Functional Genomics: From Soybean to Legume
Abstract
1. Leguminous Plants
2. Genomic Advances in Leguminous Plants
Species | Cultivar or Accession | Genome Size (Mb) | Reference |
---|---|---|---|
Soybean (Glycine max) | Williams 82 | 1010 | Schmutz et al. (2010) [7]; Espina et al. (2024) [13]; Wang et al. (2023) [14] |
Lee | 1010 | Valliyodan et al. (2020) [15] | |
Zhonghuang 13 (ZH13) | 1015–1025 | Shen et al. (2018) [16]; Shen et al. (2019) [17]; Zhang et al. (2023) [18]; Zhang et al. (2024) [19] | |
Jack | 1012 | Huang et al. (2023) [20] | |
3 wild, 9 landraces, 14 cultivars | 992.3–1059.8 | Liu et al. (2020) [21] | |
Nongdadou2 | 1010 | Zhang et al. (2024) [22] | |
Lotus japonicus | Gifu | 549 | Sato et al. (2008) [23] |
Gifu | 554 | Kamal et al. (2020) [24] | |
Medicago truncatula | Mt3.5 | 375 | Young et al. (2011) [25] |
Mt4.0 | 360 | Tang et al. (2015) [26] | |
Medicago sativa | Zhongmu No.1 | 816 | Shen et al. (2020) [27] |
Pea (Pisum sativum) | Caméor | 3920 | Kreplak. et al. (2019) [28] |
ZW6 | 3719.6 | Yang et al. (2022) [29] | |
Zhewan No. 1 | 3930 | Liu et al. (2024) [30] | |
Peanut (Arachis hypogaea) | Tifrunner | 2540 | Zhuang et al. (2019) [31] |
Yuanza 9102 | 2660 | Zhang et al. (2024) [32] | |
Common Bean (Phaseolus vulgaris) | G19833 | 587 | Schmutz et al. (2014) [33] |
Pinjin Yun 4 (PJY4) | 560.61 | Zhao et al. (2025) [34] | |
Chickpea (Cicer arietinum) | ICC 4958 | 740 | Jain et al. (2013) [35] |
BGD218 | 895 | Khan et al. (2024) [36] | |
Cowpea (Vigna unguiculata) | IT97K-499-35 | 519 | Lonardi et al. (2019) [37] |
A147 | 539.4 | Pan et al. (2023) [38] | |
G98 (long-podded) and G323 (grain-type) | 568.24 and 552.66 | Wu et al. (2024) [39] | |
Pigeonpea (Cajanus cajan) | Asha | 605.78 | Varshney et al. (2012) [40] |
89 accessions | 622 | Zhao et al. (2020) [41] | |
Mung Beans (Vigna radiata) | Kamphaeng Saen 1 | 100.5 | Tangphatsornruang et al. (2009) [42] |
JL7 | 475.19 | Liu et al. (2022) [43] | |
Weilü No. 9 | 500 | Jia et al. (2024) [44] | |
Adzuki beans (Vigna angularis) | Jingnong6 | 489.8 | Chu et al. (2024) [45] |
Rice Bean (Vigna umbellata) | FF25 et al., 440 landraces | 525.6 | Guan et al. (2022) [46] |
white lupin (Lupinus albus) | AMIGA | 451 | Hufnagel et al. (2020) [47] |
Mimosa bimucronata | - | 648 | Jia et al. (2024) [48] |
Dalbergia odorifera | - | 653.45 | Hong et al. (2020) [49] |
Glycyrrhiza uralensis | 308-19 | 379 | Mochida et al. (2017) [50] |
Species | Gene Name | Function | Reference |
---|---|---|---|
Soybean | E1 | Central regulator controlling photoperiodic flowering and maturity in soybeans | Xia et al. (2012) [51] |
GmMDE | Bridging E1 and florigens GmFT2a/5a, represses flowering | Zhai et al. (2024) [52] | |
GmEID1 | Modulating light signaling through evening complex to control flowering time | Qin et al. (2023) [53] | |
E2, E2La, E2Lb | Redundantly controlling photoperiodic flowering | Zhao et al. (2024) [54] | |
QNE1 | Key flowering regulator near the E1 locus | Xia et al. (2022) [55] | |
MS2/GmAMS1 (Glyma.10G281800) | Encoding a bHLH transcription factor and exhibiting tetrad-stage arrest and defective pollen wall development. | Fang et al. (2023) [56] | |
PH13 | Regulating plant height and shade tolerance | Qin et al. (2023) [57] | |
GmSW17 | Controlling seed width and weight | Liang et al. (2024) [58] | |
GmMs1 (Glyma.13G114200) | Encoding a kinesin-like protein essential for male fertility | Nadeem et al. (2021) [59] | |
barnase/barstar | Inducing male sterility under the tapetum-specific GmTA29 promoter by ablating the tapetum. | Szeluga et al. (2023) [60] | |
GmCOL1a | Enhancing salt and drought tolerance in soybean | Xu et al. (2023) [61] | |
Rpp3 | Conferring resistance to soybean rust caused by Phakopsora pachyrhizi, | Bish et al., (2024) [62] | |
Lotus japonicus | LjNLP3 | Promoting nodules transition from early to mature stages | Ye et al. (2024) [63] |
IAMT1 | Promoting root nodule development | Goto et al. (2022) [64] | |
LjNRT2.1 | Essential for nitrate-mediated suppression of nodule formation | Misawa et al. (2022) [65] | |
Medicago truncatula | MtLICK1/2 | Balancing rhizobial symbiosis and plant immunity | Wang et al. (2025) [66] |
PINNA2 | Controlling compound leaf morphogenesis | He et al. (2024) [67] | |
Medicago sativa | HDL | Increasing biomass and delaying flowering in alfalfa | Wang et al. (2025) [68] |
Pea | chlorophyll synthase (ChlG) | Explaining the parchmentless phenotype, leading yellow pod | Feng et al. (2025) [69] |
Peanut | AhFAX1 | Controlling seed size | Liu et al. (2022) [70] |
AhDPB2 | Controlling seed length | Liu et al. (2022) [70] | |
PSC1 | Controlling testa color | Zhao et al. (2025) [71] | |
AhSAMS1 | Enhancing salt tolerance through Ca2+/CaM signaling | Yang et al. (2025) [72] | |
Common Bean | PvE1 | Repressing flowering | Zhang et al. 2016 [73] |
CONSTANS-like (COL2) | Promoting flowering | González et al. 2021 [74] | |
PvPW1 | Associating with pod width | Xu et al. (2024) [75] | |
MS-2 | Leading to male sterility due to a splice site mutation | Xu et al. (2023) [76] | |
PvFtsH2 | Regulating the degradation of photodamaged PSII RC D1 protein | Xu et al. (2021) [77] | |
Chickpea | MPL1 | Regulating leaflet initiation | Liu et al. (2023) [78] |
Chickpea | CaABCC3 | Regulating seed size and weight | Basu et al. (2019) [79] |
Chickpea | Ca-miR164e | Targeting CaNAC100, thus affecting seed protein content and weight | Chakraborty et al. (2024) [80] |
