signalling pathways and modulate oxidative stress. Clinoptilolite may interact with H2O2, breaking it down into hydroxyl or hydroperoxyl radicals, potentially influencing tumour cell viability [25].
Immunomodulatory Effects
- Stimulate Immune Cell Activity: Clinoptilolite supplementation increases the activation of B lymphocytes (CD19+), T helper cells (CD4+), and activated T-lymphocytes (HLA-DR+), while reducing natural killer (NK) cell (CD56+) counts [25].
Potential Antitumor Effects
2.3.2. Combination with Zinc: Enhanced Medical Benefits
2.3.3. Evaluation of Clinoptilolite-Rich LacVen Rock as a Carrier
- Fast zinc release: Rapid ion exchange in physiological and buffer solutions guarantees immediate bioavailability upon topical application [12]
- Erythromycin loading capacity: LacVen was measured to have an erythromycin loading of 28.9%, with 85% of the drug contacting the carrier successfully loaded onto it [12]
- Safety profile: Low levels of potentially harmful elements (As, Cd, Cr, Cu, and Pb) make it suitable for medical use [12]
- Pharmaceutical compliance: The whitish colour of the powder improves patient compliance for topical treatments [12]
2.4. Dermatologic and Cosmetic Formulation
2.4.1. UV Protection and Sunscreens
2.4.2. Anthocyanidin–Zeolite Complexes for Skin Protection
- Reduce oxidative stress and protect cells from free radical damage.
- Enhance skin regeneration and healing.
- Provide soothing and hydrating effects, making them suitable for irritated skin formulations.
2.5. Zeolites in Odour Control
3. Uses of Zeolites in Wound Healing and Infection Management
3.1. Wound Healing Applications
3.1.1. Zeolitic Imidazolate Framework-8 (ZIF-8) in Wound Healing
ZIF-8 in Peri-Implantitis Treatment
- Hematoporphyrin monomethyl ether (HMME)—enhances reactive oxygen species (ROS) production, leading to bacterial cell damage.
- Metformin (Met)—reduces pro-inflammatory cytokines (IL-6, TNF-α), suppressing early-stage inflammation.
- Bone morphogenetic protein-2 (BMP-2)—stimulates bone regeneration.
Zeolite Type | Key Application | Experimental Outcome | Study Type | References |
---|---|---|---|---|
Clinoptilolite | Wound healing, detoxification, acne therapy | Reduced inflammation, oxidative stress; enhanced tissue regeneration; safe in humans | In vitro, in vivo, clinical | [12,14,22,25,43,44,45,46,47,48,49,50] |
ZIF-8 | Drug delivery, antimicrobial, wound healing | Controlled Zn2⁺ release, antimicrobial, enhanced healing in diabetic ulcers and oral ulcers | In vitro, in vivo (animal, limited human data) | [36,37,38,39,40,41,42,51,52,53,54,55,56,57,58,59] |
ZSM-5 | Antibiotic delivery, antibiofilm | Sustained antibiotic release, reduced biofilm formation, promoted tissue regeneration | In vitro, animal models | [60,61,62,63,64,65,66,67,68,69,70] |
Zeolite X | Broad-spectrum antimicrobial | Effective against E. coli, S. aureus; enhanced Ag⁺ release improves potency | In vitro (antimicrobial assays) | [71,72] |
NaY Zeolite | Burn wound antimicrobial composite | Controlled AgSD release; prolonged antimicrobial activity; enhanced wound healing | In vitro, formulation stability tests | [73,74,75,76,77,78] |
Ag-Zeolite | Deodorant, long-lasting antibacterial | Outperformed triclosan, provided 24 h odour protection | In vitro, clinical comparison with triclosan | [2,3,9,31,32] |
CaCu-Zeolite Gauze | Haemostasis and infection control | Faster clotting, antibacterial action; biocompatible and safe | In vitro, in vivo (animal studies) | [79,80,81,82] |
Detoxsan® (Clinoptilolite + Mordenite) | Fungal infections, intertrigo | Improved skin recovery, no adverse effects | Clinical observational study | [15,83,84] |
Gold-Zeolite Nanocomposites | Antiageing and skin brightening | Enhanced wrinkle reduction and melanin reduction (clinical trial) | Human clinical trial | [13,85,86] |
ZIF-8 and Diabetic Ulcers
- Oxidative stress reduction via ROS scavenging and mitochondrial protection.
- Enhanced immune regulation through macrophage polarization (M1 → M2 transition).
- Antimicrobial effects when modified with quaternary ammonium salts (QAS).
3.1.2. ZIF-8 Encapsulation Method in Infection Control
- Chemotaxis towards H2O2 gradients, mimicking natural neutrophil migration.
- HClO synthesis, enhancing antimicrobial efficacy.
- Enzyme stabilization, preventing leakage and maintaining activity under physiological conditions.
3.1.3. Zeolite-Based Antimicrobial Therapies
- Stably released zinc ions, damaging bacterial envelopes.
- Exhibited sustained antimicrobial effects without antibiotics.
- Enhanced wound healing and tissue regeneration.
3.1.4. Clinoptilolite in Cutaneous Wound Healing
- Comparable wound healing rates to standard care (SoC).
- Significant bacterial adsorption, reducing infection risk.
- Minimal erythema and inflammation over 14 days.
3.1.5. Calcium Copper Zeolite Gauze in Cutaneous Wound Healing
- The absorption of water in the blood to concentrate coagulation factors and blood cells, which in turn activates the clotting cascade.
- The antibacterial effects of copper through the release of copper ions, which depolarize bacterial cell membranes, promote the production of ROS, have an influence on enzyme activity and DNA damage.
- The whole-blood clotting time of CaCu-ZG gauze sharply decreased from 509 s to 282 s when compared with standard medical gauze, with improved antibacterial activity found both in vivo and in vitro (Table 2).
