New Sights into Bioinformatics of Gene Regulations and Structure
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Teragawa, S.; Wang, L.; Liu, Y. DeepPGD: A Deep Learning Model for DNA Methylation Prediction Using Temporal Convolution, BiLSTM, and Attention Mechanism. Int. J. Mol. Sci. 2024, 25, 8146. https://doi.org/10.3390/ijms25158146.
- Uemura, K.; Ohyama, T. Physical Peculiarity of Two Sites in Human Promoters: Universality and Diverse Usage in Gene Function. Int. J. Mol. Sci. 2024, 25, 1487. https://doi.org/10.3390/ijms25031487.
- Kim, J.; Park, Y.; Jang, M. Identification of Laccase Family of Auricularia auricula-judae and Structural Prediction Using Alphafold. Int. J. Mol. Sci. 2024, 25, 11784. https://doi.org/10.3390/ijms252111784.
- Perriera, R.; Vitale, E.; Pibiri, I.; Carollo, P.; Ricci, D.; Corrao, F.; Fiduccia, I.; Melfi, R.; Zizzo, M.; Tutone, M.; Pace, A.; Lentini, L. Readthrough Approach Using NV Translational Readthrough-Inducing Drugs (TRIDs): A Study of the Possible Off-Target Effects on Natural Termination Codons (NTCs) on TP53 and Housekeeping Gene Expression. Int. J. Mol. Sci. 2023, 24, 15084. https://doi.org/10.3390/ijms242015084.
- Chen, Z.; Li, J.; Bai, Y.; Liu, Z.; Wei, Y.; Guo, D.; Jia, X.; Shi, B.; Zhang, X.; Zhao, Z.; Hu, J.; Han, X.; Wang, J.; Liu, X.; Li, S.; Zhao, F. Unlocking the Transcriptional Control of NCAPG in Bovine Myoblasts: CREB1 and MYOD1 as Key Players. Int. J. Mol. Sci. 2024, 25, 2506. https://doi.org/10.3390/ijms25052506.
- Shen, Q.; Gong, W.; Pan, X.; Cai, J.; Jiang, Y.; He, M.; Zhao, S.; Li, Y.; Yuan, X.; Li, J. Comprehensive Analysis of CircRNA Expression Profiles in Multiple Tissues of Pigs. Int. J. Mol. Sci. 2023, 24, 16205. https://doi.org/10.3390/ijms242216205.
- Byambaragchaa, M.; Park, S.; Kim, S.; Shin, M.; Kim, S.; Park, M.; Kang, M.; Min, K. Stable Production of a Recombinant Single-Chain Eel Follicle-Stimulating Hormone Analog in CHO DG44 Cells. Int. J. Mol. Sci. 2024, 25, 7282. https://doi.org/10.3390/ijms25137282.
- Gorbenko, I.; Petrushin, I.; Shcherban, A.; Orlov, Y.; Konstantinov, Y. Short Interrupted Repeat Cassette (SIRC)—Novel Type of Repetitive DNA Element Found in Arabidopsis thaliana. Int. J. Mol. Sci. 2023, 24, 11116. https://doi.org/10.3390/ijms241311116.
