Nicotine from a Different Angle: Biological Effects from a Psychoneuroimmunological Perspective
Abstract
1. Introduction
Psychological Aspects: Addiction and Behavior
2. Understanding Nicotine as a Substance
2.1. Neurobiological Aspects: Nicotinic Receptors
2.2. Immunological Response: Inflammation and Systemic Regulation
2.3. Nicotine Effects
2.3.1. Inflammation
2.3.2. Autoimmune Diseases
2.3.3. Cancer Development
2.3.4. Neurodegenerative Diseases
2.3.5. Cardiovascular Diseases
2.3.6. Respiratory Diseases
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CVDs | Cardiovascular disorders |
ILs | Interleukins |
nAChRs | Nicotinic acetylcholine receptors |
Th | T helper cells |
WHO | World Health Organization |
References
- Tobacco. Available online: https://www.who.int/news-room/fact-sheets/detail/tobacco (accessed on 11 February 2025).
- Lin, L.Y.; Sidani, J.E.; Shensa, A.; Radovic, A.; Miller, E.; Colditz, J.B.; Hoffman, B.L.; Giles, L.M.; Primack, B.A. Association between Social Media Use and Depression among U.S. Young Adults. Depress. Anxiety 2016, 33, 323. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Kamper-Demarco, K.E.; Zhang, J.; Xiao, J.; Dong, D.; Xue, P. Time Spent on Social Media and Risk of Depression in Adolescents: A Dose–Response Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 5164. [Google Scholar] [CrossRef] [PubMed]
- Grzankowska, I.; Wójtowicz-Szefler, M.; Deja, M. Selected Determinants of Anxiety and Depression Symptoms in Adolescents Aged 11–15 in Relation to the Pandemic COVID-19 and the War in Ukraine. Front. Public Health 2025, 12, 1480416. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Luo, M.; Huang, Y.; Tan, Y.; Cheng, F.; Wu, Y. Time Trends in Anxiety Disorders Incidence across the BRICS: An Age-Period-Cohort Analysis for the GBD 2021. Front. Public Health 2024, 12, 1467385. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Ma, W.; Tong, Y.; Zheng, J. Temporal and Spatial Trend Analysis of All-Cause Depression Burden Based on Global Burden of Disease (GBD) 2019 Study. Sci. Rep. 2024, 14, 12346. [Google Scholar] [CrossRef]
- COVID-19 Pandemic Triggers 25% Increase in Prevalence of Anxiety and Depression Worldwide. Available online: https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide (accessed on 23 February 2025).
- Lasser, K.; Boyd, J.W.; Woolhandler, S.; Himmelstein, D.U.; McCormick, D.; Bor, D.H. Smoking and Mental Illness: A Population-Based Prevalence Study. JAMA 2000, 284, 2606–2610. [Google Scholar] [CrossRef]
- Tobias, M.; Templeton, R.; Collings, S. How Much Do Mental Disorders Contribute to New Zealand’s Tobacco Epidemic? Tob. Control 2008, 17, 347–350. [Google Scholar] [CrossRef]
- Lawrence, D.; Considine, J.; Mitrou, F.; Zubrick, S.R. Anxiety Disorders and Cigarette Smoking: Results from the Australian Survey of Mental Health and Wellbeing. Aust. N. Z. J. Psychiatry 2010, 44, 520–527. [Google Scholar] [CrossRef]
- Weinberger, A.H.; Kashan, R.S.; Shpigel, D.M.; Esan, H.; Taha, F.; Lee, C.J.; Funk, A.P.; Goodwin, R.D. Depression and Cigarette Smoking Behavior: A Critical Review of Population-Based Studies. Am. J. Drug Alcohol Abus. 2017, 43, 416–431. [Google Scholar] [CrossRef]
- Xiong, H.; Ma, F.; Tang, D.; Liu, D. Correlations among Nicotine Dependence, Health-Related Quality of Life, and Depression in Current Smokers: A Cross-Sectional Study with a Mediation Model. Front. Psychiatry 2024, 15, 1455918. [Google Scholar] [CrossRef]
- Kumari, V.; Postma, P. Nicotine Use in Schizophrenia: The Self Medication Hypotheses. Neurosci. Biobehav. Rev. 2005, 29, 1021–1034. [Google Scholar] [CrossRef] [PubMed]
