In Vivo Versus In Vitro Somatostatin Receptor Expression in Neuroendocrine Neoplasms: A Systematic Review and Meta-Analysis of Correlation Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol, Review Question and Inclusion Criteria
2.2. Strategy for Literature Research, Study Selection, and Data Collection and Extraction
2.3. Quality Assessment (Risk of Bias Assessment)
2.4. Statistical Analysis
3. Results
3.1. Literature Search, Study Characteristics, and Qualitative Synthesis (or Systematic Review)
3.2. Risk of Bias and Applicability
3.3. Quantitative Synthesis (or Meta-Analysis)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, B.; Xue, L.; Wu, Z.B. Structure and Function of Somatostatin and Its Receptors in Endocrinology. Endocr. Rev. 2025, 46, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Parihar, A.S.; Bodei, L.; Hope, T.A.; Mallak, N.; Millo, C.; Prasad, K.; Wilson, D.; Zukotynski, K.; Mittra, E. Somatostatin Receptor Imaging and Theranostics: Current Practice and Future Prospects. J. Nucl. Med. 2021, 62, 1323–1329. [Google Scholar] [CrossRef]
- Hennrich, U.; Kopka, K. Lutathera®: The First FDA- and EMA-Approved Radiopharmaceutical for Peptide Receptor Radionuclide Therapy. Pharmaceuticals 2019, 12, 114. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Halperin, D.; Myrehaug, S.; Herrmann, K.; Pavel, M.; Kunz, P.L.; Chasen, B.; Tafuto, S.; Lastoria, S.; Capdevila, J.; et al. [177Lu]Lu-DOTA-TATE plus long-acting octreotide versus high-dose long-acting octreotide for the treatment of newly diagnosed, advanced grade 2–3, well-differentiated, gastroenteropancreatic neuroendocrine tumours (NETTER-2): An open-label, randomised, phase 3 study. Lancet 2024, 403, 2807–2817. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Hope, T.A.; Allen-Auerbach, M.; Bodei, L.; Calais, J.; Dahlbom, M.; Dunnwald, L.K.; Graham, M.M.; Jacene, H.A.; Heath, C.L.; Mittra, E.S.; et al. SNMMI Procedure Standard/EANM Practice Guideline for SSTR PET: Imaging Neuroendocrine Tumors. J. Nucl. Med. 2023, 64, 204–210. [Google Scholar] [CrossRef]
- Korner, M.; Waser, B.; Schonbrunn, A.; Perren, A.; Reubi, J.C. Somatostatin receptor subtype 2A immunohistochemistry using a new monoclonal antibody selects tumors suitable for in vivo somatostatin receptor targeting. Am. J. Surg. Pathol. 2012, 36, 242–252. [Google Scholar] [CrossRef]
- Lupp, A.; Hunder, A.; Petrich, A.; Nagel, F.; Doll, C.; Schulz, S. Reassessment of sst5 somatostatin receptor expression in normal and neoplastic human tissues using the novel rabbit monoclonal antibody UMB-4. Neuroendocrinology 2011, 94, 255–264. [Google Scholar] [CrossRef]
- Remes, S.M.; Leijon, H.L.; Vesterinen, T.J.; Arola, J.T.; Haglund, C.H. Immunohistochemical Expression of Somatostatin Receptor Subtypes in a Panel of Neuroendocrine Neoplasias. J. Histochem. Cytochem. 2019, 67, 735–743. [Google Scholar] [CrossRef]
- Asnacios, A.; Courbon, F.; Rochaix, P.; Bauvin, E.; Cances-Lauwers, V.; Susini, C.; Schulz, S.; Boneu, A.; Guimbaud, R.; Buscail, L. Indium-111-pentetreotide scintigraphy and somatostatin receptor subtype 2 expression: New prognostic factors for malignant well-differentiated endocrine tumors. J. Clin. Oncol. 2008, 26, 963–970. [Google Scholar] [CrossRef]