2.1. Genome Sequencing and Assembly
2.2. Functional Genomics and Gene Function
2.3. Plant Growth and Development
2.4. Resistance to Abiotic and Biotic Stress
3. Lotus japonicus
3.1. Genome Sequencing and Assembly
3.2. Functional Genomics and Gene Function
4. Medicago
4.1. Genome Sequencing and Assembly
4.2. Functional Genomics and Gene Function
5. Pea (Pisum sativum)
Genome Sequencing and Assembly
6. Peanut (Arachis hypogaea)
6.1. Genome Sequencing and Assembly
6.2. Functional Genomics and Gene Function
7. Common Bean (Phaseolus vulgaris)
7.1. Genome Sequencing and Assembly
7.2. Functional Genomics and Gene Function
8. Chickpea (Cicer arietinum)
8.1. Genome Sequencing and Assembly
8.2. Functional Genomics and Gene Function
9. Cowpea (Vigna unguiculata)
10. Pigeonpea (Cajanus cajan)
11. Mung Beans (Vigna radiata)
12. Adzuki Beans (Vigna angularis)
13. Rice Bean (Vigna umbellata)
14. White Lupin
15. Mimosa
16. Dalbergia
17. Licorice (Glycyrrhiza spp.)
18. Lentil (Lens culinaris Medik.)
19. Comparative Genomic Studies Between Legume Species
20. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Azani, N.; Babineau, M.; Bailey, C.D.; Banks, H.; Barbosa, A.R.; Pinto, R.B.; Boatwright, J.S.; Borges, L.M.; Brown, G.K.; Bruneau, A.; et al. A new subfamily classification of the leguminosae based on a taxonomically comprehensive phylogeny. Taxon 2017, 66, 44–77. [Google Scholar] [CrossRef]
- Hughes, C.; Ringelberg, J.J.; Bruneau, A. Legumes. Curr. Biol. 2025, 35, R323–R328. [Google Scholar] [CrossRef]
- Tayade, R.; Kulkarni, K.P.; Jo, H.; Song, J.T.; Lee, J.D. Insight into the prospects for the improvement of seed starch in legume—A review. Front. Plant Sci. 2019, 10, 1213. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.D.; Rose, R.J. Oil body biogenesis and biotechnology in legume seeds. Plant Cell Rep. 2017, 36, 1519–1532. [Google Scholar] [CrossRef]
- Sahruzaini, N.A.; Rejab, N.A.; Harikrishna, J.A.; Ikram, N.K.K.; Ismail, I.; Kugan, H.M.; Cheng, A. Pulse Crop Genetics for a Sustainable Future: Where We Are Now and Where We Should Be Heading. Front. Plant Sci. 2020, 11, 531. [Google Scholar] [CrossRef] [PubMed]
- Jacob, C.; Carrasco, B.; Schwember, A.R. Advances in breeding and biotechnology of legume crops. Plant Cell Tissue Organ Cult. (PCTOC) 2016, 127, 561–584. [Google Scholar] [CrossRef]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J.; et al. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar] [CrossRef]
- Zhang, H.; Mascher, M.; Abbo, S.; Jayakodi, M. Advancing Grain Legumes Domestication and Evolution Studies with Genomics. Plant Cell Physiol. 2022, 63, 1540–1553. [Google Scholar] [CrossRef] [PubMed]
- Sangari, M.G.; Chandar, S.H.; Mahalakshmi, S.; Latha, P.; Amutha, S.; Appunu, C. CRISPR/Cas Genome Editing in Legume Crops: Challenges and Opportunities: A Review. Legum. Res. 2024, 47, 875–883. [Google Scholar] [CrossRef]
- Ali, A.; Altaf, M.T.; Nadeem, M.A.; Karaköy, T.; Shah, A.N.; Azeem, H.; Baloch, F.S.; Baran, N.; Hussain, T.; Duangpan, S.; et al. Recent advancement in OMICS approaches to enhance abiotic stress tolerance in legumes. Front. Plant Sci. 2022, 13, 952759. [Google Scholar] [CrossRef]
- Redsun, S.; Hokin, S.; Cameron, C.T.; Cleary, A.M.; Berendzen, J.; Dash, S.; Brown, A.V.; Wilkey, A.; Campbell, J.D.; Huang, W.; et al. Doing Genetic and Genomic Biology Using the Legume Information System and Associated Resources. Methods Mol. Biol. 2022, 2443, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Nepomuceno, A.L.; Song, Q.; Stupar, R.M.; Liu, B.; Kong, F.; Ma, J.; Lee, S.-H.; Jackson, S.A. Soybean2035: A decadal vision for soybean functional genomics and breeding. Mol. Plant 2025, 18, 245–271. [Google Scholar] [CrossRef] [PubMed]
- Espina, M.J.C.; Lovell, J.T.; Jenkins, J.; Shu, S.; Sreedasyam, A.; Jordan, B.D.; Webber, J.; Boston, L.; Brůna, T.; Talag, J.; et al. Assembly, comparative analysis, and utilization of a single haplotype reference genome for soybean. Plant J. 2024, 120, 1221–1235. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, M.; Li, M.; Jiang, X.; Jiao, W.; Song, Q. A telomere-to-telomere gap-free assembly of soybean genome. Mol. Plant 2023, 16, 1711–1714. [Google Scholar] [CrossRef] [PubMed]
- Valliyodan, B.; Cannon, S.B.; Bayer, P.E.; Shu, S.; Brown, A.V.; Ren, L.; Jenkins, J.; Chung, C.Y.; Chan, T.; Daum, C.G.; et al. Construction and comparison of three reference-quality genome assemblies for soybean. Plant J. 2019, 100, 1066–1082. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, J.; Geng, H.; Zhang, J.; Liu, Y.; Zhang, H.; Xing, S.; Du, J.; Ma, S.; Tian, Z. De novo assembly of a Chinese soybean genome. Sci. China Life Sci. 2018, 61, 871–884. [Google Scholar] [CrossRef]
- Shen, Y.; Du, H.; Liu, Y.; Ni, L.; Wang, Z.; Liang, C.; Tian, Z. Update soybean Zhonghuang 13 genome to a golden reference. Sci. China Life Sci. 2019, 62, 1257–1260. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, L.; Yu, H.; Wang, J.; Chen, Q.; Wang, H. The T2T genome assembly of soybean cultivar ZH13 and its epigenetic landscapes. Mol. Plant 2023, 16, 1715–1718. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Kong, T.C.; Sun, B.Q.; Qiu, S.Z.; Guo, J.H.; Ruan, S.Y.; Guo, Y.; Guo, J.R.; Zhang, Z.S.; Liu, Y. A telomere-to-telomere genome assembly of Zhonghuang 13, a widely-grown soybean variety from the original center of. Crop J. 2024, 12, 142–153. [Google Scholar] [CrossRef]
- Huang, Y.; Koo, D.H.; Mao, Y.; Herman, E.M.; Zhang, J.; Schmidt, M.A. A complete reference genome for the soybean cv. Jack. Plant Commun. 2024, 5, 100765. [Google Scholar] [CrossRef]
- Liu, Y.; Du, H.; Li, P.; Shen, Y.; Peng, H.; Liu, S.; Zhou, G.A.; Zhang, H.; Liu, Z.; Shi, M.; et al. Pan-genome of wild and cultivated Soybeans. Cell 2020, 182, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shao, Z.; Kong, Y.; Du, H.; Li, W.; Yang, Z.; Li, X.; Ke, H.; Sun, Z.; Shao, J.; et al. High-quality genome of a modern soybean cultivar and resequencing of 547 accessions provide insights into the role of structural variation. Nat. Genet. 2024, 56, 2247–2258. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Nakamura, Y.; Kaneko, T.; Asamizu, E.; Kato, T.; Nakao, M.; Sasamoto, S.; Watanabe, A.; Ono, A.; Kawashima, K.; et al. Genome structure of the legume, Lotus japonicus. DNA Res. 2008, 15, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Kamal, N.; Mun, T.; Reid, D.; Lin, J.-S.; Akyol, T.Y.; Sandal, N.; Asp, T.; Hirakawa, H.; Stougaard, J.; Mayer, K.F.X.; et al. Insights into the evolution of symbiosis gene copy number and distribution from a chromosome-scale Lotus japonicas Gifu genome sequence. DNA Res. 2020, 27, dsaa015. [Google Scholar] [CrossRef]
- Young, N.D.; Debellé, F.; Oldroyd, G.E.D.; Geurts, R.; Cannon, S.B.; Udvardi, M.K.; Benedito, V.A.; Mayer, K.F.X.; Gouzy, J.; Schoof, H.; et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 2011, 480, 520–524. [Google Scholar] [CrossRef]
- Tang, H.; Krishnakumar, V.; Bidwell, S.; Rosen, B.; Chan, A.; Zhou, S.; Gentzbittel, L.; Childs, K.L.; Yandell, M.; Gundlach, H.; et al. An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genom. 2014, 15, 312. [Google Scholar] [CrossRef]