3.1.6. Antimicrobial and Wound Healing Properties of NO-Loaded Zeolite Ointment
3.1.7. Nanozeolite–Starch Thermoplastic Hydrogels and Wound Healing
3.1.8. Summary of Wound Healing
3.2. Antimicrobial and Treatment of Infections
3.2.1. Metal–Ion Functionalized Zeolites
3.2.2. Zeolite X and Other Frameworks
3.2.3. ZSM-5 for Antibiotic and Metal Ion Delivery
3.2.4. Zeolites for Candida Auris and Other Fungal Infections
3.2.5. ZIF-8 for Zinc Interference Therapy
3.2.6. Silver Sulfadiazine–Zeolite Composites for Burn-Related Infections
Condition/Use Case | Relevant Zeolites | Key Outcomes | Study Type | References |
---|---|---|---|---|
Chronic wounds/Diabetic ulcers | ZIF-8, Clinoptilolite, CaCu-Zeolite, NO-Zeolite, Nanozeolite Hydrogels | Enhanced healing, reduced inflammation, infection control | In vitro, in vivo, pilot clinical | [12,14,22,25,43,44,45,46,47,48,49,50,52,53,54,55,56,57,58,59] |
Burn wound infections | NaY Zeolite + AgSD, ZIF-8 | Prolonged silver release, reduced bacterial load, stable formulation | In vitro, formulation studies | [51,73,74,75,76,77,78] |
Acne vulgaris | Zn-Clinoptilolite, ZSM-5, ZIF-8 Microneedles | Reduced P. acnes, inflammation, enhanced drug delivery | In vitro, in vivo, clinical | [14,54,67,89,90,91,92,102] |
Skin detoxification/Pollution exposure | Clinoptilolite, Modified Zeolites (3%) | Heavy metal removal, antioxidant protection | Clinical, formulation tests | [7,17,22,25,49] |
Fungal infections/Intertrigo | Detoxsan®, Ag-Zeolites, TiZSM-5 | Rapid symptom resolution, safe barrier protection | Clinical observational | [15,83,84] |
Skin brightening/Antiageing | Gold-Zeolite Nanocomposites, ZIF-8 (with actives) | Wrinkle and melanin reduction, improved skin texture | Human clinical | [13,85,86] |
Peri-implantitis/Oral ulcers | ZIF-8 Microneedles, HMME@ZIF-8 Hydrogel | Targeted drug delivery, bacterial inhibition, tissue regeneration | Animal, in vitro | [51,52,53,54,55,56,57,58,59,89] |
Body odour/Deodorant alternative | Ag-Zeolite | 24 h protection, safer than triclosan | In vitro, clinical comparison | [2,3,9,31,32] |
Skin cancer/Immunotherapy | ZIF-8, Clinoptilolite, MIT@ZIF-8 | Immune activation, tumour regression, reduced toxicity | In vivo (murine), mechanistic studies | [8,49,52,132,133] |
4. Zeolites in Cosmetology and Dermatological Conditions
4.1. Cosmetology
4.1.1. Zeolite Nanocomposites for Antiageing and Brightening Applications
4.1.2. Zeolitic Delivery Systems for Pigmentation Disorders and Inflammatory Skin Conditions
4.1.3. Zeolite Microneedles: From Concept to Clinical Readiness
4.1.4. Detoxification and Environmental Protection: Zeolites as Skin Guardians
4.1.5. Functionalized Zeolite Hybrids and Controlled Release Systems
4.2. Antiacne
4.2.1. Zn-Exchanged Clinoptilolite as an Antibiotic Carrier
4.2.2. Mechanism of Action
4.2.3. Controlled Drug Release in Dermatological Applications
4.2.4. Zinc in Acne Management: A Safer, Effective Alternative to Antibiotics
4.2.5. Other Modalities for Treating Acne: Photodynamic Therapy
4.2.6. Promising Future for Zeolitic Integration with PDT for Treating Acne Vulgaris
4.3. Integration, Customization, and Future Perspectives
5. Skin Cancer and Zeolites
5.1. Zeolites in Chemo-Immunotherapy and Skin Cancer Treatment
5.2. Zeolites in Cutaneous Oncology and Skin Cancer Management
6. Mechanistic Insight and Future Potential
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MZ | Micronized Zeolite |
NO | Nitric Oxide |
NF-κB | Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B cells |
GVH | Graft-versus-Host |
LSA | Lipid-Bound Sialic Acid |
PDT | Photodynamic Therapy |
ALA | Aminolevulinic Acid |
MAL | Methyl Aminolevulinate |
LMB | Liposomal Methylene Blue |
ZIF-8 | Zeolitic Imidazolate Framework-8 |
ICG | Indocyanine Green |
ROS | Reactive Oxygen Species |
SEF | Simulated Exudate Fluid |
AgSD | Silver Sulfadiazine |
BET | Brunauer–Emmett–Teller (surface area analysis) |
ZSM-5 | Zeolite Socony Mobil–5 (a type of MFI-structured zeolite) |
CaCu-ZG | Calcium–Copper Zeolite Gauze |
MOF | Metal–Organic Framework |
MIC | Minimum Inhibitory Concentration |
References
- Mumpton, F.A. La Roca Magica: Uses of Natural Zeolites in Agriculture and Industry. Proc. Natl. Acad. Sci. USA 1999, 96, 3463–3470. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122, 17647–17695. [Google Scholar] [CrossRef] [PubMed]
- Pesando, M.; Bolzon, V.; Bulfoni, M.; Nencioni, A.; Nencioni, E. Exploring the Adsorption Properties of Zeolite in a New Skin Care Formulation. Cosmetics 2022, 9, 26. [Google Scholar] [CrossRef]
- Pandya, T.; Patel, S.; Kulkarni, M.; Singh, Y.R.; Khodakiya, A.; Bhattacharya, S.; Prajapati, B.G. Zeolite-Based Nanoparticles Drug Delivery Systems in Modern Pharmaceutical Research and Environmental Remediation. Heliyon 2024, 10, e36417. [Google Scholar] [CrossRef] [PubMed]
- Rimoli, M.G.; Rabaioli, M.R.; Melisi, D.; Curcio, A.; Mondello, S.; Mirabelli, R.; Abignente, E. Synthetic Zeolites as a New Tool for Drug Delivery. J. Biomed. Mater. Res. A 2008, 87A, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Elmore, A.R.; Cosmetic Ingredient Review Expert Panel. Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum Silicate, Magnesium Silicate, Magnesium Trisilicate, Sodium Magnesium Silicate, Zirconium Silicate, Attapulgite, Bentonite, Fuller’s Earth, Hectorite, Kaolin, Lithium Magnesium Silicate, Lithium Magnesium Sodium Silicate, Montmorillonite, Pyrophyllite, and Zeolite. Int. J. Toxicol. 2003, 22 (Suppl. 1), 37–102. [Google Scholar] [PubMed]
- Neag, E.; Stupar, Z.; Torok, A.I.; Surupaceanu, I.; Senila, M.; Cadar, O. Exploring the Properties of Micronized Natural Zeolitic Volcanic Tuff as Cosmetic Ingredient. Materials 2022, 15, 2405. [Google Scholar] [CrossRef] [PubMed]
- Mowbray, M.; Tan, X.; Wheatley, P.S.; Morris, R.E.; Weller, R.B. Topically Applied Nitric Oxide Induces T-Lymphocyte Infiltration in Human Skin, but Minimal Inflammation. J. Investig. Dermatol. 2008, 128, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Bergfeld, W.F.; Belsito, D.V.; Cohen, D.E.; Klaassen, C.D.; Liebler, D.C.; Rettie, A.E.; Ross, D.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Amended Safety Assessment of Zeolites as Used in Cosmetics; Cosmetic Ingredient Review: Washington, DC, USA, 2022. [Google Scholar]
- Kralj, M.; Pavelic, K. Medicine on a Small Scale: How Molecular Medicine Can Benefit from Self-assembled and Nanostructured Materials. EMBO Rep. 2003, 4, 1008–1012. [Google Scholar] [CrossRef] [PubMed]
- Bacakova, L.; Vandrovcova, M.; Kopova, I.; Jirka, I. Applications of Zeolites in Biotechnology and Medicine—A Review. Biomater. Sci. 2018, 6, 974–989. [Google Scholar] [CrossRef] [PubMed]