- Moylan, S.; Jacka, F.N.; Pasco, J.A.; Berk, M. Cigarette Smoking, Nicotine Dependence and Anxiety Disorders: A Systematic Review of Population-Based, Epidemiological Studies. BMC Med. 2012, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.A.; Lewinsohn, P.M.; Seeley, J.R.; Wagner, E.F. Cigarette Smoking, Major Depression, and Other Psychiatric Disorders among Adolescents. J. Am. Acad. Child. Adolesc. Psychiatry 1996, 35, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Cuijpers, P.; Smit, F.; Ten Have, M.; De Graaf, R. Smoking is Associated with First-Ever Incidence of Mental Disorders: A Prospective Population-Based Study. Addiction 2007, 102, 1303–1309. [Google Scholar] [CrossRef]
- Patton, G.C.; Carlin, J.B.; Coffey, C.; Wolfe, R.; Hibbert, M.; Bowes, G. Depression, Anxiety, and Smoking Initiation: A Prospective Study over 3 Years. Am. J. Public Health 1998, 88, 1518–1522. [Google Scholar] [CrossRef]
- Swendsen, J.; Conway, K.P.; Degenhardt, L.; Glantz, M.; Jin, R.; Merikangas, K.R.; Sampson, N.; Kessler, R.C. Mental Disorders as Risk Factors for Substance Use, Abuse and Dependence: Results from the 10-Year Follow-up of the National Comorbidity Survey. Addiction 2010, 105, 1117–1128. [Google Scholar] [CrossRef]
- Morissette, S.B.; Tull, M.T.; Gulliver, S.B.; Kamholz, B.W.; Zimering, R.T. Anxiety, Anxiety Disorders, Tobacco Use, and Nicotine: A Critical Review of Interrelationships. Psychol. Bull. 2007, 133, 245–272. [Google Scholar] [CrossRef]
- Luger, T.M.; Suls, J.; Vander Weg, M.W. How Robust is the Association between Smoking and Depression in Adults? A Meta-Analysis Using Linear Mixed-Effects Models. Addict. Behav. 2014, 39, 1418–1429. [Google Scholar] [CrossRef]
- Chaiton, M.O.; Cohen, J.E.; O’Loughlin, J.; Rehm, J. A Systematic Review of Longitudinal Studies on the Association between Depression and Smoking in Adolescents. BMC Public Health 2009, 9, 356. [Google Scholar] [CrossRef]
- Sheals, K.; Tombor, I.; McNeill, A.; Shahab, L. A Mixed-Method Systematic Review and Meta-Analysis of Mental Health Professionals’ Attitudes toward Smoking and Smoking Cessation among People with Mental Illnesses. Addiction 2016, 111, 1536–1553. [Google Scholar] [CrossRef]
- Pedersen, W.; Von Soest, T. Smoking, Nicotine Dependence and Mental Health among Young Adults: A 13-Year Population-Based Longitudinal Study. Addiction 2009, 104, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, R.D.; Lewinsohn, P.M.; Seeley, J.R. Cigarette Smoking and Panic Attacks among Young Adults in the Community: The Role of Parental Smoking and Anxiety Disorders. Biol. Psychiatry 2005, 58, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Bolam, B.; West, R.; Gunnell, D. Does Smoking Cessation Cause Depression and Anxiety? Findings from the ATTEMPT Cohort. Nicotine Tob. Res. 2011, 13, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Wittenberg, R.E.; Wolfman, S.L.; De Biasi, M.; Dani, J.A. Nicotinic Acetylcholine Receptors and Nicotine Addiction: A Brief Introduction. Neuropharmacology 2020, 177, 108256. [Google Scholar] [CrossRef]
- Oliver, J.A.; Foulds, J. Association Between Cigarette Smoking Frequency and Tobacco Use Disorder in U.S. Adults. Am. J. Prev. Med. 2020, 60, 726. [Google Scholar] [CrossRef]
- Subramaniyan, M.; Dani, J.A. Dopaminergic and Cholinergic Learning Mechanisms in Nicotine Addiction. Ann. N. Y. Acad. Sci. 2015, 1349, 46–63. [Google Scholar] [CrossRef]
- WHO-FIC Foundation. Available online: https://icd.who.int/dev11/f/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f268445189 (accessed on 11 February 2025).