References
- Orlov, Y.L.; Baranova, A.V. Editorial: Bioinformatics of Genome Regulation and Systems Biology. Front. Genet. 2020, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Orlov, Y.L.; Baranova, A.V.; Hofestädt, R.; Kolchanov, N.A. Genomics at Belyaev conference—2017. BMC Genom. 2018, 19 (Suppl. S3), 79. [Google Scholar] [CrossRef] [PubMed]
- Anashkina, A.A.; Leberfarb, E.Y.; Orlov, Y.L. Recent Trends in Cancer Genomics and Bioinformatics Tools Development. Int. J. Mol. Sci. 2021, 22, 12146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wu, L.; Zhao, Z.; Fernandez Masso, J.R.; Chen, M. Artificial Intelligence in Gerontology: Data-Driven Health Management and Precision Medicine. Adv. Gerontol. 2024, 14, 97–110. [Google Scholar] [CrossRef]
- Ke, J.; Zhao, J.; Li, H.; Yuan, L.; Dong, G.; Wang, G. Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model. Comput. Biol. Med. 2024, 174, 108330. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Ge, F.; Wang, X.; Zhang, Y.; Li, S.; Guo, Y.; Song, J.; Yu, D.J. MLSNet: A deep learning model for predicting transcription factor binding sites. Brief. Bioinform. 2024, 25, bbae489. [Google Scholar] [CrossRef]
- Strahs, D.; Barash, D.; Qian, X.; Schlick, T. Sequence-dependent solution structure and motions of 13 TATA/TBP (TATA-box binding protein) complexes. Biopolymers 2003, 69, 216–243. [Google Scholar] [CrossRef]
- Filonov, S.V.; Podkolodnyy, N.L.; Podkolodnaya, O.A.; Tverdokhleb, N.N.; Ponomarenko, P.M.; Rasskazov, D.A.; Bogomolov, A.G.; Ponomarenko, M.P. Human_SNP_TATAdb: A database of SNPs that statistically significantly change the affinity of the TATA-binding protein to human gene promoters: Genome-wide analysis and use cases. Vavilovskii Zhurnal Genet. Sel. 2023, 27, 728–736. [Google Scholar] [CrossRef]
- Dotsenko, P.A.; Zolotareva, K.A.; Ivanov, R.A.; Chadaeva, I.V.; Podkolodnyy, N.L.; Ivanisenko, V.A.; Demenkov, P.S.; Lashin, S.A.; Ponomarenko, M.P. Candidate SNP markers of changes in the expression levels of the human SCN9A gene as a hub gene for pain generation, perception, response and anesthesia. Vavilovskii Zhurnal Genet. Sel. 2024, 28, 808–821. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Genc, A.G.; McGuffin, L.J. Beyond AlphaFold2: The Impact of AI for the Further Improvement of Protein Structure Prediction. In Prediction of Protein Secondary Structure; Methods in Molecular Biology; Clifton, N.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2025; Volume 2867, pp. 121–139. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Shi, W.; Nie, Z.; Zhang, S.; Ma, F.; Hu, J.; Chen, J.; Li, P.; Xie, X. Pharmaceuticals Promoting Premature Termination Codon Readthrough: Progress in Development. Biomolecules 2023, 13, 988. [Google Scholar] [CrossRef] [PubMed]
- Ricci, D.; Cruciata, I.; Fiduccia, I.; Vitale, E.; Corrao, F.; Branchini, A.; Carollo, P.S.; Pibiri, I.; Lentini, L. Advancing Therapeutic Strategies for Nonsense-Related Diseases: From Small Molecules to Nucleic Acid-Based Innovations. IUBMB Life 2025, 77, e70027. [Google Scholar] [CrossRef] [PubMed]
- Lentini, L.; Perriera, R.; Corrao, F.; Melfi, R.; Tutone, M.; Carollo, P.S.; Fiduccia, I.; Pace, A.; Ricci, D.; Genovese, F.; et al. A precision medicine approach to primary immunodeficiency disease: Ataluren strikes nonsense mutations once again. Mol. Ther. J. Am. Soc. Gene Ther. 2025, 33, 3231–3241. [Google Scholar] [CrossRef]
- Xue, Q.; Du, L.; Deng, T.; Liang, M.; Li, K.; Qian, L.; Qiu, S.; Chen, Y.; Gao, X.; Xu, L.; et al. Integrating genomics and transcriptomics reveals candidate genes affecting loin muscle area in Huaxi cattle. PLoS ONE 2025, 20, e0322026. [Google Scholar] [CrossRef]
- Li, S.; Guo, Y.; Huo, C.; Zhu, L.; Shi, C.; Na, R.; Gu, M.; Zhang, W. Machine Learning-Based Analysis of Differentially Expressed Genes in the Muscle Transcriptome Between Beef Cattle and Dairy Cattle. Int. J. Mol. Sci. 2025, 26, 5046. [Google Scholar] [CrossRef]