- Cerri, G.; Degennaro, M.; Bonferoni, M.; Caramella, C. Zeolites in Biomedical Application: Zn-Exchanged Clinoptilolite-Rich Rock as Active Carrier for Antibiotics in Topical Therapy. Appl. Clay Sci. 2004, 27, 141–150. [Google Scholar] [CrossRef]
- Lee, S.; Lee, G.; Jeon, G.; Lee, H.; Park, S.; Sohn, Y.; Park, Y.; Ryu, S. Anti-Aging and Lightening Effects of Au-Decorated Zeolite-Based Biocompatible Nanocomposites in Epidermal Delivery Systems. J. Funct. Biomater. 2023, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Souza, I.M.S.; García-Villén, F.; Viseras, C.; Pergher, S.B.C. Pergher Zeolites as Ingredients of Medicinal Products. Pharmaceutics 2023, 15, 1352. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.A.; Sánchez, Y.L.; Dathe, W. Detoxsan® Paste Formulation Containing Zeolites for the Treatment of Mycosis and Intertrigo Carried Out Under Climatic Conditions of Cuba. J. Clin. Exp. Dermatol. Res. 2019, 10, 1000485. [Google Scholar] [CrossRef]
- Servatan, M.; Zarrintaj, P.; Mahmodi, G.; Kim, S.-J.; Ganjali, M.R.; Saeb, M.R.; Mozafari, M. Zeolites in Drug Delivery: Progress, Challenges and Opportunities. Drug Discov. Today 2020, 25, 642–656. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Scaiano, J.C.; English, A.M. Zeolite Encapsulation Decreases TiO2-Photosensitized ROS Generation in Cultured Human Skin Fibroblasts. Photochem. Photobiol. 2006, 82, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Derakhshankhah, H.; Jafari, S.; Sarvari, S.; Barzegari, E.; Moakedi, F.; Ghorbani, M.; Shiri Varnamkhasti, B.; Jaymand, M.; Izadi, Z.; Tayebi, L. Biomedical Applications of Zeolitic Nanoparticles, with an Emphasis on Medical Interventions. Int. J. Nanomed. 2020, 15, 363–386. [Google Scholar] [CrossRef] [PubMed]
- Kordala, N.; Wyszkowski, M. Zeolite Properties, Methods of Synthesis, and Selected Applications. Molecules 2024, 29, 1069. [Google Scholar] [CrossRef] [PubMed]
- Kondinski, A.; Rutkevych, P.; Pascazio, L.; Tran, D.N.; Farazi, F.; Ganguly, S.; Kraft, M. Knowledge Graph Representation of Zeolitic Crystalline Materials. Digit. Discov. 2024, 3, 2070–2084. [Google Scholar] [CrossRef]
- McCusker, L.B.; Liebau, F.; Engelhardt, G. Nomenclature of Structural and Compositional Characteristics of Ordered Microporous and Mesoporous Materials with Inorganic Hosts (IUPAC Recommendations 2001). Pure Appl. Chem. 2001, 73, 381–394. [Google Scholar] [CrossRef]
- Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S.A.; Premoli, M.; Aria, F.; Gianoncelli, A.; Memo, M. Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral. Molecules 2019, 24, 1517. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, L.; Yu, J. Applications of Zeolites in Sustainable Chemistry. Chem 2017, 3, 928–949. [Google Scholar] [CrossRef]
- Anurova, N.A.; Blatov, V.A.; Ilyushin, G.D.; Proserpio, D.M. Natural Tilings for Zeolite-Type Frameworks. J. Phys. Chem. C 2010, 114, 10160–10170. [Google Scholar] [CrossRef]
- Kraljević Pavelić, S.; Simović Medica, J.; Gumbarević, D.; Filošević, A.; Pržulj, N.; Pavelić, K. Critical Review on Zeolite Clinoptilolite Safety and Medical Applications In Vivo. Front. Pharmacol. 2018, 9, 1350. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Leng, S.; Guo, H.; Yu, J.; Li, W.; Cao, L.; Huang, J. Quantitative Arrangement of Si/Al Ratio of Natural Zeolite Using Acid Treatment. Appl. Surf. Sci. 2019, 498, 143874. [Google Scholar] [CrossRef]
- Allanas, E.; Rahman, A.; Arlin, E.; Prasetyanto, E.A. Study Surface Area and Pore Size Distribution on Synthetic Zeolite X Using BET, BJH and DFT Methods. J. Phys. Conf. Ser. 2021, 2019, 012094. [Google Scholar] [CrossRef]
- Kondinski, A.; Monakhov, K.Y. Breaking the Gordian Knot in the Structural Chemistry of Polyoxometalates: Copper(II)–Oxo/Hydroxo Clusters. Chem.–Eur. J. 2017, 23, 7841–7852. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.; Dinh, V.; Nguyen, H.Q.; Hung, N.T. Zeolite ZSM-5 Synthesized from Natural Silica Sources and Its Applications: A Critical Review. J. Chem. Technol. Biotechnol. 2023, 98, 1339–1355. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Nakane, T.; Gomyo, H.; Sasaki, I.; Kimoto, Y.; Hanzawa, N.; Teshima, Y.; Namba, T. New Antiaxillary Odour Deodorant Made with Antimicrobial Ag-zeolite (Silver-exchanged Zeolite). Int. J. Cosmet. Sci. 2006, 28, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Egger, S.; Lehmann, R.P.; Height, M.J.; Loessner, M.J.; Schuppler, M. Antimicrobial Properties of a Novel Silver-Silica Nanocomposite Material. Appl. Environ. Microbiol. 2009, 75, 2973–2976. [Google Scholar] [CrossRef] [PubMed]
- Searle, T.; Ali, F.R.; Al-Niaimi, F. Zinc in Dermatology. J. Dermatol. Treat. 2022, 33, 2455–2458. [Google Scholar] [CrossRef] [PubMed]
- Chrétien, M.N.; Heafey, E.; Scaiano, J.C. Reducing Adverse Effects from UV Sunscreens by Zeolite Encapsulation: Comparison of Oxybenzone in Solution and in Zeolites. Photochem. Photobiol. 2010, 86, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Fantini, R. Zeolite-Encapsulated UV-Filters: The Key for More Safe, Effective and Ecofriendly Sunscreens; Course in Models and Methods for Materials and Environmental Sciences. Ph.D. Thesis, University of Modena and Reggio Emilia, Modena, Italy, 2021. [Google Scholar]
- Confalonieri, G.; Fantini, R.; Allasia, N.; Vezzalini, G.; Fitch, A.N.; Mino, L.; Arletti, R. Structural Evidence of Sunscreen Enhanced Stability in UV Filter-Zeolite Hybrids. Microporous Mesoporous Mater. 2022, 344, 112212. [Google Scholar] [CrossRef]
- Fantini, R.; Argenziano, M.; Cavalli, R.; Arletti, R.; Mino, L. Zeofilters for Potentially Innovative Sunscreen Products: Formulation, Stability and Spectroscopic Studies. J. Photochem. Photobiol. Chem. 2024, 452, 115585. [Google Scholar] [CrossRef]
- Priprem, A.; Porasuphatana, S.; Srirak, S.; Pantu, W.; Damrongrungrueng, T.; Leeanansaksiri, W. Real-Time Monitoring of Anthocyanidin-Zeolite Complex Exposed to Skin Cells. Appl. Mech. Mater. 2013, 339, 742–747. [Google Scholar] [CrossRef]
- Li, Z.; Shao, Y.; Yang, Y.; Zan, J. Zeolitic Imidazolate Framework-8: A Versatile Nanoplatform for Tissue Regeneration. Front. Bioeng. Biotechnol. 2024, 12, 1386534. [Google Scholar] [CrossRef] [PubMed]
- Poon, C.S.; Lam, L.; Kou, S.C.; Lin, Z.S. A Study on the Hydration Rate of Natural Zeolite Blended Cement Pastes. Constr. Build. Mater. 1999, 13, 427–432. [Google Scholar] [CrossRef]
- Kalita, B.; Bora, S.S.; Gogoi, B. Zeolite: A Soil Conditioner. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1184–1206. [Google Scholar] [CrossRef]