- Laniado-Laborín, R. Smoking Cessation Intervention: An Evidence-Based Approach. Postgrad. Med. 2010, 122, 74–82. [Google Scholar] [CrossRef]
- National Institute on Drug Abuse (NIDA). ISSUP Workshop Abu Dhabi 2022—Uniting the Global Community to Face the Challenge of Addiction. Available online: https://nida.nih.gov/international/news/issup-workshop-abu-dhabi-2022-uniting-global-community-to-face-challenge-addiction (accessed on 23 February 2025).
- Sinclair, D.L.; Vanderplasschen, W.; Savahl, S.; Florence, M.; Best, D.; Sussman, S. Substitute Addictions in the Context of the COVID-19 Pandemic. J. Behav. Addict. 2020, 9, 1098. [Google Scholar] [CrossRef]
- Kohno, M.; Link, J.; Dennis, L.E.; McCready, H.; Huckans, M.; Hoffman, W.F.; Loftis, J.M. Neuroinflammation in Addiction: A Review of Neuroimaging Studies and Potential Immunotherapies. Pharmacol. Biochem. Behav. 2019, 179, 34. [Google Scholar] [CrossRef]
- Jordt, S.E. Synthetic Nicotine Has Arrived. Tob. Control 2021, 32, e113. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, J.; Wang, X.; Zhang, X.; Tian, H.; Huang, L.; Huang, Z.; Zhang, Y.; Zhang, J.; Li, L.; et al. The Double-Edged Nature of Nicotine: Toxicities and Therapeutic Potentials. Front. Pharmacol. 2024, 15, 1427314. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L.; Hukkanen, J.; Jacob, P. Nicotine chemistry, metabolism, kinetics and biomarkers. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2009; Volume 192, p. 29. [Google Scholar] [CrossRef]
- Murphy, S.E. Biochemistry of Nicotine Metabolism and Its Relevance to Lung Cancer. J. Biol. Chem. 2021, 296, 100722. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; He, X.Y.; Ding, X.; Prabhu, S.; Hong, J.Y. Metabolism of nicotine and cotinine by human cytochrome P450 2A13. Drug Metab. Dispos. 2005, 33, 258–261. [Google Scholar] [CrossRef] [PubMed]
- McKinney, D.L.; Vansickel, A.R. Nicotine Chemistry, Pharmacology, and Pharmacokinetics. Neuropathol. Drug Addict. Subst. Misuse 2016, 1, 93–103. [Google Scholar] [CrossRef]
- Benowitz, N.L.; Burbank, A.D. Cardiovascular Toxicity of Nicotine: Implications for Electronic Cigarette Use. Trends Cardiovasc. Med. 2016, 26, 515. [Google Scholar] [CrossRef]
- Santis, G.D.; Okura, Y.; Hirata, K.; Ishiuchi, S.-I.; Fujii, M.; Xantheas, S.S. Affinity of Nicotinoids to a Model Nicotinic Acetylcholine Receptor (NAChR) Binding Pocket in the Human Brain. J. Phys. Chem. B 2024, 128, 4577–4589. [Google Scholar] [CrossRef]
- Sansone, L.; Milani, F.; Fabrizi, R.; Belli, M.; Cristina, M.; Zagà, V.; de Iure, A.; Cicconi, L.; Bonassi, S.; Russo, P. Nicotine: From Discovery to Biological Effects. Int. J. Mol. Sci. 2023, 24, 14570. [Google Scholar] [CrossRef]
- Dani, J.A. Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine. Int. Rev. Neurobiol. 2015, 124, 3. [Google Scholar] [CrossRef]
- Albuquerque, E.X.; Pereira, E.F.R.; Alkondon, M.; Rogers, S.W. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function. Physiol. Rev. 2009, 89, 73–120. [Google Scholar] [CrossRef]
- Picciotto, M.R.; Zoli, M.; Rimondini, R.; Léna, C.; Marubio, L.M.; Pich, E.M.; Fuxe, K.; Changeux, J.P. Acetylcholine Receptors Containing the β2 Subunit Are Involved in the Reinforcing Properties of Nicotine. Nature 1998, 391, 173–177. [Google Scholar] [CrossRef]