- Papotti, M.; Croce, S.; Bello, M.; Bongiovanni, M.; Allia, E.; Schindler, M.; Bussolati, G. Expression of somatostatin receptor types 2, 3 and 5 in biopsies and surgical specimens of human lung tumours. Correlation with preoperative octreotide scintigraphy. Virchows Arch. 2001, 439, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Volante, M.; Brizzi, M.P.; Faggiano, A.; La Rosa, S.; Rapa, I.; Ferrero, A.; Mansueto, G.; Righi, L.; Garancini, S.; Capella, C.; et al. Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: A proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod. Pathol. 2007, 20, 1172–1182. [Google Scholar] [CrossRef]
- Haug, A.R.; Assmann, G.; Rist, C.; Tiling, R.; Schmidt, G.P.; Bartenstein, P.; Hacker, M. Quantification of immunohistochemical expression of somatostatin receptors in neuroendocrine tumors using 68Ga-DOTATATE PET/CT. Radiologe 2010, 50, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Kaemmerer, D.; Athelogou, M.; Lupp, A.; Lenhardt, I.; Schulz, S.; Luisa, P.; Hommann, M.; Prasad, V.; Binnig, G.; Baum, R.P. Somatostatin receptor immunohistochemistry in neuroendocrine tumors: Comparison between manual and automated evaluation. Int. J. Clin. Exp. Pathol. 2014, 7, 4971–4980. [Google Scholar]
- Kaemmerer, D.; Peter, L.; Lupp, A.; Schulz, S.; Sanger, J.; Baum, R.P.; Prasad, V.; Hommann, M. Comparing of IRS and Her2 as immunohistochemical scoring schemes in gastroenteropancreatic neuroendocrine tumors. Int. J. Clin. Exp. Pathol. 2012, 5, 187–194. [Google Scholar] [PubMed]
- Kaemmerer, D.; Peter, L.; Lupp, A.; Schulz, S.; Sanger, J.; Prasad, V.; Kulkarni, H.; Haugvik, S.P.; Hommann, M.; Baum, R.P. Molecular imaging with 68Ga-SSTR PET/CT and correlation to immunohistochemistry of somatostatin receptors in neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 1659–1668. [Google Scholar] [CrossRef]
- Kaemmerer, D.; Wirtz, R.M.; Fischer, E.K.; Hommann, M.; Sanger, J.; Prasad, V.; Specht, E.; Baum, R.P.; Schulz, S.; Lupp, A. Analysis of somatostatin receptor 2A immunohistochemistry, RT-qPCR, and in vivo PET/CT data in patients with pancreatic neuroendocrine neoplasm. Pancreas 2015, 44, 648–654. [Google Scholar] [CrossRef]
- Kiesewetter, B.; Mazal, P.; Kretschmer-Chott, E.; Mayerhoefer, M.E.; Raderer, M. Pulmonary neuroendocrine tumours and somatostatin receptor status: An assessment of unlicensed use of somatostatin analogues in the clinical practice. ESMO Open 2022, 7, 100478. [Google Scholar] [CrossRef]
- Majala, S.; Vesterinen, T.; Seppanen, H.; Mustonen, H.; Sundstrom, J.; Schalin-Jantti, C.; Gullichsen, R.; Schildt, J.; Kemppainen, J.; Arola, J.; et al. Correlation of Somatostatin Receptor 1-5 Expression, [68Ga]Ga-DOTANOC, [18F]F-FDG PET/CT and Clinical Outcome in a Prospective Cohort of Pancreatic Neuroendocrine Neoplasms. Cancers 2021, 14, 162. [Google Scholar] [CrossRef]
- Miederer, M.; Seidl, S.; Buck, A.; Scheidhauer, K.; Wester, H.J.; Schwaiger, M.; Perren, A. Correlation of immunohistopathological expression of somatostatin receptor 2 with standardised uptake values in 68Ga-DOTATOC PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 48–52. [Google Scholar] [CrossRef]
- Mussig, K.; Oksuz, M.O.; Dudziak, K.; Ueberberg, B.; Wehrmann, M.; Horger, M.; Schulz, S.; Haring, H.U.; Pfannenberg, C.; Bares, R.; et al. Association of somatostatin receptor 2 immunohistochemical expression with [111In]-DTPA octreotide scintigraphy and [68Ga]-DOTATOC PET/CT in neuroendocrine tumors. Horm. Metab. Res. 2010, 42, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Rufini, V.; Lorusso, M.; Inzani, F.; Pasciuto, T.; Triumbari, E.K.A.; Grillo, L.R.; Locco, F.; Margaritora, S.; Pescarmona, E.; Rindi, G. Correlation of somatostatin receptor PET/CT imaging features and immunohistochemistry in neuroendocrine tumors of the lung: A retrospective observational study. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4182–4193. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Cao, F.; Zhao, X.; Xie, Q.; Lu, M.; Li, J.; Yang, Z.; Sun, Y. Correlation and Comparison of Somatostatin Receptor Type 2 Immunohistochemical Scoring Systems with 68Ga-DOTATATE Positron Emission Tomography/Computed Tomography Imaging in Gastroenteropancreatic Neuroendocrine Neoplasms. Neuroendocrinology 2022, 112, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Rev. Esp. Cardiol. (Engl. Ed.) 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Sadeghi, R.; Treglia, G. Systematic reviews and meta-analyses of diagnostic studies: A practical guideline. Clin. Transl. Imaging 2017, 5, 83–87. [Google Scholar] [CrossRef]
- Hope, T.A.; Calais, J.; Zhang, L.; Dieckmann, W.; Millo, C. 111In-Pentetreotide Scintigraphy Versus 68Ga-DOTATATE PET: Impact on Krenning Scores and Effect of Tumor Burden. J. Nucl. Med. 2019, 60, 1266–1269. [Google Scholar] [CrossRef]
- Kasajima, A.; Papotti, M.; Ito, W.; Brizzi, M.P.; La Salvia, A.; Rapa, I.; Tachibana, T.; Yazdani, S.; Sasano, H.; Volante, M. High interlaboratory and interobserver agreement of somatostatin receptor immunohistochemical determination and correlation with response to somatostatin analogs. Hum. Pathol. 2018, 72, 144–152. [Google Scholar] [CrossRef]
- John, M.; Meyerhof, W.; Richter, D.; Waser, B.; Schaer, J.C.; Scherubl, H.; Boese-Landgraf, J.; Neuhaus, P.; Ziske, C.; Molling, K.; et al. Positive somatostatin receptor scintigraphy correlates with the presence of somatostatin receptor subtype 2. Gut 1996, 38, 33–39. [Google Scholar] [CrossRef]
- Reubi, J.C.; Schaer, J.C.; Waser, B.; Mengod, G. Expression and localization of somatostatin receptor SSTR1, SSTR2, and SSTR3 messenger RNAs in primary human tumors using in situ hybridization. Cancer Res. 1994, 54, 3455–3459. [Google Scholar]
- Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev. 2003, 24, 389–427. [Google Scholar] [CrossRef] [PubMed]
- Koeppen, H.K.; Wright, B.D.; Burt, A.D.; Quirke, P.; McNicol, A.M.; Dybdal, N.O.; Sliwkowski, M.X.; Hillan, K.J. Overexpression of HER2/neu in solid tumours: An immunohistochemical survey. Histopathology 2001, 38, 96–104. [Google Scholar] [CrossRef]
- Remmele, W.; Stegner, H.E. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 1987, 8, 138–140. [Google Scholar] [PubMed]
- Reccia, I.; Pai, M.; Kumar, J.; Spalding, D.; Frilling, A. Tumour Heterogeneity and the Consequent Practical Challenges in the Management of Gastroenteropancreatic Neuroendocrine Neoplasms. Cancers 2023, 15, 1861. [Google Scholar] [CrossRef]
- Binderup, T.; Knigge, U.; Johnbeck, C.B.; Loft, A.; Berthelsen, A.K.; Oturai, P.; Mortensen, J.; Federspiel, B.; Langer, S.W.; Kjaer, A. 18F-FDG PET is Superior to WHO Grading as a Prognostic Tool in Neuroendocrine Neoplasms and Useful in Guiding PRRT: A Prospective 10-Year Follow-up Study. J. Nucl. Med. 2021, 62, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.L.; Pavlakis, N.; Schembri, G.P.; Bernard, E.J.; Hsiao, E.; Hayes, A.; Barnes, T.; Diakos, C.; Khasraw, M.; Samra, J.; et al. Dual Somatostatin Receptor/FDG PET/CT Imaging in Metastatic Neuroendocrine Tumours: Proposal for a Novel Grading Scheme with Prognostic Significance. Theranostics 2017, 7, 1149–1158. [Google Scholar] [CrossRef]