- Hu, B.; Qiao, W.; Cao, Y.; Fu, X.; Song, J. A Sono-Responsive Antibacterial Nanosystem Co-Loaded with Metformin and Bone Morphogenetic Protein-2 for Mitigation of Inflammation and Bone Loss in Experimental Peri-Implantitis. Front. Bioeng. Biotechnol. 2024, 12, 1410230. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Li, Z.; Wang, L.; Yao, N.; Wen, H.; Yuan, H.; Zhang, J.; Li, Z.; Shen, C. A Nanoenzyme-Modified Hydrogel Targets Macrophage Reprogramming-Angiogenesis Crosstalk to Boost Diabetic Wound Repair. Bioact. Mater. 2024, 35, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Xu, H.; Gao, Z.; Wu, Z.; Zhao, Z.; Wang, J.; Wu, Y.; Ke, H.; Mao, C.; Wan, M.; et al. Artificial Neutrophils Against Vascular Graft Infection. Adv. Sci. 2024, 11, 2402768. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Gao, Y.; Zeng, Y.; Ge, W.; Tang, C.; Xie, X.; Liu, L. Multifunctional Hyaluronic Acid/Gelatin Methacryloyl Core-Shell Microneedle for Comprehensively Treating Oral Mucosal Ulcers. Int. J. Biol. Macromol. 2024, 266, 131221. [Google Scholar] [CrossRef] [PubMed]
- Deinsberger, J.; Marquart, E.; Nizet, S.; Meisslitzer, C.; Tschegg, C.; Uspenska, K.; Gouya, G.; Niederdöckl, J.; Freissmuth, M.; Wolzt, M.; et al. Topically Administered Purified Clinoptilolite-tuff for the Treatment of Cutaneous Wounds: A Prospective, Randomised Phase I Clinical Trial. Wound Repair Regen. 2022, 30, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Tschegg, C.; Rice, H.N.; Grasemann, B.; Matiasek, E.; Kobulej, P.; Dzivák, M.; Berger, T. Petrogenesis of a Large-Scale Miocene Zeolite Tuff in the Eastern Slovak Republic: The Nižný Hrabovec Open-Pit Clinoptilolite Mine. Econ. Geol. 2019, 114, 1177–1194. [Google Scholar] [CrossRef]
- Tschegg, C.; Hou, Z.; Rice, A.H.N.; Fendrych, J.; Matiasek, E.; Berger, T.; Grasemann, B. Fault Zone Structures and Strain Localization in Clinoptilolite-Tuff (Nižný Hrabovec, Slovak Republic). J. Struct. Geol. 2020, 138, 104090. [Google Scholar] [CrossRef]
- Ranftler, C.; Nagl, D.; Sparer, A.; Röhrich, A.; Freissmuth, M.; El-Kasaby, A.; Shirazi, S.N.; Koban, F.; Tschegg, C.; Nizet, S. Binding and Neutralization of C. difficile Toxins A and B by Purified Clinoptilolite-Tuff. PLoS ONE 2021, 16, e0252211. [Google Scholar] [CrossRef] [PubMed]
- Pavelić, K.; Hadžija, M.; Bedrica, L.; Pavelić, J.; Ðikić, I.; Katić, M.; Kralj, M.; Bosnar, M.H.; Kapitanović, S.; Poljak-Blaži, M.; et al. Natural Zeolite Clinoptilolite: New Adjuvant in Anticancer Therapy. J. Mol. Med. 2001, 78, 708–720. [Google Scholar] [CrossRef] [PubMed]
- Dimova, L.; Petrov, O.; Kadiyski, M.; Lihareva, N.; Stoyanova-Ivanova, A.; Mikli, V. Preparation and Rietveld Refinement of Ag-Exchanged Clinoptilolite. Clay Miner. 2011, 46, 205–212. [Google Scholar] [CrossRef]
- Fox, C.B. Squalene Emulsions for Parenteral Vaccine and Drug Delivery. Molecules 2009, 14, 3286–3312. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-K.; Karadeniz, F. Biological Importance and Applications of Squalene and Squalane. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2012; Volume 65, pp. 223–233. ISBN 978-0-12-416003-3. [Google Scholar]
- Khanum, R.; Thevanayagam, H. Lipid Peroxidation: Its Effects on the Formulation and Use of Pharmaceutical Emulsions. Asian J. Pharm. Sci. 2017, 12, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, L.; Huang, L.; Zhang, W.; Wang, R.; Yue, T.; Sun, J.; Li, G.; Wang, J. The Highly Efficient Elimination of Intracellular Bacteria via a Metal Organic Framework (MOF)-Based Three-in-One Delivery System. Nanoscale 2019, 11, 9468–9477. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Li, M.; Tan, L.; Yu, J.; Chen, Z.; Su, L.; Ren, X.; Fu, C.; Ren, J.; Li, L.; et al. A Tumor Treatment Strategy Based on Biodegradable BSA@ZIF-8 for Simultaneously Ablating Tumors and Inhibiting Infection. Nanoscale Horiz. 2018, 3, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Lin, Z.; Zhao, Y.; Zhou, Y.; Niu, B.; Shi, C.; Lu, C.; Wen, X.; Zhang, M.; Quan, G.; et al. Bioresponsive Nanoarchitectonics-Integrated Microneedles for Amplified Chemo-Photodynamic Therapy against Acne Vulgaris. ACS Appl. Mater. Interfaces 2021, 13, 48433–48448. [Google Scholar] [CrossRef] [PubMed]
- Hui, S.; Liu, Q.; Han, Y.; Zhang, L.; Yang, J.; Jiang, S.; Qian, H.; Yang, W. ICG@ZIF-8/PDA/Ag Composites as Chemo-Photothermal Antibacterial Agents for Efficient Sterilization and Enhanced Wound Disinfection. J. Mater. Chem. B 2021, 9, 9961–9970. [Google Scholar] [CrossRef] [PubMed]
- Ejima, H.; Richardson, J.J.; Liang, K.; Best, J.P.; van Koeverden, M.P.; Such, G.K.; Cui, J.; Caruso, F. One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering. Science 2013, 341, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc Oxide Nanoparticles: A Promising Nanomaterial for Biomedical Applications. Drug Discov. Today 2017, 22, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- Ezraty, B.; Gennaris, A.; Barras, F.; Collet, J.-F. Oxidative Stress, Protein Damage and Repair in Bacteria. Nat. Rev. Microbiol. 2017, 15, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Milenkovic, J.; Hrenovic, J.; Matijasevic, D.; Niksic, M.; Rajic, N. Bactericidal Activity of Cu-, Zn-, and Ag-Containing Zeolites toward Escherichia coli Isolates. Environ. Sci. Pollut. Res. 2017, 24, 20273–20281. [Google Scholar] [CrossRef] [PubMed]
- Bensafi, B.; Chouat, N.; Djafri, F. The Universal Zeolite ZSM-5: Structure and Synthesis Strategies. A Review. Coord. Chem. Rev. 2023, 496, 215397. [Google Scholar] [CrossRef]
- Kim, S.D.; Noh, S.H.; Seong, K.H.; Kim, W.J. Compositional and Kinetic Study on the Rapid Crystallization of ZSM-5 in the Absence of Organic Template under Stirring. Microporous Mesoporous Mater. 2004, 72, 185–192. [Google Scholar] [CrossRef]
- Ghiaci, M.; Seyedeyn-Azad, F.; Kia, R. Fast and Efficient Synthesis of ZSM-5 in a Broad Range of SiO2/Al2O3 without Using Seeding Gel. Mater. Res. Bull. 2004, 39, 1257–1264. [Google Scholar] [CrossRef]
- Bibby, D.; Milestone, N.B.; Patterson, J.E.; Aldridge, L.P. Coke Formation in Zeolite ZSM-5. J. Catal. 1986, 97, 493–502. [Google Scholar] [CrossRef]
- Xu, W.; Dong, J.; Li, J.; Li, J.; Wu, F. A Novel Method for the Preparation of Zeolite ZSM-5. J. Chem. Soc. Chem. Commun. 1990, 755–756. [Google Scholar] [CrossRef]
- FRILETTE, V. Catalysis by Crystalline Aluminosilicates I. Cracking of Hydrocarbon Types over Sodium and Calcium “X” Zeolites. J. Catal. 1962, 1, 301–306. [Google Scholar] [CrossRef]
- Chen, N.Y.; Garwood, W.E. Molecular Shape-Selective Hydrocarbon Conversion over Erionite. Adv. Chem. Ser. 1973, 121, 575–582. [Google Scholar] [CrossRef]
- Guo, Y.; Long, T.; Song, Z.; Zhu, Z. Hydrothermal Fabrication of ZSM-5 Zeolites: Biocompatibility, Drug Delivery Property, and Bactericidal Property. J. Biomed. Mater. Res. B Appl. Biomater. 2013, 102, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Salehi, H.; Mehrasa, M.; Nasri-Nasrabadi, B.; Doostmohammadi, M.; Seyedebrahimi, R.; Davari, N.; Rafienia, M.; Hosseinabadi, M.; Agheb, M.; Siavash, M. Effects of Nanozeolite/Starch Thermoplastic Hydrogels on Wound Healing. J. Res. Med. Sci. 2017, 22, 110. [Google Scholar] [CrossRef] [PubMed]