- Zoli, M.; Pistillo, F.; Gotti, C. Diversity of Native Nicotinic Receptor Subtypes in Mammalian Brain. Neuropharmacology 2015, 96, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Hollenhorst, M.I.; Krasteva-Christ, G. Nicotinic Acetylcholine Receptors in the Respiratory Tract. Molecules 2021, 26, 6097. [Google Scholar] [CrossRef] [PubMed]
- Dicpinigaitis, P.V. Effect of Tobacco and Electronic Cigarette Use on Cough Reflex Sensitivity. Pulm. Pharmacol. Ther. 2017, 47, 45–48. [Google Scholar] [CrossRef]
- Borkar, N.A.; Thompson, M.A.; Bartman, C.M.; Khalfaoui, L.; Sine, S.; Sathish, V.; Prakash, Y.S.; Pabelick, C.M. Nicotinic Receptors in Airway Disease. Am. J. Physiol. Lung Cell Mol. Physiol. 2024, 326, L149–L163. [Google Scholar] [CrossRef]
- Grando, S.A.; Kawashima, K.; Kirkpatrick, C.J.; Meurs, H.; Wessler, I. The Non-Neuronal Cholinergic System: Basic Science, Therapeutic Implications and New Perspectives. Life Sci. 2012, 91, 969–972. [Google Scholar] [CrossRef]
- Fujii, T.; Takada-Takatori, Y.; Kawashima, K. Regulatory Mechanisms of Acetylcholine Synthesis and Release by T Cells. Life Sci. 2012, 91, 981–985. [Google Scholar] [CrossRef]
- Lu, B.; Kwan, K.; Levine, Y.A.; Olofsson, P.S.; Yang, H.; Li, J.; Joshi, S.; Wang, H.; Andersson, U.; Chavan, S.S.; et al. A7 Nicotinic Acetylcholine Receptor Signaling Inhibits Inflammasome Activation by Preventing Mitochondrial DNA Release. Mol. Med. 2014, 20, 350–358. [Google Scholar] [CrossRef]
- Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Detection of Inflammatory Biomarkers in Saliva and Urine: Potential in Diagnosis, Prevention, and Treatment for Chronic Diseases. Exp. Biol. Med. 2016, 241, 783–799. [Google Scholar] [CrossRef]
- Xing, Z.; Gauldie, J.; Cox, G.; Baumann, H.; Jordana, M.; Lei, X.F.; Achong, M.K. IL-6 is an Antiinflammatory Cytokine Required for Controlling Local or Systemic Acute Inflammatory Responses. J. Clin. Investig. 1998, 101, 311. [Google Scholar] [CrossRef]
- Ridker, P.M. From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream to Identify Novel Targets for Atheroprotection. Circ. Res. 2016, 118, 145–156. [Google Scholar] [CrossRef]
- Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. [Google Scholar] [CrossRef] [PubMed]
- Marrugal, Á.; Ojeda, L.; Paz-Ares, L.; Molina-Pinelo, S.; Ferrer, I. Proteomic-Based Approaches for the Study of Cytokines in Lung Cancer. Dis. Markers 2016, 2016, 2138627. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, O.; Naumann, M. NF-ΚB Signaling in Gastric Cancer. Toxins 2017, 9, 119. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Velázquez, M.; Ostoa-Saloma, P.; Palacios-Arreola, M.I.; Nava-Castro, K.E.; Castro, J.I.; Morales-Montor, J. The Role of Cytokines in Breast Cancer Development and Progression. J. Interferon Cytokine Res. 2015, 35, 1–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sercombe, R.; Tran Dinh, Y.R.; Gomis, P. Cerebrovascular Inflammation Following Subarachnoid Hemorrhage. Jpn. J. Pharmacol. 2002, 88, 227–249. [Google Scholar] [CrossRef]
- Al-Qahtani, A.A.; Alhamlan, F.S.; Al-Qahtani, A.A. Pro-Inflammatory and Anti-Inflammatory Interleukins in Infectious Diseases: A Comprehensive Review. Trop. Med. Infect. Dis. 2024, 9, 13. [Google Scholar] [CrossRef]
- Sino Biological. Anti-Inflammatory Cytokines List. Available online: https://www.sinobiological.com/resource/cytokines/all-anti-inflammatory-cytokines (accessed on 10 February 2025).