- Shen, C.; Du, H.; Chen, Z.; Lu, H.; Zhu, F.; Chen, H.; Meng, X.; Liu, Q.; Liu, P.; Zheng, L.; et al. The Chromosome-Level Genome Sequence of the Autotetraploid Alfalfa and Resequencing of Core Germplasms Provide Genomic Resources for Alfalfa Research. Mol. Plant 2020, 13, 1250–1261. [Google Scholar] [CrossRef]
- Kreplak, J.; Madoui, M.-A.; Cápal, P.; Novák, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef]
- Yang, T.; Liu, R.; Luo, Y.; Hu, S.; Wang, D.; Wang, C.; Pandey, M.K.; Ge, S.; Xu, Q.; Li, N.; et al. Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat. Genet. 2022, 54, 1553–1563. [Google Scholar] [CrossRef]
- Liu, N.; Lyu, X.; Zhang, X.; Zhang, G.; Zhang, Z.; Guan, X.; Chen, X.; Yang, X.; Feng, Z.; Gao, Q.; et al. Reference genome sequence and population genomic analysis of peas provide insights into the genetic basis of Mendelian and other agronomic traits. Nat. Genet. 2024, 56, 1964–1974. [Google Scholar] [CrossRef]
- Zhuang, W.; Chen, H.; Yang, M.; Wang, J.; Pandey, M.K.; Zhang, C.; Chang, W.-C.; Zhang, L.; Zhang, X.; Tang, R.; et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet. 2019, 51, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Sun, Z.; Qi, F.; Fang, Y.; Lin, K.; Pavan, S.; Huang, B.; Dong, W.; Du, P.; Tian, M.; et al. Chloroplast and whole-genome sequencing shed light on the evolutionary history and phenotypic diversification of peanuts. Nat Genet. 2024, 56, 1975–1984. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, J.; McClean, P.E.; Mamidi, S.; Wu, G.A.; Cannon, S.B.; Grimwood, J.; Jenkins, J.; Shu, S.; Song, Q.; Chavarro, C.; et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 2014, 46, 707–713. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, H.; Zhao, Q.; Wu, R.; You, Q.; Wang, B.; Wang, Y.; Yan, Z.; Wang, P.; Huang, C.; et al. Gap-free genome assembly and metabolomics analysis of common bean provide insights into genomic characteristics and metabolic determinants of seed coat pigmentation. J. Genet. Genom. 2025, 52, 852–855. [Google Scholar] [CrossRef]
- Jain, M.; Misra, G.; Patel, R.K.; Priya, P.; Jhanwar, S.; Khan, A.W.; Shah, N.; Singh, V.K.; Garg, R.; Jeena, G.; et al. A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J. 2013, 74, 715–729. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.W.; Garg, V.; Sun, S.; Gupta, S.; Dudchenko, O.; Roorkiwal, M.; Chitikineni, A.; Bayer, P.E.; Shi, C.; Upadhyaya, H.D.; et al. Cicer super-pangenome provides insights into species evolution and agronomic trait loci for crop improvement in chickpea. Nat. Genet. 2024, 56, 1225–1234. [Google Scholar] [CrossRef]
- Lonardi, S.; Muñoz-Amatriaín, M.; Liang, Q.; Shu, S.; Wanamaker, S.I.; Lo, S.; Tanskanen, J.; Schulman, A.H.; Zhu, T.; Luo, M.-C.; et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 2019, 98, 767–782. [Google Scholar] [CrossRef]
- Pan, L.; Liu, M.; Kang, Y.; Mei, X.; Hu, G.; Bao, C.; Zheng, Y.; Zhao, H.; Chen, C.; Wang, N. Comprehensive genomic analyses of Vigna unguiculata provide insights into population differentiation and the genetic basis of key agricultural traits. Plant Biotechnol. J. 2023, 21, 1426–1439. [Google Scholar] [CrossRef]
- Wu, X.; Hu, Z.; Zhang, Y.; Li, M.; Liao, N.; Dong, J.; Wang, B.; Wu, J.; Wu, X.; Wang, Y.; et al. Differential selection of yield and quality traits has shaped genomic signatures of cowpea domestication and improvement. Nat. Genet. 2024, 56, 992–1005. [Google Scholar] [CrossRef]
- Varshney, R.K.; Chen, W.; Li, Y.; Bharti, A.K.; Saxena, R.K.; Schlueter, J.A.; Donoghue, M.T.; Azam, S.; Fan, G.; Whaley, A.M.; et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat. Biotechnol. 2012, 30, 83–89. [Google Scholar] [CrossRef]
- Zhao, J.; Bayer, P.E.; Ruperao, P.; Saxena, R.K.; Khan, A.W.; Golicz, A.A.; Nguyen, H.T.; Batley, J. Trait associations in the pangenome of pigeon pea (Cajanus cajan). Plant Biotechnol. J. 2020, 18, 1946–1954. [Google Scholar] [CrossRef] [PubMed]
- Tangphatsornruang, S.; Somta, P.; Uthaipaisanwong, P.; Chanprasert, J.; Sangsrakru, D.; Seehalak, W.; Sommanas, W.; Tragoonrung, S.; Srinives, P. Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biol. 2009, 9, 137. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Peng, J.; Fan, B.; Xu, D.; Wu, J.; Cao, Z.; Gao, Y.; Wang, X.; Li, S.; et al. High-quality genome assembly and pan-genome studies facilitate genetic discovery in mung bean and its improvement. Plant Commun. 2022, 3, 100352. [Google Scholar] [CrossRef]
- Jia, K.H.; Li, G.; Wang, L.; Liu, M.; Wang, Z.W.; Li, R.Z.; Li, L.L.; Xie, K.; Yang, Y.Y.; Tian, R.M.; et al. Telomere-to-telomere, gap-free genome of mung bean (Vigna radiata) provides insights into domestication under structural variation. Hortic. Res. 2024, 12, uhae337. [Google Scholar] [CrossRef]
- Chu, L.; Yang, K.; Chen, C.; Zhao, B.; Hou, Y.; Wang, W.; Zhao, P.; Wang, K.; Wang, B.; Xiao, Y.; et al. Chromosome-level reference genome and resequencing of 322 accessions reveal evolution, genomic imprint and key agronomic traits in adzuki bean. Plant Biotechnol. J. 2024, 22, 2173–2185. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Zhang, J.; Gong, D.; Zhang, Z.; Yu, Y.; Luo, G.; Somta, P.; Hu, Z.; Wang, S.; Yuan, X.; et al. Genomic analyses of rice bean landraces reveal adaptation and yield related loci to accelerate breeding. Nat. Commun. 2022, 13, 5707. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, B.; Marques, A.; Soriano, A.; Marquès, L.; Divol, F.; Doumas, P.; Sallet, E.; Mancinotti, D.; Carrere, S.; Marande, W.; et al. High-quality genome sequence of white lupin provides insight into soil exploration and seed quality. Nat. Commun. 2020, 11, 492. [Google Scholar] [CrossRef]
- Jia, H.F.; Lin, J.S.; Lin, Z.C.; Wang, Y.B.; Xu, L.W.; Ding, W.J.; Ming, R.Y. Haplotype-resolved genome of Mimosa bimucronata revealed insights into leaf movement and nitrogen fixation. BMC Genom. 2024, 25, 334. [Google Scholar] [CrossRef]
- Hong, Z.; Li, J.; Liu, X.; Lian, J.; Zhang, N.; Yang, Z.; Niu, Y.; Cui, Z.; Xu, D. The chromosome-level draft genome of Dalbergia odorifera. GigaScience 2020, 9, giaa084. [Google Scholar] [CrossRef]
- Mochida, K.; Sakurai, T.; Seki, H.; Yoshida, T.; Takahagi, K.; Sawai, S.; Uchiyama, H.; Muranaka, T.; Saito, K. Draft genome assembly and annotation of Glycyrrhiza uralensis, a medicinal legume. Plant J. 2017, 89, 181–194. [Google Scholar] [CrossRef]
- Xia, Z.; Watanabe, S.; Yamada, T.; Tsubokura, Y.; Nakashima, H.; Zhai, H.; Anai, T.; Sato, S.; Yamazaki, T.; Lü, S.; et al. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc. Natl. Acad. Sci. USA 2012, 109, E2155–E2164. [Google Scholar] [CrossRef] [PubMed]
- Zhai, H.; Wan, Z.; Jiao, S.; Zhou, J.W.; Xu, K.; Nan, H.Y.; Liu, Y.X.; Xiong, S.S.; Fan, R.; Zhu, J.L.; et al. GmMDE genes bridge the E1 and florigens in photoperiodic regulation of flowering in soybean. Plant Physiol. 2022, 189, 1021–1036. [Google Scholar] [CrossRef]