- Gennaro, D.; Cerri, G.; Caramella, C.M.; Bonferoni, M.C. Pharmaceutical Zeolite-Based Compositions Containing Zinc and Erythromycin, to Be Used in the Treatment of Acne. WIPO Patent WO2002100420A2, 19 December 2002. [Google Scholar]
- Golubeva, O.Y.; Ul’yanova, N.Y.; Zharkova, M.S.; Shamova, O.V. Synthesis and Study of Zeolites Modified by Silver Nanoparticles and Clusters: Biological Activity. Glass Phys. Chem. 2018, 44, 586–590. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, Y.; Li, Y.; Cheng, Y. Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics. Small 2020, 16, 1907042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhou, Y.; Fan, Y.; Cao, R.; Xu, Y.; Weng, Z.; Ye, J.; He, C.; Zhu, Y.; Wang, X. Metal-Organic-Framework-Based Hydrogen-Release Platform for Multieffective Helicobacter pylori Targeting Therapy and Intestinal Flora Protective Capabilities. Adv. Mater. 2022, 34, e2105738. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wu, Y.; Cao, Q.; Wang, H.; Wang, X.; Han, H. pH-Responsive, Light-Triggered on-Demand Antibiotic Release from Functional Metal-Organic Framework for Bacterial Infection Combination Therapy. Adv. Funct. Mater. 2018, 28, 1800011. [Google Scholar] [CrossRef]
- Hissae Yassue-Cordeiro, P.; Henrique Zandonai, C.; Pereira Genesi, B.; Santos Lopes, P.; Sanchez-Lopez, E.; Luisa Garcia, M.; Regina Camargo Fernandes-Machado, N.; Severino, P.; Souto, E.B.; Ferreira da Silva, C. Development of Chitosan/Silver Sulfadiazine/Zeolite Composite Films for Wound Dressing. Pharmaceutics 2019, 11, 535. [Google Scholar] [CrossRef] [PubMed]
- Pace, G.G.; Montes, A.; Rodríguez, G. Zeolitas: Características, Propiedades y Aplicación Industriales; Editorial Innovación Tecnológica, Facultad de Ingeniería, Universidad Central de Venezuela: Caracas, Venezuela, 2000. [Google Scholar]
- Aula Médica, G.; Laurino, E.; Palmieri, C.; Beniamino, P. Zeolite: “The Magic Stone”; Main Nutritional, Environmental, Experimental and Clinical Fields of Application. Nutr. Hosp. 2015, 32, 573–581. [Google Scholar] [CrossRef]
- Neidrauer, M.; Ercan, U.K.; Bhattacharyya, A.; Samuels, J.; Sedlak, J.; Trikha, R.; Barbee, K.A.; Weingarten, M.S.; Joshi, S.G. Antimicrobial Efficacy and Wound-Healing Property of a Topical Ointment Containing Nitric-Oxide-Loaded Zeolites. J. Med. Microbiol. 2014, 63, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, H.; Xiao, L.; Zhou, L.; Shentu, J.; Zhang, X.; Fan, J. Hemostatic Efficiency and Wound Healing Properties of Natural Zeolite Granules in a Lethal Rabbit Model of Complex Groin Injury. Materials 2012, 5, 2586–2596. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, W.; Wang, C.; Xiao, L.; Yu, L.; Fan, J. Hemostatic and Antibacterial Calcium–Copper Zeolite Gauze for Infected Wound Healing. RSC Adv. 2024, 14, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin. Infect. Dis. 2016, 64, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Selvam, T.; Schwieger, W.; Dathe, W. Natural Cuban Zeolites for Medical Use and Their Histamine Binding Capacity. Clay Miner. 2014, 49, 501–512. [Google Scholar] [CrossRef]
- Bult, A.; Plug, C.M. Silver Sulfadiazine. Anal. Profiles Drug Subst. 1984, 13, 553–571. [Google Scholar] [CrossRef]
- Qu, X.; Wirsén, A.; Albertsson, A.-C. Effect of Lactic/Glycolic Acid Side Chains on the Thermal Degradation Kinetics of Chitosan Derivatives. Polymer 2000, 41, 4841–4847. [Google Scholar] [CrossRef]
- González García, L.E.; Ninan, N.; Simon, J.; Madathiparambil Visalakshan, R.; Bright, R.; Wahono, S.K.; Ostrikov, K.; Mailänder, V.; Landfester, K.; Goswami, N.; et al. Ultra-Small Gold Nanoclusters Assembled on Plasma Polymer-Modified Zeolites: A Multifunctional Nanohybrid with Anti-Haemorrhagic and Anti-Inflammatory Properties. Nanoscale 2021, 13, 19936–19945. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, Y.; Hu, X.; Hua, W.; Xu, H.; Li, L.; Xu, F. Enhancing Tranexamic Acid Penetration through AQP-3 Protein Triggering via ZIF-8 Encapsulation for Melasma and Rosacea Therapy. Adv. Healthc. Mater. 2024, 13, 2304189. [Google Scholar] [CrossRef] [PubMed]
- Ramović, A.; Zorlak, Z.; Husić, Đ.; Ramić, S. Zeolite Microneedles: Recent Advancements and Implications in the Delivery of Collagen. In Proceedings of the International Conference on Medical and Biological Engineering, Banja Luka, Bosnia and Herzegovina, 16–18 May 2019; Badnjevic, A., Škrbić, R., Gurbeta Pokvić, L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; Volume 73, pp. 251–255, ISBN 978-3-030-17970-0. [Google Scholar]
- Wong, L.W.; Sun, W.Q.; Chan, N.W.; Lai, W.Y.; Leung, W.K.; Tsang, J.C.; Wong, Y.H.; Yeung, K.L. Zeolite Microneedles for Transdermal Drug Delivery. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2007; Volume 170, pp. 525–530. ISBN 978-0-444-53068-4. [Google Scholar]
- Poon, T.H.Y. Zeolite Microneedles: Fabrication, Mechanics and Transdermal Drug Delivery. Master’s Thesis, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China, 2013; p. b1254366. [Google Scholar]
- Poon, H.Y.; Wong, W.K.; Chau, L.Y.; Han, W.; Kwan, S.M.; Lee, T.M.H.; Chow, A.H.L.; Yeung, K.L. Zeolite Microneedles for Controlled Transdermal Drug Delivery. In Proceedings of the 246th ACS National Meeting and Exposition, Indianapolis, IN, USA, 8–12 September 2013. [Google Scholar]
- Poon, H.Y.T.; Wong, W.K.; Chau, L.Y.; Han, W.; Kwan, S.M.; Sim, V.; Lee, M.H.; Chow, H.L.; Yeung, K.L. Zeolite Microneedle: Design for Drug Delivery. In Proceedings of the Core Programming Area at the 2013 AIChE Annual Meeting: Global Challenges for Engineering a Sustainable Future, San Francisco, CA, USA, 3–8 November 2013; p. 64. [Google Scholar]
- Guo, Y.; Wang, M.; Liu, Q.; Liu, G.; Wang, S.; Li, J. Recent Advances in the Medical Applications of Hemostatic Materials. Theranostics 2023, 13, 161–196. [Google Scholar] [CrossRef] [PubMed]
- Tricou, L.-P.; Guirguis, N.; Cherifi, K.; Matoori, S. Zeolite-Loaded Hydrogels as Wound pH-Modulating Dressings for Diabetic Wound Healing. ACS Appl. Bio Mater. 2024, 7, 8102–8106. [Google Scholar] [CrossRef] [PubMed]
- Baker, B.S.; Fry, L. The Immunology of Psoriasis. Br. J. Dermatol. 1992, 126, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Abramson, S.B.; Amin, A.R.; Clancy, R.M.; Attur, M. The Role of Nitric Oxide in Tissue Destruction. Best Pract. Res. Clin. Rheumatol. 2001, 15, 831–845. [Google Scholar] [CrossRef] [PubMed]