- Han, S.; Lee, H.S.; Woo, S.; Kim, T.H.; Yoo, C.; Ryoo, B.Y.; Ryu, J.S. Prognostic Value of 18F-FDG PET in Neuroendocrine Neoplasm: A Systematic Review and Meta-analysis. Clin. Nucl. Med. 2021, 46, 723–731. [Google Scholar] [CrossRef]
- Islam, O.; Sarti, K.; Verbruggen, L.; Vandersmissen, V.; Bulcke, K.V.; Annys, L.; Verslype, C.; Van Laethem, J.L.; Kalantari, H.R.; Janssens, J.; et al. Management of high-grade neuroendocrine neoplasms: Impact of functional imaging. Endocr. Relat. Cancer 2025, 32, e240231. [Google Scholar] [CrossRef]
- Konukiewitz, B.; Schlitter, A.M.; Jesinghaus, M.; Pfister, D.; Steiger, K.; Segler, A.; Agaimy, A.; Sipos, B.; Zamboni, G.; Weichert, W.; et al. Somatostatin receptor expression related to TP53 and RB1 alterations in pancreatic and extrapancreatic neuroendocrine neoplasms with a Ki67-index above 20. Mod. Pathol. 2017, 30, 587–598. [Google Scholar] [CrossRef]
First Author and Year | Country | Journal | Study Design | Funding Sources | No. Patients | M/F | Age, Years (Range) | NEN Site | Specimen Type |
---|---|---|---|---|---|---|---|---|---|
Miederer M 2009 [20] | Germany | EJNMMI | Retrospective | N.R. | 18 | 10/8 | 53 [mean] | GEP: 11; L: 1; others: 6 | Biopsy: 4; surgery: 14 |
Haug AR 2010 [13] | Germany | Radiologe | Retrospective | N.R. | 27 | 18/9 | 59.6 [mean] (40–73) | GEP: 19; L: 3; others: 5 | N.R. |
Müssig K 2010 [21] | Germany | Horm Metab Res | Retrospective | N.R. | 36 | 19/17 | 58 [mean] SD 12 | GEP: 23; L: 1; others: 12 | Biopsy: 17; surgery: 23 (2 tumors in 4 patients) |
Kaemmerer D 2011 [16] | Germany | EJNMMI | Retrospective | N.R. | 17 | N.R. | 58 [median] (33–82) | GEP: 17 | N.R. |
Kaemmerer D 2012 [15] | Germany | Int J Clin Exp Patho | Retrospective | N.R. | 21 | N.R. | 56 [median] SD 11 (33–76) | GEP: 21 | N.R. |
Kaemmerer D 2014 [14] | Germany | Int J Clin Exp Patho | Retrospective | N.R. | 25 | 15/10 | (33–82) | GEP: 25 | Surgery: 31 |
Kaemmerer D 2015 [17] | Germany | Pancreas | Retrospective | N.R. | 19 | 11/8 | (33–77) | panNEN: 19 | Biopsy: 39 (primary tumor and metastases) |
Majala S 2021 [19] | Finland | Cancers | Prospective | Yes | 21 | 13/8 | 54.9 [mean] SD 18.1 | panNEN: 21 | Biopsy: 1; surgery: 20 |
Rufini V 2022 [22] | Italy | EJNMMI | Retrospective | Yes | 32 | 20/12 | 62 [median] (29–82) | L: 32 | Biopsy: 8; surgery: 24 |
Kiesewetter B 2022 [18] | Austria | ESMO Open | Retrospective | No | 34 | 12/22 | 78 [median] (28–88) | L: 34 | N.R. |
Yu J 2022 [23] | China | Neuroendocrinology | Retrospective | Yes | 95 | 54/41 | N.R. | GEP: 95 | Biopsy: 61; surgery: 39 |
First Author and Year | Hybrid Imaging | Tomograph | Peptide | Injected Activity (MBq) | Uptake Time (min) | Image Analysis | Semi-quantitative Parameters | IHC Targets | IHC Antibodies (Ab) | IHC Assessment |
---|---|---|---|---|---|---|---|---|---|---|
Miederer M 2009 [20] | PET/CT | Siemens Biograph 16 | DOTA-TOC | 112 [mean], SD 15 | 20 | Semi-quantitative | SUVmean, SUVmax | SSTR2 | Antibodies against SSTR2 n.b.s. | Semi-quantitative (0–3) [DAKO-score for her2-neu] |
Haug AR 2010 [13] | PET/CT | Philips Gemini | DOTA-TATE | 200 [fixed dose] | 60 | Semi-quantitative | SUVmax | SSTR2 | Antibodies against SSTR2 n.b.s. | Semi-quantitative (0–3) [DAKO-score for her2-neu] |
Müssig K 2010 [21] | PET/CT | Siemens Biograph 16 | DOTA-TOC | 150 [mean] | 20 | Qualitative + semi-quantitative | SUVmax | SSTR2, SSTR3, SSTR5 | Monoclonal Ab (SSTR2), policlonal Ab (SSTR3, SSTR5) | (1) Semi-quantitative (0–3). (2) Qualitative (+ weak, ++ moderate, +++ strong) |