- Qin, C.; Li, H.; Zhang, S.; Lin, X.; Jia, Z.; Zhao, F.; Wei, X.; Jiao, Y.; Li, Z.; Niu, Z.; et al. GmEID1 modulates light signaling through the Evening Complex to control flowering time and yield in soybean. Proc. Natl. Acad. Sci. USA 2023, 120, e2212468120. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, H.; Wang, L.; Wang, J.; Huang, Z.; Du, H.; Li, Y.; Yang, J.; He, M.; Cheng, Q.; et al. A critical suppression feedback loop determines soybean photoperiod sensitivity. Dev. Cell 2024, 59, 1750–1763.e4. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Zhai, H.; Zhang, Y.; Wang, Y.; Wang, L.; Xu, K.; Wu, H.; Zhu, J.; Jiao, S.; Wan, Z.; et al. QNE1 is a key flowering regulator determining the length of the vegetative period in soybean cultivars. Sci. China Life Sci. 2022, 65, 2472–2490. [Google Scholar] [CrossRef]
- Fang, X.; Feng, X.; Sun, X.; Yang, X.; Li, Q.; Yang, X.; Xu, J.; Zhou, M.; Lin, C.; Sui, Y.; et al. Natural variation of MS2 confers male fertility and drives hybrid breeding in soybean. Plant Biotechnol. J. 2023, 21, 2322–2332. [Google Scholar] [CrossRef]
- Qin, C.; Li, Y.-H.; Li, D.; Zhang, X.; Kong, L.; Zhou, Y.; Lyu, X.; Ji, R.; Wei, X.; Cheng, Q.; et al. PH13 improves soybean shade traits and enhances yield for high-density planting at high latitudes. Nat. Commun. 2023, 14, 6813. [Google Scholar] [CrossRef]
- Liang, S.; Duan, Z.; He, X.; Yang, X.; Yuan, Y.; Liang, Q.; Pan, Y.; Zhou, G.; Zhang, M.; Liu, S.; et al. Natural variation in GmSW17 controls seed size in soybean. Nat. Commun. 2024, 15, 7417. [Google Scholar] [CrossRef]
- Nadeem, M.; Chen, A.; Hong, H.; Li, D.; Li, J.; Zhao, D.; Wang, W.; Wang, X.; Qiu, L. GmMs1 encodes a kinesin-like protein essential for male fertility in soybean (Glycine max L.). J. Integr. Plant Biol. 2021, 63, 1054–1064. [Google Scholar] [CrossRef]
- Szeluga, N.; Baldrich, P.; DelPercio, R.; Meyers, B.C.; Frank, M.H. Introduction of barnase/barstar in soybean produces a rescuable male sterility system for hybrid breeding. Plant Biotechnol. J. 2023, 21, 2585–2596. [Google Scholar] [CrossRef]
- Xu, C.; Shan, J.; Liu, T.; Wang, Q.; Ji, Y.; Zhang, Y.; Wang, M.; Xia, N.; Zhao, L. CONSTANS-LIKE 1a positively regulates salt and drought tolerance in soybean. Plant Physiol. 2022, 191, 2427–2446. [Google Scholar] [CrossRef] [PubMed]
- Bish, M.D.; Ramachandran, S.R.; Wright, A.; Lincoln, L.M.; Whitham, S.A.; Graham, M.A.; Pedley, K.F. The Soybean Rpp3 Gene Encodes a TIR-NBS-LRR Protein that Confers Resistance to Phakopsora pachyrhizi. Mol. Plant-Microbe Interact.® 2024, 37, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Bu, F.; Zhong, L.; Dong, Z.; Ma, Z.; Tang, Z.; Zhang, Y.; Yang, X.; Xu, X.; Wang, E.; et al. Mapping the molecular landscape of Lotus japonicus nodule organogenesis through spatiotemporal transcriptomics. Nat. Commun. 2024, 15, 6387. [Google Scholar] [CrossRef]
- Goto, T.; Soyano, T.; Liu, M.; Mori, T.; Kawaguchi, M. Auxin methylation by IAMT1, duplicated in the legume lineage, promotes root nodule development in Lotus japonicus. Proc. Natl. Acad. Sci. USA 2022, 119, e2116549119. [Google Scholar] [CrossRef]
- Misawa, F.; Ito, M.; Nosaki, S.; Nishida, H.; Watanabe, M.; Suzuki, T.; Miura, K.; Kawaguchi, M.; Suzaki, T. Nitrate transport via NRT2.1 mediates NIN-LIKE PROTEIN-dependent suppression of root nodulation in Lotus japonicus. Plant Cell 2022, 34, 1844–1862. [Google Scholar] [CrossRef]
- Wang, D.; Jin, R.; Shi, X.; Guo, H.; Tan, X.; Zhao, A.; Lian, X.; Dai, H.; Li, S.; Xin, K.; et al. A kinase mediator of rhizobial symbiosis and immunity in Medicago. Nature 2025. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.; Mao, Y.; Wu, X.; Zheng, X.; Zhao, W.; Mo, X.; Wang, R.; Wu, Q.; Wang, D.; et al. GRAS transcription factor PINNATE-LIKE PENTAFOLIATA2 controls compound leaf morphogenesis in Medicago truncatula. Plant Cell 2024, 36, 1755–1776. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, Y.; Wang, Y.; Gu, Z.; Yuan, F.; Han, L.; Liu, S.; Liu, S.; Lu, Z.; Chen, Y.; et al. Manipulation of WUSCHEL orthologue expression improves the forage yield and quality in Medicago. Plant Biotechnol. J. 2025, 23, 1118–1120. [Google Scholar] [CrossRef]
- Feng, C.; Chen, B.; Hofer, J.; Shi, Y.; Jiang, M.; Song, B.; Cheng, H.; Lu, L.; Wang, L.; Howard, A.; et al. Genomic and genetic insights into Mendel’s pea genes. Nature 2025. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, L.; Zhou, J.; Li, R.; Pandey, M.K.; Han, Y.; Cui, F.; Zhang, J.; Guo, F.; Chen, J.; et al. Genomic insights into the genetic signatures of selection and seed trait loci in cultivated peanut. J. Adv. Res. 2022, 42, 237–248. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, J.; Fan, Y.; Du, X.; Zhu, S.; Li, Z.; Qiu, D.; Cao, Z.; Ma, Q.; Li, Y.; et al. PSC1, a basic/helix–loop–helix transcription factor controlling the purplish-red testa trait in peanut. J. Integr. Plant Biol. 2025, 67, 1364–1378. [Google Scholar] [CrossRef]
- Yang, S.; Wang, J.; Tang, Z.; Li, Y.; Zhang, J.; Guo, F.; Meng, J.; Cui, F.; Li, X.; Wan, S. Calcium/calmodulin modulates salt responses by binding a novel interacting protein SAMS1 in peanut (Arachis hypogaea L.). Crop J. 2023, 11, 21–32. [Google Scholar] [CrossRef]
- Zhang, X.; Zhai, H.; Wang, Y.; Tian, X.; Zhang, Y.; Wu, H.; Lü, S.; Yang, G.; Li, Y.; Wang, L.; et al. Functional conservation and diversification of the soybean maturity gene E1 and its homologs in legumes. Sci. Rep. 2016, 6, 29548. [Google Scholar] [CrossRef]
- González, A.M.; Vander Schoor, J.K.; Fang, C.; Kong, F.; Wu, J.; Weller, J.L.; Santalla, M. Ancient relaxation of an obligate short-day requirement in common bean through loss of CONSTANS-like gene function. Curr. Biol. 2021, 31, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhu, J.; Zhai, H.; Yang, Q.; Zhou, K.; Song, Q.; Wu, J.; Liu, D.; Li, Y.; Xia, Z. A single-nucleotide polymorphism in PvPW1 encoding β-1,3-glucanase 9 is associated with pod width in Phaseolus vulgaris L. J. Genet. Genom. 2024, 51, 1413–1422. [Google Scholar] [CrossRef]
- Xu, K.; Zhu, J.L.; Guo, N.; Liu, J.Y.; Zhai, H.; Zhu, X.B.; Gao, Y.; Wu, H.Y.; and Xia, Z.J. A novel 7-base pair deletion at a splice site in MS-2 impairs male fertility via premature tapetum degradation in common bean (Phaseolis vulgaris L.). Theor. Appl. Genet. 2023, 136, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhu, J.; Zhai, H.; Wu, H.; Gao, Y.; Li, Y.; Zhu, X.; Xia, Z. A critical role of PvFtsH2 in the degradation of photodamaged D1 protein in common bean. Hortic. Res. 2021, 8, 126. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Wang, R.; Liu, M.; Ji, X.; He, Y.; Zhao, B.; Li, W.; Mo, X.; Zhang, X.; et al. Control of compound leaf patterning by MULTI-PINNATE LEAF1 (MPL1) in chickpea. Nat. Commun. 2023, 14, 8088. [Google Scholar] [CrossRef]
- Basu, U.; Upadhyaya, H.D.; Srivastava, R.; Daware, A.; Malik, N.; Sharma, A.; Bajaj, D.; Narnoliya, L.; Thakro, V.; Kujur, A.; et al. ABC Transporter-Mediated Transport of Glutathione Conjugates Enhances Seed Yield and Quality in Chickpea. Plant Physiol. 2019, 180, 253–275. [Google Scholar] [CrossRef]
- Chakraborty, A.; Singh, B.; Pandey, V.; Parida, S.K.; Bhatia, S. MicroRNA164e suppresses NAC100 transcription factor-mediated synthesis of seed storage proteins in chickpea. New Phytol. 2024, 242, 2652–2668. [Google Scholar] [CrossRef]