- Bull, H.A.; Hothersall, J.; Chowdhury, N.; Cohen, J.; Dowd, P.M. Neuropeptides Induce Release of Nitric Oxide from Human Dermal Microvascular Endothelial Cells. J. Investig. Dermatol. 1996, 106, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Clancy, R.M.; Amin, A.R.; Abramson, S.B. The Role of Nitric Oxide in Inflammation and Immunity. Arthritis Rheum. 1998, 41, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Clough, G.; Bennett, A.; Church, M. Measurement of Nitric Oxide Concentration in Human Skin In Vivo Using Dermal Microdialysis. Exp. Physiol. 1998, 83, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Bruch-Gerharz, D.; Schnorr, O.; Suschek, C.; Beck, K.-F.; Pfeilschifter, J.; Ruzicka, T.; Kolb-Bachofen, V. Arginase 1 Overexpression in Psoriasis: Limitation of Inducible Nitric Oxide Synthase Activity as a Molecular Mechanism for Keratinocyte Hyperproliferation. Am. J. Pathol. 2003, 162, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Baudouin, J.E.; Tachon, P. Constitutive Nitric Oxide Synthase Is Present in Normal Human Keratinocytes. J. Investig. Dermatol. 1996, 106, 428–431. [Google Scholar] [CrossRef] [PubMed]
- Bruch-Gerharz, D.; Fehsel, K.; Suschek, C.; Michel, G.; Ruzicka, T.; Kolb-Bachofen, V. A Proinflammatory Activity of Interleukin 8 in Human Skin: Expression of the Inducible Nitric Oxide Synthase in Psoriatic Lesions and Cultured Keratinocytes. J. Exp. Med. 1996, 184, 2007–2012. [Google Scholar] [CrossRef] [PubMed]
- Yaneva, Z.; Ivanova, D.; Popov, N. Clinoptilolite Microparticles as Carriers of Catechin-Rich Acacia Catechu Extracts: Microencapsulation and In Vitro Release Study. Molecules 2021, 26, 1655. [Google Scholar] [CrossRef] [PubMed]
- Kwakye-Awuah, B.; Williams, C.; Kenward, M.A.; Radecka, I. Antimicrobial Action and Efficiency of Silver-Loaded Zeolite X. J. Appl. Microbiol. 2008, 104, 1516–1524. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, P.; Guedes, J.F.; Rombi, E.; Fonseca, A.M.; Aguiar, C.A.; Neves, I.C. Metal Ion–Zeolite Materials against Resistant Bacteria, MRSA. Ind. Eng. Chem. Res. 2021, 60, 12883–12892. [Google Scholar] [CrossRef]
- Rodríguez-Iznaga, I.; Shelyapina, M.G.; Petranovskii, V. Ion Exchange in Natural Clinoptilolite: Aspects Related to Its Structure and Applications. Minerals 2022, 12, 1628. [Google Scholar] [CrossRef]
- Guerra, R.; Lima, E.; Viniegra, M.; Guzmán, A.; Lara, V. Growth of Escherichia Coli and Salmonella Typhi Inhibited by Fractal Silver Nanoparticles Supported on Zeolites. Microporous Mesoporous Mater. 2012, 147, 267–273. [Google Scholar] [CrossRef]
- Park, H.; Lim, H. Antimicrobial Properties of Ag-Exchanged Natural and Synthetic Zeolites: A Short Review. Curr. Green Chem. 2015, 2, 354–361. [Google Scholar] [CrossRef]
- Ivankovic, T.; Dikic, J.; Du Roscoat, S.R.; Dekic, S.; Hrenovic, J.; Ganjto, M. Removal of Emerging Pathogenic Bacteria Using Metal-Exchanged Natural Zeolite Bead Filter. Water Sci. Technol. 2019, 80, 1085–1098. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Figueroa, J.; Alejandro-Martín, S.; Pesenti, H.; Cerda, F.; Fernández-Pérez, A.; Gacitúa, W. Obtaining Nanoparticles of Chilean Natural Zeolite and Its Ion Exchange with Copper Salt (Cu2+) for Antibacterial Applications. Materials 2019, 12, 2202. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wang, J.; Wu, S.; Zhou, R.; Zhang, K.; Zhang, Z.; Liu, J.; Qin, S.; Shi, J. Nanomaterial-Based Zinc Ion Interference Therapy to Combat Bacterial Infections. Front. Immunol. 2022, 13, 899992. [Google Scholar] [CrossRef] [PubMed]
- Yazdanian, M.; Tabesh, H.; Houshmand, B.; Tebyanian, H.; Soufdoost, R.S.; Tahmasebi, E.; Karami, A.; Ghullame, S. Fabrication and Properties of βTCP/Zeolite/Gelatin Scaffold as Developed Scaffold in Bone Regeneration: In Vitro and In Vivo Studies. J. Appl. Biomed. 2020, 40, 1626–1637. [Google Scholar] [CrossRef]
- Akmammedov, R.; Huysal, M.; Isik, S.; Senel, M. Preparation and Characterization of Novel Chitosan/Zeolite Scaffolds for Bone Tissue Engineering Applications. Int. J. Polym. Mater. Polym. Biomater. 2017, 67, 110–118. [Google Scholar] [CrossRef]
- Sánchez, M.J.; Mauricio, J.E.; Paredes, A.R.; Gamero, P.; Cortés, D. Antimicrobial Properties of ZSM-5 Type Zeolite Functionalized with Silver. Mater. Lett. 2017, 191, 65–68. [Google Scholar] [CrossRef]
- Aldossary, H.A.; Rehman, S.; Jermy, B.R.; AlJindan, R.; Aldayel, A.; AbdulAzeez, S.; Akhtar, S.; Khan, F.A.; Borgio, J.F.; Al-Suhaimi, E.A. Therapeutic Intervention for Various Hospital Setting Strains of Biofilm Forming Candida auris with Multiple Drug Resistance Mutations Using Nanomaterial Ag-Silicalite-1 Zeolite. Pharmaceutics 2022, 14, 2251. [Google Scholar] [CrossRef] [PubMed]
- Sanglard, D.; Ischer, F.; Koymans, L.; Bille, J. Amino Acid Substitutions in the Cytochrome P-450 Lanosterol 14α-Demethylase (CYP51A1) from Azole-Resistant Candida albicans Clinical Isolates Contribute to Resistance to Azole Antifungal Agents. Antimicrob. Agents Chemother. 1998, 42, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Puri, N.; Krishnamurthy, S.; Habib, S.; Hasnain, S.E.; Goswami, S.K.; Prasad, R. CDR1, a Multidrug Resistance Gene from Candida albicans, Contains Multiple Regulatory Domains in Its Promoter and the Distal AP-1 Element Mediates Its Induction by Miconazole. FEMS Microbiol. Lett. 1999, 180, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, Y.; Hu, W.; Chen, F.; Zhao, J.; Chen, X.; Han, L. Application of Machine Learning Classifier to Candida auris Drug Resistance Analysis. Front. Cell. Infect. Microbiol. 2021, 11, 742062. [Google Scholar] [CrossRef] [PubMed]
- Selvam, T.; Schwieger, W.; Dathe, W. Histamine-Binding Capacities of Different Natural Zeolites: A Comparative Study. Environ. Geochem. Health 2018, 40, 2657–2665. [Google Scholar] [CrossRef] [PubMed]
- Cervini-Silva, J.; Nieto-Camacho, A.; Kaufhold, S.; Ufer, K.; Palacios, E.; Montoya, A.; Dathe, W. Antiphlogistic Effect by Zeolite as Determined by a Murine Inflammation Model. Microporous Mesoporous Mater. 2016, 228, 207–214. [Google Scholar] [CrossRef]
- Yosipovitch, G.; Rosen, J.D.; Hashimoto, T. Itch: From Mechanism to (Novel) Therapeutic Approaches. J. Allergy Clin. Immunol. 2018, 142, 1375–1390. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.D.S.F. Healing and Edible Clays: A Review of Basic Concepts, Benefits and Risks. Environ. Geochem. Health 2018, 40, 1739–1765. [Google Scholar] [CrossRef] [PubMed]
- Cadars, S.; Guégan, R.; Garaga, M.N.; Bourrat, X.; Le Forestier, L.; Fayon, F.; Huynh, T.V.; Allier, T.; Nour, Z.; Massiot, D. New Insights into the Molecular Structures, Compositions, and Cation Distributions in Synthetic and Natural Montmorillonite Clays. Chem. Mater. 2012, 24, 4376–4389. [Google Scholar] [CrossRef]
- Armbruster, T.; Gunter, M.E. Crystal Structures of Natural Zeolites. Rev. Mineral. Geochem. 2001, 45, 1–67. [Google Scholar] [CrossRef]
- Guisnet, M.; Ribeiro, F.R.; Vale, H. Zeólitos: Um Nanomundo Ao Serviço Da Catálise; Calouste: Lisbon, Portugal, 2004; ISBN 972-31-1071-7. [Google Scholar]
- Souto, E.B.; Severino, P.; Yassue-Cordeiro, P.H.; Felisbino, R.F.; Gomes, E.L.; da Silva, C.F. Organic/Zeolites Nanocomposite Membranes. In Organic-Inorganic Composite Polymer Electrolyte Membranes; Springer International Publishing: Cham, Switzerland, 2017; pp. 73–98. ISBN 978-3-319-52738-3. [Google Scholar]