- Mahmoudzadeh, L.; Froushani, S.M.A.; Ajami, M.; Mahmoudzadeh, M. Effect of Nicotine on Immune System Function. Adv. Pharm. Bull. 2023, 13, 69–78. [Google Scholar] [CrossRef]
- Elisia, I.; Lam, V.; Cho, B.; Hay, M.; Li, M.Y.; Yeung, M.; Bu, L.; Jia, W.; Norton, N.; Lam, S.; et al. The Effect of Smoking on Chronic Inflammation, Immune Function and Blood Cell Composition. Sci. Rep. 2020, 10, 19480. [Google Scholar] [CrossRef]
- Pourtayeb, S.; Abtahi Froushani, S.M. Nicotine Can Modulate the Effects of the Mesenchymal Stem Cells on Neutrophils. Adv. Med. Sci. 2017, 62, 165–170. [Google Scholar] [CrossRef]
- White, A.M.; Craig, A.J.; Richie, D.L.; Corley, C.; Sadek, S.M.; Barton, H.N.; Gipson, C.D. Nicotine is an Immunosuppressant: Implications for Women’s Health and Disease. J. Neuroimmunol. 2024, 397, 578468. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, H.; Zou, M.; Yuan, Q.; Huang, Z.; Pan, X.; Zhang, W. Nicotine in Inflammatory Diseases: Anti-Inflammatory and Pro-Inflammatory Effects. Front. Immunol. 2022, 13, 826889. [Google Scholar] [CrossRef] [PubMed]
- Tizabi, Y.; Getachew, B.; Copeland, R.L.; Aschner, M. Nicotine and the Nicotinic Cholinergic System in COVID-19. FEBS J. 2020, 287, 3656–3663. [Google Scholar] [CrossRef] [PubMed]
- Nouri-Shirazi, M.; Guinet, E. Evidence for the Immunosuppressive Role of Nicotine on Human Dendritic Cell Functions. Immunology 2003, 109, 365. [Google Scholar] [CrossRef] [PubMed]
- Lakhan, S.E.; Kirchgessner, A. Anti-Inflammatory Effects of Nicotine in Obesity and Ulcerative Colitis. J. Transl. Med. 2011, 9, 129. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2014.
- European Code Against Cancer—Does Nicotine Cause Cancer? Available online: https://cancer-code-europe.iarc.fr/index.php/en/ecac-12-ways/tobacco/199-nicotine-cause-cancer (accessed on 1 February 2025).
- List of Classifications—IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 2 February 2025).
- Sanner, T.; Grimsrud, T.K. Nicotine: Carcinogenicity and Effects on Response to Cancer Treatment – A Review. Front. Oncol. 2015, 5, 196. [Google Scholar] [CrossRef]
- Tyagi, A.; Sharma, S.; Wu, K.; Wu, S.Y.; Xing, F.; Liu, Y.; Zhao, D.; Deshpande, R.P.; D’Agostino, R.B.; Watabe, K. Nicotine Promotes Breast Cancer Metastasis by Stimulating N2 Neutrophils and Generating Pre-Metastatic Niche in Lung. Nat. Commun. 2021, 12, 474. [Google Scholar] [CrossRef]
- Harmych, S.J.; Kumar, J.; Bouni, M.E.; Chadee, D.N. Nicotine Inhibits MAPK Signaling and Spheroid Invasion in Ovarian Cancer Cells. Exp. Cell Res. 2020, 394, 112167. [Google Scholar] [CrossRef]
- Alhowail, A. Molecular Insights into the Benefits of Nicotine on Memory and Cognition. Mol. Med. Rep. 2021, 23, 398. [Google Scholar] [CrossRef]
- Brunet, A.; Datta, S.R.; Greenberg, M.E. Transcription-Dependent and -Independent Control of Neuronal Survival by the PI3K-Akt Signaling Pathway. Curr. Opin. Neurobiol. 2001, 11, 297–305. [Google Scholar] [CrossRef]
- Newhouse, P.; Kellar, K.; Aisen, P.; White, H.; Wesnes, K.; Coderre, E.; Pfaff, A.; Wilkins, H.; Howard, D.; Levin, E.D. Nicotine Treatment of Mild Cognitive Impairment: A 6-Month Double-Blind Pilot Clinical Trial. Neurology 2012, 78, 91–101. [Google Scholar] [CrossRef]
- Wang, Q.; Du, W.; Wang, H.; Geng, P.; Sun, Y.; Zhang, J.; Wang, W.; Jin, X. Nicotine’s Effect on Cognition, a Friend or Foe? Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 124, 110723. [Google Scholar] [CrossRef] [PubMed]