- Yano, R.; Li, F.; Hiraga, S.; Takeshima, R.; Kobayashi, M.; Toda, K.; Umehara, Y.; Kajiya-Kanegae, H.; Iwata, H.; Kaga, A.; et al. The genomic landscape of gene-level structural variations in Japanese and global soybean Glycine max cultivars. Nat. Genet. 2025, 57, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Torkamaneh, D.; Lemay, M.; Belzile, F. The pan-genome of the cultivated soybean (PanSoy) reveals an extraordinarily conserved gene content. Plant Biotechnol. J. 2021, 19, 1852–1862. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Luo, Z.; Marand, A.P.; Yan, H.; Jang, H.; Bang, S.; Mendieta, J.P.; Minow, M.A.A.; Schmitz, R.J. A spatially resolved multi-omic single-cell atlas of soybean development. Cell 2025, 188, 550–567. [Google Scholar] [CrossRef]
- Fan, J.; Shen, Y.; Chen, C.; Chen, X.; Yang, X.; Liu, H.; Chen, R.; Liu, S.; Zhang, B.; Zhang, M.; et al. A large-scale integrated transcriptomic atlas for soybean organ development. Mol. Plant 2025, 18, 669–689. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Yang, M.; Tang, Y.; Zhang, L.; Zhao, H.; Ni, H.; Chen, Q.; Meng, F.; Jiang, J. Dynamics of cis -regulatory sequences and transcriptional divergence of duplicated genes in soybean. Proc. Natl. Acad. Sci. USA 2023, 120, e2303836120. [Google Scholar] [CrossRef]
- Xun, H.; Zhang, H.; Zhao, B.; Zhu, J.; Li, Y.; Wang, Y.; Chen, S.; Liu, X.; Zhang, X.; Zhou, Y.; et al. Non-CG DNA hypomethylation promotes photosynthesis and nitrogen fixation in soybean. Proc. Natl. Acad. Sci. USA 2024, 121, e2402946121. [Google Scholar] [CrossRef]
- Wang, Y.; Xun, H.; Lv, J.; Ju, W.; Jiang, Y.; Wang, M.; Guo, R.; Zhang, M.; Ding, X.; Liu, B.; et al. A modulatory role of CG methylation on gene expression in soybean implicates its potential utility in breeding. Plant Biotechnol. J. 2025, 23, 1585–1600. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.; Ma, C.; Chen, Y.; Liu, C.; Wang, Y.; Wang, S.; Chen, X. Editing the nuclear localization signals of E1 and E1Lb enables the production of tropical soybean in temperate growing regions. Plant Biotechnol. J. 2024, 22, 2145–2156. [Google Scholar] [CrossRef]
- Fang, C.; Sun, Z.; Li, S.; Su, T.; Wang, L.; Dong, L.; Li, H.; Li, L.; Kong, L.; Yang, Z.; et al. Subfunctionalisation and self-repression of duplicated E1 homologues finetunes soybean flowering and adaptation. Nat. Commun. 2024, 15, 6184. [Google Scholar] [CrossRef]
- Dong, L.; Li, S.; Wang, L.; Su, T.; Zhang, C.; Bi, Y.; Lai, Y.; Kong, L.; Wang, F.; Pei, X.; et al. The genetic basis of high-latitude adaptation in wild soybean. Curr. Biol. 2022, 33, 252–262.e4. [Google Scholar] [CrossRef]
- Li, Y.F.; Zhang, L.; Wang, J.; Wang, X.; Guo, S.; Xu, Z.J.; Li, D.; Liu, Z.; Li, Y.H.; Liu, B.; et al. Flowering time regulator qFT13-3 involved in soybean adaptation to high latitudes. Plant Biotechnol. J. 2024, 22, 1164–1176. [Google Scholar] [CrossRef]
- Dong, L.; Fang, C.; Cheng, Q.; Su, T.; Kou, K.; Kong, L.; Zhang, C.; Li, H.; Hou, Z.; Zhang, Y.; et al. Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat. Commun. 2021, 12, 5445. [Google Scholar] [CrossRef]
- Lee, D.; Vuong, T.D.; Shannon, J.G.; Song, Q.; Lin, F.; Nguyen, H.T. QTL mapping and whole-genome sequencing analysis for novel genetic resources associated with sucrose content in soybean [Glycine max (L.) Merr.]. Theor. Appl. Genet. 2025, 138, 43. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Duan, J.; Clark, C.B.; Feng, W.; Ma, J. Noncanonical transcription initiation is primarily tissue specific and epigenetically tuned in paleopolyploid plants. Plant Cell 2024, 37, koae288. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.T.; Su, F.; Niu, Q.F.; Geng, L.P.; Cao, X.S.; Song, M.L.; Dong, J.S.; Zheng, Z.; Guo, R.; Zhang, Y.; et al. Knockout of miR396 genes increases seed size and yield in soybean. J. Integr. Plant Biol. 2024, 66, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Ji, R.; Li, Z.; Yu, Y.; Nakano, M.; Long, Y.; Feng, L.; Qin, C.; Lu, D.; Zhan, J.; et al. Soybean DICER-LIKE2 Regulates Seed Coat Color via Production of Primary 22-Nucleotide Small Interfering RNAs from Long Inverted Repeats. Plant Cell 2020, 32, 3662–3673. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Goettel, W.; Song, Q.J.; Jiang, H.; Hu, Z.B.; Wang, M.L.; An, Y.Q.C. Dual use and selection of GmSWEET39 for oil and protein improvement in soybean. PLoS Genet. 2020, 16, e1009114. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, M.; Sun, Y.; Zhao, P.; Liu, C.; Qing, K.; Hu, X.; Zhong, Z.; Cheng, J.; Wang, H.; et al. Glycine max NNL1 restricts symbiotic compatibility with widely distributed bradyrhizobia via root hair infection. Nat. Plants 2021, 7, 73–86. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, J.; Shi, X.; Bai, M.; Yuan, C.; Cai, C.; Wang, N.; Zhu, X.; Kuang, H.; Wang, X.; et al. Genetically optimizing soybean nodulation improves yield and protein content. Nat. Plants 2024, 10, 736–742. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, M.; Guan, Y.; Guo, W.; Zhang, C.; Wei, Y.; Zhao, Z.; Ma, H.; Wang, L.; Jiang, X.; et al. Transcriptional regulatory network reveals key transcription factors for regulating agronomic traits in soybean. Genome Biol. 2024, 25, 313. [Google Scholar] [CrossRef]
- Liu, S.L.; Fan, L.; Liu, Z.; Yang, X.; Zhang, Z.F.; Duan, Z.B.; Liang, Q.J.; Imran, M.; Zhang, M.; Tian, Z.X. A Pd1-Ps-P1 feedback loop controls pubescence density in soybean. Mol. Plant 2020, 13, 1768–1783. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.X.; Paddock, K.J.; Zhang, Z.Y.; Stacey, M.G. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol. 2021, 229, 920–934. [Google Scholar] [CrossRef]
- Liu, T.F.; Ji, J.; Cheng, Y.Y.; Zhang, S.C.; Wang, Z.R.; Duan, K.X.; Wang, Y.C. CRISPR/Cas9-mediated editing of GmTAP1 confers enhanced resistance to Phytophthora sojae in soybean. J. Integr. Plant Biol. 2023, 65, 1609–1612. [Google Scholar] [CrossRef]
- Jin, T.; Sun, Y.; Shan, Z.; He, J.; Wang, N.; Gai, J.; Li, Y. Natural variation in the promoter of GsERD15B affects salt tolerance in soybean. Plant Biotechnol. J. 2021, 19, 1155–1169. [Google Scholar] [CrossRef] [PubMed]
- Mun, T.; Bachmann, A.; Gupta, V.; Stougaard, J.; Andersen, S.U. Lotus Base: An integrated information portal for the model legume Lotus japonicus. Sci. Rep. 2016, 6, 39447. [Google Scholar] [CrossRef]
- Cannon, S.B.; Sterck, L.; Rombauts, S.; Sato, S.; Cheung, F.; Gouzy, J.; Wang, X.; Mudge, J.; Vasdewani, J.; Schiex, T.; et al. Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc. Natl. Acad. Sci. USA. 2006, 103, 14959–14964. [Google Scholar] [CrossRef] [PubMed]
- Harada, A.; Onori, M.; Ooki, M.; Kanzawa, N. Expression analysis of genes enriched in the pulvinus of Lotus japonicus. Plant Biotechnol. 2025, 42, 31–39. [Google Scholar] [CrossRef]
- Venado, R.E.; Wange, L.E.; Shen, D.; Pinnau, F.; Andersen, T.G.; Enard, W.; Marín, M. Tissue-specific regulation of lipid polyester synthesis genes controlling oxygen permeation into Lotus japonicus nodules. Proc. Natl. Acad. Sci. USA. 2022, 119, e2206291119. [Google Scholar] [CrossRef]