- Weitkamp, J.; Puppe, L. Catalysis and Zeolites: Fundamentals and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-662-03764-5. [Google Scholar]
- Yassue-Cordeiro, P.H.; Zandonai, C.H.; da Silva, C.F.; Fernandes-Machado, N.R.C. Desenvolvimento e Caracterização de Filmes Compósitos de Quitosana e Zeólitas Com Prata. Polímeros 2015, 25, 492–502. [Google Scholar] [CrossRef]
- Mohammad, A.; Asiri, A.M. Organic-Inorganic Composite Polymer Electrolyte Membranes: Preparation, Properties, and Fuel Cell Applications; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-52739-0. [Google Scholar]
- Boschetto, D.L.; Lerin, L.; Cansian, R.; Pergher, S.B.C.; Luccio, M.D. Preparation and Antimicrobial Activity of Polyethylene Composite Films with Silver Exchanged Zeolite-Y. Chem. Eng. J. 2012, 204–206, 210–216. [Google Scholar] [CrossRef]
- Kim, T.I.; Ahn, H.; Kang, I.H.; Jeong, K.; Kim, N.I.; Shin, M.K. Nonablative Fractional Laser-assisted Daylight Photodynamic Therapy with Topical Methyl Aminolevulinate for Moderate to Severe Facial Acne Vulgaris: Results of a Randomized and Comparative Study. Photodermatol. Photoimmunol. Photomed. 2017, 33, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Moftah, N.H.; Ibrahim, S.M.; Wahba, N.H. Intense Pulsed Light versus Photodynamic Therapy Using Liposomal Methylene Blue Gel for the Treatment of Truncal Acne Vulgaris: A Comparative Randomized Split Body Study. Arch. Dermatol. Res. 2016, 308, 263–268. [Google Scholar] [CrossRef] [PubMed]
- International Organization for Standardization. ISO 10993-09: Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity, 3rd ed.; International Organization for Standardization: Geneva, Switzerland, 2009. [Google Scholar]
- Pestryakov, A.; Tuzovskaya, I.; Smolentseva, E.; Bogdanchikova, N.; Jentoft, F.C.; Knop-Gericke, A. Formation of Gold Nanoparticles in Zeolites. Int. J. Mod. Phys. B 2005, 19, 2321–2326. [Google Scholar] [CrossRef]
- Poon, H.Y.; Wong, W.K.; Chau, L.Y.; Han, W.; Kwan, S.M.; Lee, M.H.; Chow, H.L.; Yeung, K.L. Design of Zeolite Microneedles for Regulated Transdermal Drug Delivery. In Proceedings of the 244th National Fall Meeting of the American-Chemical-Society, Philadelphia, PA, USA, 19–23 August 2012. [Google Scholar]
- Kulkarni, D.; Damiri, F.; Rojekar, S.; Zehravi, M.; Ramproshad, S.; Dhoke, D.; Musale, S.; Mulani, A.A.; Modak, P.; Paradhi, R.; et al. Recent Advancements in Microneedle Technology for Multifaceted Biomedical Applications. Pharmaceutics 2022, 14, 1097. [Google Scholar] [CrossRef] [PubMed]
- Wawrzyńczak, A.; Nowak, I.; Woźniak, N.; Chudzińska, J.; Feliczak-Guzik, A. Synthesis and Characterization of Hierarchical Zeolites Modified with Polysaccharides and Its Potential Role as a Platform for Drug Delivery. Pharmaceutics 2023, 15, 535. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bi, D.; Hu, Z.; Yang, Y.; Liu, Y.; Leung, W.K. Hydrogel-Forming Microneedles with Applications in Oral Diseases Management. Materials 2023, 16, 4805. [Google Scholar] [CrossRef] [PubMed]
- Damiri, F.; Kommineni, N.; Ebhodaghe, S.O.; Bulusu, R.; Jyothi, V.G.S.S.; Sayed, A.A.; Awaji, A.A.; Germoush, M.O.; Al-malky, H.S.; Nasrullah, M.Z.; et al. Microneedle-Based Natural Polysaccharide for Drug Delivery Systems (DDS): Progress and Challenges. Pharmaceuticals 2022, 15, 190. [Google Scholar] [CrossRef] [PubMed]
- Fox, L.; Csongradi, C.; Aucamp, M.; du Plessis, J.; Gerber, M. Treatment Modalities for Acne. Molecules 2016, 21, 1063. [Google Scholar] [CrossRef] [PubMed]
- Bonferoni, M.; Cerri, G.; Degennaro, M.; Juliano, C.; Caramella, C. Zn2+-Exchanged Clinoptilolite-Rich Rock as Active Carrier for Antibiotics in Anti-Acne Topical therapy In-Vitro Characterization and Preliminary Formulation Studies. Appl. Clay Sci. 2007, 36, 95–102. [Google Scholar] [CrossRef]
- Lam, A.; Rivera, A. Theoretical Study of the Interaction of Surfactants and Drugs with Natural Zeolite. Microporous Mesoporous Mater. 2006, 91, 181–186. [Google Scholar] [CrossRef]
- Taheri, M.; Ashok, D.; Sen, T.; Enge, T.G.; Verma, N.K.; Tricoli, A.; Lowe, A.; Nisbet, D.R.; Tsuzuki, T. Stability of ZIF-8 Nanopowders in Bacterial Culture Media and Its Implication for Antibacterial Properties. Chem. Eng. J. 2021, 413, 127511. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Zhang, Y.; Uliana, A.; Zhu, J.; Liu, J.; Van Der Bruggen, B. Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets Functionalized Thin Film Nanocomposite Membrane for Enhanced Antimicrobial Performance. ACS Appl. Mater. Interfaces 2016, 8, 25508–25519. [Google Scholar] [CrossRef] [PubMed]
- Inglezakis, V.J.; Zorpas, A.A. Handbook of Natural Zeolites; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; ISBN 978-1-60805-261-5. [Google Scholar]
- Colella, C. A Critical Reconsideration of Biomedical and Veterinary Applications of Natural Zeolites. Clay Miner. 2011, 46, 295–309. [Google Scholar] [CrossRef]
- Domke, A.; Fischer, M.; Jakubowski, M.; Pacholak, A.; Ratajczak, M.; Voelkel, A.; Sandomierski, M. Experimental and Computational Study on the Ca2+, Mg2+, Zn2+ and Sr2+ Exchanged Zeolites as a Drug Delivery System for Fluoroquinolone Antibiotic—Ciprofloxacin. J. Drug Deliv. Sci. Technol. 2024, 99, 105997. [Google Scholar] [CrossRef]
- Izmirova, N.; Aleksiev, B.; Djourova, E.; Blagoeva, P.; Gendjev, Z.; Mircheva, T.; Pressiyanov, D.; Minev, L.; Bozhkova, T.; Uzunov, P.; et al. 32-P-12-Clinoptilolite and the Possibilities for Its Application in Medicine. Stud. Surf. Sci. Catal. 2001, 135, 375. [Google Scholar] [CrossRef]
- Bojar, R.A.; Eady, B.A.; Jones, C.E.; Cunijffh, W.I.; Holland, K.T. Inhibition of Erythromycin-Resistant Propionibacteria on the Skin of Acne Patients by Topical Erythromycin with and without Zinc. Br. J. Dermatol. 1994, 130, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Yee, B.E.; Richards, P.; Sui, J.Y.; Marsch, A.F. Serum Zinc Levels and Efficacy of Zinc Treatment in Acne Vulgaris: A Systematic Review and Meta-analysis. Dermatol. Ther. 2020, 33, e14252. [Google Scholar] [CrossRef] [PubMed]
- Dreno, B.; Amblard, P.; Agache, P.; Sirot, S.; Litoux, P. Low Doses of Zinc Gluconate for Inflammatory Acne. Acta Derm. Venereol. 1989, 69, 541–543. [Google Scholar] [PubMed]