- Majdi, A.; Sadigh-Eteghad, S.; Gjedde, A. Effects of Transdermal Nicotine Delivery on Cognitive Outcomes: A Me-ta-Analysis. Acta Neurol. Scand. 2021, 144, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Niemegeers, P.; Dumont, G.J.H.; Quisenaerts, C.; Morrens, M.; Boonzaier, J.; Fransen, E.; de Bruijn, E.R.A.; Hulstijn, W.; Sabbe, B.G.C. The Effects of Nicotine on Cognition Are Dependent on Baseline Performance. Eur. Neuropsychopharmacol. 2014, 24, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Hahn, B.; Shrieves, M.E.; Yuille, M.B.; Buchanan, R.W.; Wells, A.K. Nicotine Effects on Cognitive Remediation Training Outcome in People with Schizophrenia: A Pilot Study. Psychiatry Res. 2019, 280, 112498. [Google Scholar] [CrossRef]
- Gupta, L.; Thomas, J.; Ravichandran, R.; Singh, M.; Nag, A.; Panjiyar, B.K. Inflammation in Cardiovascular Disease: A Comprehensive Review of Biomarkers and Therapeutic Targets. Cureus 2023, 15, e45483. [Google Scholar] [CrossRef]
- Knezevic, E.; Nenic, K.; Milanovic, V.; Knezevic, N.N. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells 2023, 12, 2726. [Google Scholar] [CrossRef]
- Breeze, C.; Medvedev, O.N.; Cervin, M.; Sutton, A.; Barcaccia, B.; Couyoumdjian, A.; Pallini, S.; Billot, M.; Chalmers, R.; Iqbal, N.; et al. Unique Contributions of Anxiety, Stress and Depression to Immunity: A Cross-Cultural Investigation. J. Affect. Disord. Rep. 2024, 15, 100699. [Google Scholar] [CrossRef]
- Fluharty, M.; Taylor, A.E.; Grabski, M.; Munafò, M.R. The Association of Cigarette Smoking with Depression and Anxiety: A Systematic Review. Nicotine Tob. Res. 2016, 19, 3. [Google Scholar] [CrossRef]
- Price, L.R.; Martinez, J. Cardiovascular, Carcinogenic and Reproductive Effects of Nicotine Exposure: A Narrative Review of the Scientific Literature. F1000Research 2020, 8, 1586. [Google Scholar] [CrossRef]
- Hanna, S.T. Nicotine Effect on Cardiovascular System and Ion Channels. J. Cardiovasc. Pharmacol. 2006, 47, 348–358. [Google Scholar] [CrossRef]
- Mills, E.J.; Thorlund, K.; Eapen, S.; Wu, P.; Prochaska, J.J. Cardiovascular Events Associated with Smoking Cessation Pharmacotherapies A Network Meta-Analysis. Circulation 2013, 129, 28. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, S.E.; Miles, C.; Jaskowiak, J.; Carson, J.L.; Strom, B.L. Risk of Acute First Myocardial Infarction and Use of Nicotine Patches in a General Population. J. Am. Coll. Cardiol. 2001, 37, 1297–1302. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.M.; Norman, S.M.; Ferry, L.H.; Prochazka, A.V.; Westman, E.C.; Steele, B.G.; Sherman, S.E.; Cleveland, M.; Antonuccio, D.O.; Hartman, N.; et al. The Safety of Transdermal Nicotine as an Aid to Smoking Cessation in Patients with Cardiac Disease. N. Engl. J. Med. 1996, 335, 1792–1798. [Google Scholar] [CrossRef] [PubMed]
- Ford, C.L.; Zlabek, J.A. Nicotine Replacement Therapy and Cardiovascular Disease. Mayo Clin. Proc. 2005, 80, 652–656. [Google Scholar] [CrossRef]
- Pickering, T.G. The Effects of Smoking and Nicotine Replacement Therapy on Blood Pressure. J. Clin. Hypertens. 2007, 3, 319. [Google Scholar] [CrossRef]
- Mahmarian, J.J.; Moyé, L.A.; Nasser, G.A.; Nagueh, S.F.; Bloom, M.F.; Benowitz, N.L.; Verani, M.S.; Byrd, W.G.; Pratt, C.M. Nicotine Patch Therapy in Smoking Cessation Reduces the Extent of Exercise-Induced Myocardial Ischemia. J. Am. Coll. Cardiol. 1997, 30, 125–130. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Vlastos, D.; Kostelli, G.; Kourea, K.; Katogiannis, K.; Tsoumani, M.; Parissis, J.; Andreadou, I.; Alexopoulos, D. Differential Effects of Heat-Not-Burn and Conventional Cigarettes on Coronary Flow, Myocardial and Vascular Function. Sci. Rep. 2021, 11, 11808. [Google Scholar] [CrossRef]