- Shen, D.; Micic, N.; Venado, R.E.; Bjarnholt, N.; Crocoll, C.; Persson, D.P.; Samwald, S.; Kopriva, S.; Westhoff, P.; Metzger, S.; et al. Apoplastic barriers are essential for nodule formation and nitrogen fixation in Lotus japonicus. Science 2025, 387, 1281–1286. [Google Scholar] [CrossRef]
- Shi, K.; Dong, H.B.; Du, H.L.; Li, Y.X.; Zhou, L.; Liang, C.Z.; Sakiroglu, M.; Wang, Z. The chromosome-level assembly of the wild diploid alfalfa genome provides insights into the full landscape of genomic variations between cultivated and wild alfalfa. Plant Biotechnol. J. 2024, 22, 1757–1772. [Google Scholar] [CrossRef]
- Li, W.Y.; Li, X.Z.; Li, W.; Yang, H.B.; Guo, D.D.; Guo, T.; Meng, Y.Y.; He, Q.; Lin, H.; Du, H.L.; et al. A haplotype-resolved genome assembly of tetraploid Medicago sativa ssp. falcata. Sci. China Life Sci. 2025, 68, 1186–1189. [Google Scholar] [CrossRef] [PubMed]
- Barrel Medic Pan-genome. Pan-genome analysis of Medicago truncatula reveals core and dispensable sequences. Nat. Genet. 2025, 47, 567–575. [Google Scholar]
- Chen, L.; He, F.; Long, R.; Zhang, F.; Li, M.; Wang, Z.; Kang, J.; Yang, Q. A global alfalfa diversity panel reveals genomic selection signatures in Chinese varieties and genomic associations with root development. J. Integr. Plant Biol. 2021, 63, 1937–1951. [Google Scholar] [CrossRef]
- Botkin, J.R.; Farmer, A.D.; Young, N.D.; Curtin, S.J. Genome assembly of Medicago truncatula accession SA27063 provides insight into spring black stem and leaf spot disease resistance. BMC Genom. 2024, 25, 204. [Google Scholar] [CrossRef]
- Roy, S.; Torres-Jerez, I.; Zhang, S.; Liu, W.; Schiessl, K.; Jain, D.; Boschiero, C.; Lee, H.; Krom, N.; Zhao, P.X.; et al. The peptide GOLVEN10 alters root development and noduletaxis in Medicago truncatula. Plant J. 2024, 118, 607–625. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Xie, L.; Gu, Z.; Mei, H.; Wang, H.; Zhang, J.; Wang, M.; Xu, Y.; Zhou, C.; Han, L. MtPIN4 plays critical roles in amino acid biosynthesis and metabolism of seed in Medicago truncatula. Plant J. 2024, 119, 689–704. [Google Scholar] [CrossRef]
- Jiang, X.; Zeng, X.; Xu, M.; Li, M.; Zhang, F.; He, F.; Yang, T.; Wang, C.; Gao, T.; Long, R.; et al. The whole-genome dissection of root system architecture provides new insights for the genetic improvement of alfalfa (Medicago sativa L.). Hortic. Res. 2025, 12, uhae271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Long, R.; Ma, Z.; Xiao, H.; Xu, X.; Liu, Z.; Wei, C.; Wang, Y.; Peng, Y.; Yang, X.; et al. Evolutionary genomics of climatic adaptation and resilience to climate change in alfalfa. Mol. Plant 2024, 17, 867–883. [Google Scholar] [CrossRef]
- Shi, K.; Liu, J.; Liang, H.; Dong, H.; Zhang, J.; Wei, Y.; Zhou, L.; Wang, S.; Zhu, J.; Cao, M.; et al. An alfalfa MYB-like transcriptional factor MsMYBH positively regulates alfalfa seedling drought resistance and undergoes MsWAV3-mediated degradation. J. Integr. Plant Biol. 2024, 66, 683–699. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Dong, Y.; Zhang, L.; Wang, B. Abiotic stress-regulated LEA gene mediates the response to drought, salinity, and cold stress in Medicago sativa L. Plant Cell Physiol. 2025, 66, 781–796. [Google Scholar] [CrossRef]
- Li, S.; Chen, X.; Guo, M.; Zhu, X.; Huang, W.; Guo, C.; Shu, Y. Genome-wide identification and expression analysis of the alfalfa (Medicago sativa L.) U-box gene family in response to abiotic stresses. Int. J. Mol. Sci. 2024, 25, 12324. [Google Scholar] [CrossRef] [PubMed]
- Mendel, G. Versuche über plflanzenhybriden. Verh. Naturforsch. Vereines Brünn 1866, 4, 3–47. [Google Scholar]
- Kan, J.; Nie, L.; Wang, M.; Tiwari, R.; Tembrock, L.R.; Wang, J. The Mendelian pea pan-plastome: Insights into genomic structure, evolutionary history, and genetic diversity of an essential food crop. Genom. Commun. 2024, 1, e004. [Google Scholar] [CrossRef]
- Powers, S.; Boatwright, J.L.; Thavarajah, D.A.; Udall, J. Genome-wide association studies of mineral and phytic acid concentrations in pea (Pisum sativum L.) to evaluate biofortification potential. G3 Genes|Genomes|Genet. 2021, 11, jkab227. [Google Scholar] [CrossRef]
- Boutet, G.; Alves Carvalho, S.; Falque, M.; Peterlongo, P.; Lhuillier, E.; Bouchez, O.; Lavaud, C.; Pilet-Nayel, M.L.; Rivière, N.; Baranger, A. SNP discovery and genetic mapping using genotyping by sequencing of whole genome genomic DNA from a pea RIL population. BMC Genom. 2016, 17, 121. [Google Scholar] [CrossRef]
- Tayeh, N.; Aluome, C.; Falque, M.; Jacquin, F.; Klein, A.; Chauveau, A.; Bérard, A.; Houtin, H.; Rond, C.; Kreplak, J.; et al. Development of two major resources for pea genomics: The GenoPea 13.2K SNP Array and a high-density, high-resolution consensus genetic map. Plant J. 2015, 84, 1257–1273. [Google Scholar] [CrossRef]
- Klčová, B.; Balarynová, J.; Trněný, O.; Krejčí, P.; Cechová, M.Z.; Leonova, T.; Gorbach, D.; Frolova, N.; Kysil, E.; Orlova, A.; et al. Domestication has altered gene expression and secondary metabolites in pea seed coat. Plant J. 2024, 118, 2269–2295. [Google Scholar] [CrossRef]
- Li, L.; Xu, J.B.; Zhu, Z.W.; Ma, R.; Wu, X.Z.; Geng, Y.K. Genome-wide identification and expression analysis of the SPL transcription factor family and its response to abiotic stress in Pisum sativum L. BMC Genom. 2024, 25, 539. [Google Scholar] [CrossRef]
- Xiong, R.; Peng, Z.; Zhou, H.; Xue, G.; He, A.; Yao, X.; Weng, W.; Wu, W.; Ma, C.; Bai, Q.; et al. Genome-wide identification, structural characterization and gene expression analysis of the WRKY transcription factor family in pea (Pisum sativum L.). BMC Plant Biol. 2024, 24, 113. [Google Scholar] [CrossRef]
- Song, F.Y.; Li, Y.; Jin, H.; Guo, Z.Y.; Deng, W. Integrating genome and transcriptome-wide data to explore the expression dynamics of TCP genes in Pisum sativum under salt stress. Front. Plant Sci. 2025, 16, 1580890. [Google Scholar] [CrossRef]
- Santos, C.; Polanco, C.; Rubiales, D.; Patto, M.C.V. The powdery mildew susceptibility gene in pea species: The power of high-density linkage maps in comparative mapping and synteny analysis. Plant Genome 2021, 14, e20090. [Google Scholar] [CrossRef]
- Völkner, C.; Holzner, L.J.; Day, P.M.; Ashok, A.D.; de Vries, J.; Bölter, B.; Kunz, H.-H. Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+ release. Plant Physiol. 2021, 187, 2110–2125. [Google Scholar] [CrossRef] [PubMed]
- Williams, O.; Schoor, J.K.V.; Butler, J.B.; Ridge, S.; Sussmilch, F.C.; Hecht, V.F.G.; Weller, J.L. The genetic architecture of flowering time changes in pea from wild to crop. J. Exp. Bot. 2022, 73, 3978–3990. [Google Scholar] [CrossRef] [PubMed]
- Bertioli, D.J.; Cannon, S.B.; Froenicke, L.; Huang, G.; Farmer, A.D.; Cannon, E.K.S.; Liu, X.; Gao, D.; Clevenger, J.; Dash, S.; et al. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat. Genet. 2016, 48, 438–446. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Z.; Qi, F.; Zhou, Z.; Du, P.; Shi, L.; Dong, W.; Huang, B.; Han, S.; Pavan, S.; et al. A telomere-to-telomere genome assembly of the cultivated peanut. Mol. Plant 2025, 18, 5–8. [Google Scholar] [CrossRef]
- Liu, N.; Guo, J.; Zhou, X.; Wu, B.; Huang, L.; Luo, H.; Chen, Y.; Chen, W.; Lei, Y.; Huang, Y.; et al. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a ~ 0.8-Mb region on chromosome A08 in peanut (Arachis hy-pogaea L.). Theor. Appl. Genet. 2020, 133, 37–49. [Google Scholar] [CrossRef]