- Hillstrom, L.; Pettersson, L.; Hellbe, L.; Kjellin, A.; Leczinsky, C.-G.; Nordwall, C. Comparison of Oral Treatment with Zinc Sulphate and Placebo in Acne Vulgaris. Br. J. Dermatol. 1977, 97, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Verma, K.C.; Saini, A.S.; Dhamija, S.K. Oral Zinc Sulphate Therapy in Acne Vulgaris: A Double-Blind Trial. Acta Derm. Venereol. 1980, 60, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Langner, A.; Sheehan-Dare, R.; Layton, A. A Randomized, Single-blind Comparison of Topical Clindamycin + Benzoyl Peroxide (Duac®) and Erythromycin + Zinc Acetate (Zineryt®) in the Treatment of Mild to Moderate Facial Acne Vulgaris. J. Eur. Acad. Dermatol. Venereol. 2007, 21, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Sayyafan, M.S.; Ramzi, M.; Salmanpour, R. Clinical Assessment of Topical Erythromycin Gel with and without Zinc Acetate for Treating Mild-to-Moderate Acne Vulgaris. J. Dermatol. Treat. 2020, 31, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Tolino, E.; Skroza, N.; Mambrin, A.; Proietti, I.; Bernardini, N.; Balduzzi, V.; Marchesiello, A.; Di Fraia, M.; Michelini, S.; Potenza, C. An Open-Label Study Comparing Oral Zinc to Lymecycline in the Treatment of Acne Vulgaris. J. Clin. Aesthetic Dermatol. 2021, 14, 56–58. [Google Scholar]
- Samman, S.; Roberts, D.C.K. The Effect of Zinc Supplements on Plasma Zinc and Copper Levels and the Reported Symptoms in Healthy Volunteers. Med. J. Aust. 1987, 146, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, J.; Eber, A.E.; Perper, M.; Nascimento, V.M.; Nouri, K.; Keri, J.E. The Role of Zinc in the Treatment of Acne: A Review of the Literature. Dermatol. Ther. 2018, 31, e12576. [Google Scholar] [CrossRef] [PubMed]
- Moy, L.S.; Frost, D.; Moy, S. Photodynamic Therapy for Photodamage, Actinic Keratosis, and Acne in the Cosmetic Practice. Facial Plast. Surg. Clin. N. Am. 2020, 28, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Boen, M.; Brownell, J.; Patel, P.; Tsoukas, M.M. The Role of Photodynamic Therapy in Acne: An Evidence-Based Review. Am. J. Clin. Dermatol. 2017, 18, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Handler, M.Z.; Bloom, B.S.; Goldberg, D.J. Energy-Based Devices in Treatment of Acne Vulgaris. Dermatol. Surg. 2016, 42, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Tzung, T.; Wu, K.; Huang, M. Blue Light Phototherapy in the Treatment of Acne. Photodermatol. Photoimmunol. Photomed. 2004, 20, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Li, C.; Ge, S.; Chen, Z.; Lu, L. Efficacy of Photodynamic Therapy for the Treatment of Inflammatory Acne Vulgaris: A Systematic Review and Meta-analysis. J. Cosmet. Dermatol. 2020, 19, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Barbaric, J.; Abbott, R.; Posadzki, P.; Car, M.; Gunn, L.H.; Layton, A.M.; Majeed, A.; Car, J. Light Therapies for Acne. Cochrane Database Syst. Rev. 2016, CD007917. [Google Scholar] [CrossRef] [PubMed]
- Hörfelt, C.; Funk, J.; Frohm-Nilsson, M.; Wiegleb Edström, D.; Wennberg, A.-M. Topical Methyl Aminolaevulinate Photodynamic Therapy for Treatment of Facial Acne Vulgaris: Results of a Randomized, Controlled Study: MAL-PDT for Acne Vulgaris. Br. J. Dermatol. 2006, 155, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Boccalini, G.; Conti, L.; Montis, C.; Bani, D.; Bencini, A.; Berti, D.; Giorgi, C.; Mengoni, A.; Valtancoli, B. Methylene Blue-Containing Liposomes as New Photodynamic Anti-Bacterial Agents. J. Mater. Chem. B 2017, 5, 2788–2797. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Fan, X.; An, Y.; Zhang, J.; Wang, C.; Yang, R. Randomized Trial of Three Phototherapy Methods for the Treatment of Acne Vulgaris in Chinese Patients. Photodermatol. Photoimmunol. Photomed. 2014, 30, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Ghazi, M.; Pourhajibagher, M.; Bahador, A.; Chiniforush, N.; Dadpour, S.; Dadpour, Y. Evaluation of Adding Nanosized Natural Zeolite to Photodynamic Therapy against P. gingivalis Biofilm on Titanium Disks. Photodiagn. Photodyn. Ther. 2021, 36, 102519. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lv, W.; Han, Z.; Li, Y.; Deng, J.; Huang, Y.; Wan, S.; Sun, J.; Dai, B. Mitoxantrone-Encapsulated ZIF-8 Enhances Chemo-Immunotherapy via Amplified Immunogenic Cell Death. Adv. Sci. 2025, 12, 2501542. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Chen, H.; Tan, J.; Meng, Q.; Zheng, P.; Ma, P.; Lin, J. ZIF-8 Nanoparticles Evoke Pyroptosis for High-Efficiency Cancer Immunotherapy. Angew. Chem. Int. Ed. 2023, 62, e202215307. [Google Scholar] [CrossRef] [PubMed]
- Sathe, N.C.; Zito, P.M. Skin Cancer; StatPearls Publishing: St. Petersburg, FL, USA,, 2025. [Google Scholar]
- Glazer, A.M.; Winkelmann, R.R.; Farberg, A.S.; Rigel, D.S. Analysis of Trends in US Melanoma Incidence and Mortality. JAMA Dermatol. 2017, 153, 225. [Google Scholar] [CrossRef] [PubMed]
- Rogers, H.W.; Weinstock, M.A.; Feldman, S.R.; Coldiron, B.M. Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012. JAMA Dermatol. 2015, 151, 1081. [Google Scholar] [CrossRef] [PubMed]
- Peris, K.; Fargnoli, M.C. Conventional Treatment of Actinic Keratosis: An Overview. In Current Problems in Dermatology; Soyer, H.P., Prow, T.W., Jemec, G.B.E., Eds.; Karger Publishers: Basel, Switzerland, 2015; Volume 46, pp. 108–114. ISBN 978-3-318-02762-4. [Google Scholar]
- Schmults, C.D.; Blitzblau, R.; Aasi, S.Z.; Alam, M.; Andersen, J.S.; Baumann, B.C.; Bordeaux, J.; Chen, P.-L.; Chin, R.; Contreras, C.M.; et al. NCCN Guidelines® Insights: Squamous Cell Skin Cancer, Version 1.2022: Featured Updates to the NCCN Guidelines. J. Natl. Compr. Canc. Netw. 2021, 19, 1382–1394. [Google Scholar] [CrossRef] [PubMed]
- Khojaewa, V.; Lopatin, O.; Zelenikhin, P.; Ilinskaya, O. Zeolites as Carriers of Antitumor Ribonuclease Binase. Front. Pharmacol. 2019, 10, 442. [Google Scholar] [CrossRef] [PubMed]
- Pavelic, K.; Katic, M.; Sverko, V.; Marotti, T.; Bosnjak, B.; Balog, T.; Stojkovic, R.; Radacic, M.; Colic, M.; Poljak-Blazi, M. Immunostimulatory Effect of Natural Clinoptilolite as a Possible Mechanism of Its Antimetastatic Ability. J. Cancer Res. Clin. Oncol. 2002, 128, 37–44. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dring, J.C.; Kaczynski, M.; Zureikat, R.M.; Kaczynski, M.; Forma, A.; Baj, J. Review of Applications of Zeolites in Dermatology: Molecular Perspectives and Translational Potentials. Int. J. Mol. Sci. 2025, 26, 6821. https://doi.org/10.3390/ijms26146821
Dring JC, Kaczynski M, Zureikat RM, Kaczynski M, Forma A, Baj J. Review of Applications of Zeolites in Dermatology: Molecular Perspectives and Translational Potentials. International Journal of Molecular Sciences. 2025; 26(14):6821. https://doi.org/10.3390/ijms26146821
Chicago/Turabian StyleDring, James Curtis, Matthew Kaczynski, Rina Maria Zureikat, Michael Kaczynski, Alicja Forma, and Jacek Baj. 2025. "Review of Applications of Zeolites in Dermatology: Molecular Perspectives and Translational Potentials" International Journal of Molecular Sciences 26, no. 14: 6821. https://doi.org/10.3390/ijms26146821
APA StyleDring, J. C., Kaczynski, M., Zureikat, R. M., Kaczynski, M., Forma, A., & Baj, J. (2025). Review of Applications of Zeolites in Dermatology: Molecular Perspectives and Translational Potentials. International Journal of Molecular Sciences, 26(14), 6821. https://doi.org/10.3390/ijms26146821