- Gibbs, K.; Collaco, J.M.; McGrath-Morrow, S.A. Impact of Tobacco Smoke and Nicotine Exposure on Lung Development. Chest 2016, 149, 552. [Google Scholar] [CrossRef]
- Benowitz, N.L. The Central Role of PH in the Clinical Pharmacology of Nicotine: Implications for Abuse Liability, Cigarette Harm Reduction and FDA Regulation. Clin. Pharmacol. Ther. 2022, 111, 1004. [Google Scholar] [CrossRef]
- Soleimani, F.; Dobaradaran, S.; De-la-Torre, G.E.; Schmidt, T.C.; Saeedi, R. Content of Toxic Components of Cigarette, Cigarette Smoke vs Cigarette Butts: A Comprehensive Systematic Review. Sci. Total Environ. 2022, 813, 152667. [Google Scholar] [CrossRef]
- Nguyen, H.M.H.; Torres, J.A.; Agrawal, S.; Agrawal, A. Nicotine Impairs the Response of Lung Epithelial Cells to IL-22. Mediat. Inflamm. 2020, 2020, 6705428. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, L.W.; Stanford, D.; LaFontaine, J.; Allen, A.D.; Raju, S.V. Nicotine Aerosols Diminish Airway CFTR Function and Mucociliary Clearance. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2023, 324, L557. [Google Scholar] [CrossRef] [PubMed]
- Puliyappadamba, V.T.; Cheriyan, V.T.; Thulasidasan, A.K.T.; Bava, S.V.; Vinod, B.S.; Prabhu, P.R.; Varghese, R.; Bevin, A.; Venugopal, S.; Anto, R.J. Nicotine-Induced Survival Signaling in Lung Cancer Cells is Dependent on Their P53 Status While Its down-Regulation by Curcumin is Independent. Mol. Cancer 2010, 9, 220. [Google Scholar] [CrossRef]
- Zakiyah, N.; Purwadi, F.V.; Insani, W.N.; Abdulah, R.; Puspitasari, I.M.; Barliana, M.I.; Lesmana, R.; Amaliya, A.; Suwantika, A.A. Effectiveness and Safety Profile of Alternative Tobacco and Nicotine Products for Smoking Reduction and Cessation: A Systematic Review. J. Multidiscip. Heal. 2021, 14, 1955–1975. [Google Scholar] [CrossRef]
- Cardiologists and Smoking Alternatives: What We Should Know. Available online: https://www.escardio.org/Journals/E-Journal-of-Cardiology-Practice/Volume-18/cardiologists-and-smoking-alternatives-what-we-should-know (accessed on 11 February 2025).
- Izquierdo-Condoy, J.S.; Naranjo-Lara, P.; Morales-Lapo, E.; Hidalgo, M.R.; Tello-De-la-Torre, A.; Vásconez-Gonzáles, E.; Salazar-Santoliva, C.; Loaiza-Guevara, V.; Rincón Hernández, W.; Becerra, D.A.; et al. Direct Health Implications of E-Cigarette Use: A Systematic Scoping Review with Evidence Assessment. Front. Public Health 2024, 12, 1427752. [Google Scholar] [CrossRef]
- Yang, X.; Che, W.; Zhang, L.; Zhang, H.; Chen, X. Chronic Airway Inflammatory Diseases and E-Cigarette Use: A Review of Health Risks and Mechanisms. Eur. J. Med. Res. 2025, 30, 1–12. [Google Scholar] [CrossRef]
- Higgins, S.T.; Sigmon, S.C.; Tidey, J.W.; Heil, S.H.; Gaalema, D.E.; Lee, D.C.; Desarno, M.J.; Klemperer, E.M.; Menson, K.E.; Cioe, P.A.; et al. Reduced Nicotine Cigarettes and E-Cigarettes in High-Risk Populations: 3 Randomized Clinical Trials. JAMA Netw. Open 2024, 7, e2431731. [Google Scholar] [CrossRef]
- From Science-to Politics Harm Reduction—A Narrative of the Tobacco Industry Background. 2023. Available online: https://www.dkfz.de/fileadmin/user_upload/Krebspraevention/Download/pdf/AdWfdP/FStP_2023_Harm-Reduction.pdf (accessed on 5 March 2025).