- Yun, J.; Huang, X.; Liu, C.; Shi, M.; Li, W.; Niu, J.; Cai, C.; Yang, Y.; Gao, P.; Guo, X.; et al. Genome-wide analysis of circular RNA-mediated ceRNA regulation in porcine skeletal muscle development. BMC Genom. 2023, 24, 196. [Google Scholar] [CrossRef]
- He, T.; Chen, Q.; Li, H.; Mao, J.; Luo, J.; Ma, D.; Yang, Z. The potential mechanism of MicroRNA involvement in the regulation of muscle development in weaned piglets by tryptophan and its metabolites. BMC Genom. 2025, 26, 330. [Google Scholar] [CrossRef]
- Wang, K.; Hu, Y.; Li, S.; Chen, M.; Li, Z. LncLSTA: A versatile predictor unveiling subcellular localization of lncRNAs through long-short term attention. Bioinform. Adv. 2024, 5, vbae173. [Google Scholar] [CrossRef]
- Kim, S.H.; Byambaragchaa, M.; Park, S.H.; Park, M.H.; Kang, M.H.; Min, K.S. The N-Linked Glycosylation Asn191 and Asn199 Sites Are Controlled Differently Between PKA Signal Transduction and pEKR1/2 Activity in Equine Follicle-Stimulating Hormone Receptor. Curr. Issues Mol. Biol. 2025, 47, 168. [Google Scholar] [CrossRef]
- Swain, S.P.; Bisht, N.; Kumar, S. Comprehensive study of tRNA-derived fragments in plants for biotic stress responses. Funct. Integr. Genom. 2025, 25, 70. [Google Scholar] [CrossRef]
- Pegler, J.L.; Oultram, J.M.J.; Mann, C.W.G.; Carroll, B.J.; Grof, C.P.L.; Eamens, A.L. Miniature Inverted-Repeat Transposable Elements: Small DNA Transposons That Have Contributed to Plant MICRORNA Gene Evolution. Plants 2023, 12, 1101. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, E.; Hu, Y.; Li, S.; Zhang, S.; Chao, H.; Hu, Y.; Zhu, Y.; Chen, Y.; Xie, L.; et al. ncPlantDB: A plant ncRNA database with potential ncPEP information and cell type-specific interaction. Nucleic Acids Res. 2025, 53, D1587–D1594. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, H.; Yu, S.; Hu, W.; Zhang, Z.; Wang, X.; Yuan, Y.; Wang, M.; Chen, L.; Lin, X.; et al. AI-Driven Transcriptome Prediction in Human Pathology: From Molecular Insights to Clinical Applications. Biology 2025, 14, 651. [Google Scholar] [CrossRef] [PubMed]
- Sung, W.K.F. Frontiers in Biomedical Informatics. Biomed. Inform. 2025, 1, 0001. [Google Scholar] [CrossRef]
- Chao, H.; Li, Z.; Chen, D.; Chen, M. iSeq: An integrated tool to fetch public sequencing data. Bioinformatics 2024, 40, btae641. [Google Scholar] [CrossRef]
- Türker, C.; Panse, C.; Sommer, B.; Friedrichs, M.; Hofestädt, R. International symposium on integrative bioinformatics 2024—Editorial. J. Integr. Bioinform. 2024, 21, 20240051. [Google Scholar] [CrossRef]
- Golebiewski, M.; Bader, G.; Gleeson, P.; Gorochowski, T.E.; Keating, S.M.; König, M.; Myers, C.J.; Nickerson, D.P.; Sommer, B.; Waltemath, D.; et al. Specifications of standards in systems and synthetic biology: Status, developments, and tools in 2024. J. Integr. Bioinform. 2024, 21, 20240015. [Google Scholar] [CrossRef]
- Baranova, A.V.; Orlov, Y.L. The papers presented at 7th Young Scientists School “Systems Biology and Bioinformatics” (SBB’15): Introductory Note. BMC Genet. 2016, 17 (Suppl. S1), 20. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anashkina, A.A.; Orlova, N.G.; Kolchanov, N.A.; Orlov, Y.L. New Sights into Bioinformatics of Gene Regulations and Structure. Int. J. Mol. Sci. 2025, 26, 6442. https://doi.org/10.3390/ijms26136442
Anashkina AA, Orlova NG, Kolchanov NA, Orlov YL. New Sights into Bioinformatics of Gene Regulations and Structure. International Journal of Molecular Sciences. 2025; 26(13):6442. https://doi.org/10.3390/ijms26136442
Chicago/Turabian StyleAnashkina, Anastasia A., Nina G. Orlova, Nikolay A. Kolchanov, and Yuriy L. Orlov. 2025. "New Sights into Bioinformatics of Gene Regulations and Structure" International Journal of Molecular Sciences 26, no. 13: 6442. https://doi.org/10.3390/ijms26136442
APA StyleAnashkina, A. A., Orlova, N. G., Kolchanov, N. A., & Orlov, Y. L. (2025). New Sights into Bioinformatics of Gene Regulations and Structure. International Journal of Molecular Sciences, 26(13), 6442. https://doi.org/10.3390/ijms26136442