Kaemmerer D 2011 [16] | PET/CT | N.R. | DOTA-NOC | N.R. | N.R. | Semi-quantitative | SUVmean, SUVmax | SSTR2A, SSTR1, SSTR3-5 | Monoclonal Ab UMB-1 (SSTR2A), policlonal Ab (SSTR1, SSTR3-5) | Semi-quantitative (IRSmod 0–12 and IRS 0–3) |
Kaemmerer D 2012 [15] | PET/CT | N.R. | DOTA-NOC | N.R. | N.R. | Semi-quantitative | SUVmax | SSTR2A, SSTR1, SSTR3-5 | Monoclonal Ab UMB-1 (SSTR2A), policlonal Ab (SSTR1, SSTR3-5) | Two semi-quantitative scores: IRS (IRSmod 0–12 and IRS 0–3) and Her2 score (0–3) |
Kaemmerer D 2014 [14] | PET/CT | Siemens Biograph Duo | DOTA-NOC, DOTA-TATE | N.R. | N.R. | Semi-quantitative | SUVmean, SUVmax | SSTR2A, SSTR1, SSTR4, SSTR5 | Monoclonal Ab (SSTR2A), policlonal Ab (SSTR1, SSTR4, SSTR5) | Two semi-quantitative scores: IRS (IRSmod 0–12) and Her2 score (0–3) |
Kaemmerer D 2015 [17] | PET/CT | Siemens Biograph Duo | DOTA-TATE, DOTA-TOC, DOTA-NOC | 122.4 [mean], SD 13.98 (range 86–149) | 60 | Semi-quantitative | SUVmean, SUVmax | SSTR2A | Monoclonal Ab UMB-1 (SSTR2A) | Semi-quantitative. (1) IRS. (2) DAKO-score for her2-neu (0–3) |
Majala S 2021 [19] | PET/CT | GE Discovery; Siemens Biograph mCT; Philips Gemini; Siemens Biograph 6 | DOTA-NOC | 142.7 [mean], SD 18.9 | 54 ± 9 | Qualitative + Krenning Score (0–4) + semi-quantitative | SUVmax | SSTR1–5 | Monoclonal Ab (UMB-1 for SSTR2) | Semi-quantitative (Overall score by Elston and Korner score, 0–3) |
Rufini V 2022 [22] | PET/CT | Philips Gemini GXL, Siemens Biograph mCT | DOTA-TOC, DOTA-NOC | 2 MBq/kg | 45 ± 10 | Qualitative + Krenning Score (0–4) + semi-quantitative | SUVmax | SSTR2, SSTR5 | Monoclonal Ab (UMB-1 for both) | Semi-quantitative (Volante score 0–3) |
Kiesewetter B 2022 [18] | PET/CT | Siemens Biograph 64 | DOTA-NOC | (range 160–180) | 45–60 | Qualitative | / | SSTR2, SSTR5 | Abcam for both n.b.s. | Qualitative (0, +, ++, +++) and semi-quantitative (0–300) |
Yu J 2022 [23] | PET/CT | Siemens Biograph 64 | DOTA-TATE | (range 100–200) | 60 | Qualitative + Krenning Score (0–4) + semi-quantitative | SUVmax | SSTR2 | Monoclonal Ab | Four semi-quantitative scores: (1) Her2 score (0–3) (2) Volante score (0–3) (3) H score (0–300) (4) IRSmod (0–12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrone, E.; Treglia, G.; Giancipoli, R.G.; Leccisotti, L.; Rindi, G.; Rufini, V. In Vivo Versus In Vitro Somatostatin Receptor Expression in Neuroendocrine Neoplasms: A Systematic Review and Meta-Analysis of Correlation Studies. Int. J. Mol. Sci. 2025, 26, 6551. https://doi.org/10.3390/ijms26146551
Perrone E, Treglia G, Giancipoli RG, Leccisotti L, Rindi G, Rufini V. In Vivo Versus In Vitro Somatostatin Receptor Expression in Neuroendocrine Neoplasms: A Systematic Review and Meta-Analysis of Correlation Studies. International Journal of Molecular Sciences. 2025; 26(14):6551. https://doi.org/10.3390/ijms26146551
Chicago/Turabian StylePerrone, Elisabetta, Giorgio Treglia, Romina Grazia Giancipoli, Lucia Leccisotti, Guido Rindi, and Vittoria Rufini. 2025. "In Vivo Versus In Vitro Somatostatin Receptor Expression in Neuroendocrine Neoplasms: A Systematic Review and Meta-Analysis of Correlation Studies" International Journal of Molecular Sciences 26, no. 14: 6551. https://doi.org/10.3390/ijms26146551
APA StylePerrone, E., Treglia, G., Giancipoli, R. G., Leccisotti, L., Rindi, G., & Rufini, V. (2025). In Vivo Versus In Vitro Somatostatin Receptor Expression in Neuroendocrine Neoplasms: A Systematic Review and Meta-Analysis of Correlation Studies. International Journal of Molecular Sciences, 26(14), 6551. https://doi.org/10.3390/ijms26146551