- Loud, E.E.; Duong, H.T.; Henderson, K.C.; Reynolds, R.M.; Ashley, D.L.; Thrasher, J.F.; Popova, L. Addicted to Smoking or Addicted to Nicotine?: A Focus Group Study on Perceptions of Nicotine and Addiction among US Adult Current Smokers, Former Smokers, Non-Smokers, and Dual Users of Cigarettes and e-Cigarettes. Addiction 2021, 117, 472. [Google Scholar] [CrossRef]
- Warner, K.E. How to Think—Not Feel—About Tobacco Harm Reduction. Nicotine Tob. Res. 2019, 21, 1299–1309. [Google Scholar] [CrossRef]
The Group of Diseases | Pathway | Biological Effect | References |
---|---|---|---|
Autoimmunity | ↓ TNF-α ↑ T helper II (Th2) | Improves the condition of ulcerative colitis and rheumatoid arthritis. | [67,70] |
Cancer development | ↑ several types of cytokines and chemokines, which may increase angiogenesis and suppress cancer cell apoptosis ↑ intracellular signaling pathways (PKC, AKT, ERK) or ↑ factors like epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF), indirectly | Is not identified as a carcinogen and does not cause cancer; Creates an immunosuppressive environment in patients who already have cancer complicating anti-cancer treatment. | [34,37,40,64,69,70] |
Neurodegenerative diseases | ↓ protein deacetylase sirtuin 6 ↑ thyroid receptor signaling pathways ↑ activity of protein kinase B (Akt) and phosphoinositide 3-kinase/Akt signaling ↑ phosphorylation of calmodulin-dependent protein kinase II | Slows the progression of Parkinson’s and Alzheimer‘s diseases; Improves memory in healthy adults and patients with mental disorders. | [74,75,76] |
Cardiovascular diseases | ↓ IL-1 ↓ IL-6 ↑ sympathetic nervous system, contractility, and systemic vasoconstriction, and blood flow in the skeletal muscles | Short term effect: releases norepinephrine, which increases the heart rate, blood pressure, myocardial contractility, and systemic vasoconstriction, and blood flow in the skeletal muscles. Long term effect: does not show risk for healthy subjects. In vitro: stimulates the morphogenesis of fibroblasts into a myofibroblastic phenotype. | [81,83,84,86,87,89] |
Respiratory diseases | ↓ IL-22 ↑ IL-8, IL-6, TNF-α | No data from human studies; In vitro: decreased lung epithelial barrier function. | [46,92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinkevicius, L.V.; Sakalauskaite, S.; Bukovskis, M.; Lõokene, M.; Valvere, V.; Gradauskiene, B.; Viigimaa, M. Nicotine from a Different Angle: Biological Effects from a Psychoneuroimmunological Perspective. Int. J. Mol. Sci. 2025, 26, 6437. https://doi.org/10.3390/ijms26136437
Sinkevicius LV, Sakalauskaite S, Bukovskis M, Lõokene M, Valvere V, Gradauskiene B, Viigimaa M. Nicotine from a Different Angle: Biological Effects from a Psychoneuroimmunological Perspective. International Journal of Molecular Sciences. 2025; 26(13):6437. https://doi.org/10.3390/ijms26136437
Chicago/Turabian StyleSinkevicius, Liudas Vincentas, Sandra Sakalauskaite, Maris Bukovskis, Margus Lõokene, Vahur Valvere, Brigita Gradauskiene, and Margus Viigimaa. 2025. "Nicotine from a Different Angle: Biological Effects from a Psychoneuroimmunological Perspective" International Journal of Molecular Sciences 26, no. 13: 6437. https://doi.org/10.3390/ijms26136437
APA StyleSinkevicius, L. V., Sakalauskaite, S., Bukovskis, M., Lõokene, M., Valvere, V., Gradauskiene, B., & Viigimaa, M. (2025). Nicotine from a Different Angle: Biological Effects from a Psychoneuroimmunological Perspective. International Journal of Molecular Sciences, 26(13), 6437. https://doi.org/10.3390/ijms26136437