- Wang, X.; Wang, R.; Huo, X.; Zhou, Y.; Umer, M.J.; Zheng, Z.; Jin, W.; Huang, L.; Li, H.; Yu, Q.; et al. Integration of single-nuclei transcriptome and bulk RNA-seq to unravel the role of AhWRKY70 in regulating stem cell development in Arachis hypogaea L. Plant Biotechnol. J. 2025, 23, 1814–1831. [Google Scholar] [CrossRef]
- Gong, F.; Cao, D.; Sun, X.; Li, Z.; Qu, C.; Fan, Y.; Cao, Z.; Zhao, K.; Zhao, K.; Qiu, D.; et al. Homologous mapping yielded a comprehensive predicted protein–protein interaction network for peanut (Arachis hypogaea L.). BMC Plant Biol. 2024, 24, 873. [Google Scholar] [CrossRef] [PubMed]
- Haslam, R.P.; Ruiz-Lopez, N.; Eastmond, P.; Moloney, M.; Sayanova, O.; Napier, J.A. The modification of plant oil composition via metabolic engineering—Better nutrition by design. Plant Biotechnol. J. 2012, 11, 157–168. [Google Scholar] [CrossRef]
- He, J.; Zhao, X.; Laroche, A.; Lu, Z.; Liu, H.; Li, Z. Genotypingby-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 2014, 5, 484. [Google Scholar] [CrossRef]
- Lu, Q.; Huang, L.; Liu, H.; Garg, V.; Gangurde, S.S.; Li, H.; Chitikineni, A.; Guo, D.; Pandey, M.K.; Li, S.; et al. A genomic variation map provides insights into peanut diversity in China and associations with 28 agronomic traits. Nat. Genet. 2024, 56, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yue, Y.; Chen, C.; Yang, J.; Chen, Y.; Zhang, H. Genome-Wide Association Studies Revealed Genetic Loci and Candidate Genes for Pod-Related Traits in Peanut. Plant Mol. Biol. Rep. 2024, 43, 766–776. [Google Scholar] [CrossRef]
- Zou, K.Y.; Choi, M.; Lee, J.D.; Kim, K.D.; Lim, H.D.; Kim, K.S.; Jun, T.H. Identification of QTL associated with luteolin content in peanut (Arachis hypogaea L.) shells. Plant Breed. 2025, 144, 1–10. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, L.; Qiu, D.; Cao, Z.; Wang, K.; Li, Z.; Wang, X.; Wang, J.; Ma, Q.; Cao, D.; et al. PSW1, an LRR receptor kinase, regulates pod size in peanut. Plant Biotechnol. J. 2023, 21, 2113–2124. [Google Scholar] [CrossRef]
- Zhang, X.; Pandey, M.K.; Wang, J.; Zhao, K.; Ma, X.; Li, Z.; Zhao, K.; Gong, F.; Guo, B.; Varshney, R.K.; et al. Chromatin spatial organization of wild type and mutant peanuts reveals high-resolution genomic architecture and interaction alterations. Genome Biol. 2021, 22, 315. [Google Scholar] [CrossRef] [PubMed]
- Huai, D.; Xue, X.; Wu, J.; Pandey, M.K.; Liu, N.; Huang, L.; Yan, L.; Chen, Y.; Wang, X.; Wang, Q.; et al. Enhancing peanut nutritional quality by editing AhKCS genes lacking natural variation. Plant Biotechnol. J. 2024, 22, 3015–3017. [Google Scholar] [CrossRef]
- Xue, L.L.; Qu, P.Y.; Zhao, H.H.; Liu, H.; Huang, B.Y.; Wang, X.B.; Zhang, Z.X.; Dai, X.D.; Qin, L.; Dong, W.Z.; et al. Creation of fragrant peanut using Crispr/Cas9. J. Integr. Plant Biol. 2025, 67, 1438–1440. [Google Scholar] [CrossRef]
- Song, H.; Guo, Z.; Zhang, X.; Sui, J. De. novo genes in Arachis hypogaea cv. Tifrunner: Systematic identification, molecular evolution, and potential contributions to cultivated peanut. Plant J. 2022, 111, 1081–1095. [Google Scholar] [CrossRef]
- Ferreira, D.D.; Martins, A.D.Q.; Berbert, P.S.; dos Anjos, R.M.; Saraiva, M.A.D.; Brasileiro, A.C.M.; Miller, R.N.G.; Guimaraes, P.M. A wild Arachis endochitinase enhances Sclerotinia resistance in transgenic plants. Trop. Plant Biol. 2024, 17, 138–155. [Google Scholar] [CrossRef]
- Vinson, C.C.; Mota, A.P.Z.; Oliveira, T.N.; Guimaraes, L.A.; Leal-Bertioli, S.C.M.; Williams, T.C.R.; Nepomuceno, A.L.; Saraiva, M.A.P.; Araujo, A.C.G.; Guimaraes, P.M.; et al. Early responses to dehydration in contrasting wild Arachis species. PLoS ONE 2018, 13, e0198191. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Shi, G. Genome-Wide Identification and Expression Profiling of Heavy Metal ATPase (HMA) Genes in Peanut: Potential Roles in Heavy Metal Transport. Int. J. Mol. Sci. 2024, 25, 613. [Google Scholar] [CrossRef] [PubMed]
- Mao, T.; Zhang, Y.; Xue, W.; Jin, Y.; Zhao, H.; Wang, Y.; Wang, S.; Zhuo, S.; Gao, F.; Su, Y.; et al. Identification, characterisation and expression analysis of peanut sugar invertase genes reveal their vital roles in response to abiotic stress. Plant Cell Rep. 2024, 43, 30. [Google Scholar] [CrossRef]
- Mittal, M.; Dhingra, A.; Dawar, P.; Payton, P.; Rock, C.D. The role of microRNAs in responses to drought and heat stress in peanut (Arachis hypogaea). Plant Genome 2023, 16, e20350. [Google Scholar] [CrossRef]
- Tan, X.D.; Tang, H.Q.; Huang, J.L.; Dai, X.Q.; Chen, F.; Yu, J.Y.; Chen, J.J.; Yang, R.X.; Wan, X.R.; Yang, Y. The type III effector RipBB from Ralstonia pseudosolanacearum inhibits plant immunity responses and contributes to virulence on peanut. Plant Pathol. 2025, 74, 685–695. [Google Scholar] [CrossRef]
- Biswal, A.K.; Ozias-Akins, P.; Holbrook, C.C. Recent Technological Advancements for Identifying and Exploiting Novel Sources of Pest and Disease Resistance for Peanut Improvement. Agronomy 2024, 14, 3071. [Google Scholar] [CrossRef]
- Cortinovis, G.; Vincenzi, L.; Anderson, R.; Marturano, G.; Marsh, J.I.; Bayer, P.E.; Rocchetti, L.; Frascarelli, G.; Lanzavecchia, G.; Pieri, A.; et al. Adaptive gene loss in the common bean pan-genome during range expansion and domestication. Nat. Commun. 2024, 15, 6698. [Google Scholar] [CrossRef] [PubMed]
- Ambachew, D.; Londoño, J.M.; Rodriguez Castillo, N.; Asfaw, A.; Blair, M.W. Genetic diversity, linkage disequilibrium, and population structure in a common bean feference collection. Agronomy 2024, 14, 985. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Tanaka, K.; Nakagawa, K.; Sato, H.; Hosoi, A.; Nakazawa, Y. Genome-wide association mapping for early maturity in kintoki bean (Phaseolus vulgaris L.). Breed. Sci. 2025, 75, 119–128. [Google Scholar] [CrossRef]
- García-Fernández, C.; Jurado, M.; Campa, A.; Bitocchi, E.; Papa, R.; Ferreira, J.J. Genetic control of pod morphological traits and pod edibility in a common bean RIL population. Theor. Appl. Genet. 2023, 137, 6. [Google Scholar] [CrossRef]
- Delfini, J.; Moda-Cirino, V.; Dos Santos Neto, J.; Zeffa, D.M.; Nogueira, A.F.; Ribeiro, L.A.B.; Ruas, P.M.; Gepts, P.; Gonçalves, L.S.A. Genome-wide association study for grain mineral content in a Brazilian common bean diversity panel. Theor. Appl. Genet. 2021, 134, 2795–2811. [Google Scholar] [CrossRef]
- Celebioglu, B.; Hart, J.P.; Porch, T.; Griffiths, P.; Myers, J.R. Genome-wide association study to identify possible candidate genes of snap bean leaf and pod color. Genes 2023, 14, 2234. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, M.F.; Mostafa, K.; Aydin, A.; Kavas, M.; Aksoy, E. GATA transcription factor in common bean: A comprehensive genome-wide functional characterization, identification, and abiotic stress response evaluation. Plant Mol. Biol. 2024, 114, 43. [Google Scholar] [CrossRef]
- Kuwabo, K.; Hamabwe, S.M.; Kachapulula, P.; Cichy, K.; Parker, T.; Mukuma, C.; Kamfwa, K. Genome-wide association analysis of anthracnose resistance in the Yellow Bean Collection of Common Bean. PLoS ONE 2023, 18, e0293291. [Google Scholar] [CrossRef]
- Lima, L.R.L.; Gonçalves-Vidigal, M.C.; Bisneta, M.V.; Valentini, G.; Vidigal, P.S.; Martins, V.D.R.; de Souza, T.L.P.O. Genetic fine-mapping of anthracnose disease-resistance allele Co-14 present in the Andean common bean cultivar AND 277. Crop Sci. 2023, 63, 750–763. [Google Scholar] [CrossRef]
- Dramadri, I.O.; Nkalubo, S.T.; Kramer, D.M.; Kelly, J.D. Genome-wide association analysis of drought adaptive traits in common bean. Crop Sci. 2021, 61, 3232–3253. [Google Scholar] [CrossRef]
- Hoyos-Villegas, V.; Song, Q.J.; Kelly, J.D. Genome-wide association analysis for drought tolerance and associated traits in common bean. Plant Genome 2017, 10, plantgenome2015.12.0122. [Google Scholar] [CrossRef]
- Alves, F.H.N.D.; Cruz, G.C.D.; Coelho, L.A.P.; Sousa, A.A.; Carneiro, J.E.D.; Badel, J.L. Genes putatively involved in Phaseolus vulgaris resistance against Xanthomonas phaseoli pv. phaseoli revealed by a genome-wide association study. Plant Pathol. 2024, 73, 2157–2167. [Google Scholar] [CrossRef]
- Valentini, G.; Hurtado-Gonzales, O.P.; Xavier, L.F.S.; He, R.; Gill, U.; Song, Q.; Pastor-Corrales, M.A. Fine mapping of the unique Ur-11 gene conferring broad resistance to the rust pathogen of common bean. Theor. Appl. Genet. 2025, 138, 64. [Google Scholar] [CrossRef]
- Kirlioglu, T.; Okay, A.; Aras, E.S.; Büyük, I. Investigation and computational analysis of the IQD gene family in common bean (Phaseolus vulgaris L.): Expression profiling under salt stress. Turk. J. Bot. 2024, 48, 532–550. [Google Scholar] [CrossRef]
- Wu, X.; Chen, S.; Zhang, Z.; Zhou, W.; Sun, T.; Ning, K.; Xu, M.; Ke, X.; Xu, P. A viral small interfering RNA-host plant mRNA pathway modulates virus-induced drought tolerance by enhancing autophagy. Plant Cell 2024, 36, 3219–3236. [Google Scholar] [CrossRef]
- Varshney, R.K.; Roorkiwal, M.; Sun, S.; Bajaj, P.; Chitikineni, A.; Thudi, M.; Singh, N.P.; Du, X.; Upadhyaya, H.D.; Khan, A.W.; et al. A chickpea genetic variation map based on the sequencing of 3366 genomes. Nature 2021, 599, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Paritosh, K.; Yadava, S.K.; Singh, P.; Bhayana, L.; Mukhopadhyay, A.; Gupta, V.; Bisht, N.C.; Zhang, J.; Kudrna, D.A.; Copetti, D.; et al. A chromosome-scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnol. J. 2020, 19, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, P.; Pierides, I.; López-Hidalgo, C.; Garg, V.; Zhang, S.; Barmukh, R.; Bellaire, A.; Li, J.; Bachmann, G.; Valledor, L.; et al. Natural variation in the chickpea metabolome under drought stress. Plant Biotechnol. J. 2024, 22, 3278–3294. [Google Scholar] [CrossRef]
- Mani, B.; Maurya, K.; Kohli, P.S.; Giri, J. Chickpea (Cicer arietinum) PHO1 family members function redundantly in Pi transport and root nodulation. Plant Physiol. Biochem. 2024, 211, 108712. [Google Scholar] [CrossRef]
- Singh, S.; Praveen, A.; Bhadrecha, P. Genome-wide identification and analysis of SPL gene family in chickpea (Cicer arietinum L.). Protoplasma 2024, 261, 799–818. [Google Scholar] [CrossRef]
- Alsamman, A.M.; Mousa, K.H.; Istanbuli, T.; El-Maksoud, M.M.A.; Tawkaz, S.; Hamwieh, A. Unveiling the genetic basis of Fusarium wilt resistance in chickpea using GWAS analysis and characterization of candidate genes. Front. Genet. 2024, 14, 1292009. [Google Scholar] [CrossRef]
- Jain, M.; Bansal, J.; Rajkumar, M.S.; Garg, R. An integrated transcriptome mapping the regulatory network of coding and long non-coding RNAs provides a genomics resource in chickpea. Commun. Biol. 2022, 5, 1106. [Google Scholar] [CrossRef] [PubMed]
- Iwata-Otsubo, A.; Lin, J.-Y.; Gill, N.; Jackson, S.A. Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis. Chromosom. Res. 2016, 24, 197–216. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Zhang, C.; Sun, Z.; Wang, L.; Duanmu, D.; Fan, Q. Genome Editing in Cowpea Vigna unguiculata Using CRISPR-Cas9. Int. J. Mol. Sci. 2019, 20, 2471. [Google Scholar] [CrossRef]
- Barros, J.R.A.; Guimarães, M.J.M.; Silva, R.L.d.O.; da Silva, J.B.; de Barros, A.A.G.; Angelotti, F.; de Melo, N.F. The differential expression of the P5CR and αTPS6 genes in cowpea plants increases tolerance to water-deficit and high temperatures. Environ. Exp. Bot. 2024, 224, 105821. [Google Scholar] [CrossRef]
- de Jesús-Pires, C.; Ferreira-Neto, J.R.C.; de Oliveira-Silva, R.L.; da Silva, J.B.; da Silva, M.D.; da Costa, A.F.; Benko-Iseppon, A.M. Genome-wide identification and stress responses of cowpea Thaumatin-like proteins: A comprehensive analysis. Plants 2024, 13, 3245. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiong, H.; Ravelombola, W.; Bhattarai, G.; Barickman, C.; Alatawi, I.; Phiri, T.M.; Chiwina, K.; Mou, B.; Tallury, S.; et al. A Genome-Wide Association Study Reveals Region Associated with Seed Protein Content in Cowpea. Plants 2023, 12, 2705. [Google Scholar] [CrossRef] [PubMed]
- Thepphomwong, K.; Srichan, M.; Deeroum, A.; Laosatit, K.; Somta, P. QTL-Seq and Fine-Mapping Analyses Identify QTL and Candidate Genes Controlling Snake-like Pod Surface Trait in Vegetable Cowpea Yardlong Bean. Plants 2025, 14, 1447. [Google Scholar] [CrossRef]
- Marla, S.S.; Mishra, P.; Maurya, R.; Singh, M.; Wankhede, D.P.; Kumar, A.; Yadav, M.C.; Subbarao, N.; Singh, S.K.; Kumar, R. Refinement of Draft Genome Assemblies of Pigeonpea (Cajanus cajan). Front. Genet. 2020, 11, 607432. [Google Scholar] [CrossRef]
- Bohra, A.; Gandham, P.; Rathore, A.; Thakur, V.; Saxena, R.K.; Naik, S.J.S.; Varshney, R.K.; Singh, N.P. Identification of microRNAs and their gene targets in cytoplasmic male sterile and fertile maintainer lines of pigeonpea. Planta 2021, 253, 59. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Das, A.; Kaila, T.; Ramakrishna, G.; Sharma, S.; Gaikwad, K. Genomic survey of high-throughput RNA-Seq data implicates involvement of long intergenic non-coding RNAs (lincRNAs) in cytoplasmic male-sterility and fertility restoration in pigeon pea. Genes Genom. 2023, 45, 783–811. [Google Scholar] [CrossRef]
- Jain, R.; Srivastava, H.; Kumar, K.; Sharma, S.; Singh, A.; Gaikwad, K. Understanding the role of P-type ATPases in regulating pollen fertility and development in pigeonpea. Mol. Genet. Genom. 2024, 299, 68. [Google Scholar] [CrossRef]
- Li, H.; Yang, J.; Ma, R.; An, X.; Pan, F.; Zhang, S.; Fu, Y. Genome-wide identification and expression analysis of MYB gene family in Cajanus cajan and CcMYB107 improves plant drought tolerance. Physiol. Plantarum. 2023, 175, e13954. [Google Scholar] [CrossRef]
- Rana, D.; Sharma, P.; Arpita, K.; Srivastava, H.; Sharma, S.; Gaikwad, K. Genome-wide identification and characterization of GRAS gene family in pigeonpea (Cajanus cajan (L.) Millspaugh). 3 Biotech 2023, 13, 363. [Google Scholar] [CrossRef]
- Sharma, S.; Arpita, K.; Nirgude, M.; Srivastava, H.; Kumar, K.; Sreevathsa, R.; Bhattacharya, R.; Gaikwad, K. Genomic insights into cytokinin oxidase/dehydrogenase (CKX) gene family, identification, phylogeny and synteny analysis for its possible role in regulating seed number in Pigeonpea (Cajanus cajan (L.) Millsp.). Int. J. Biol. Macromol. 2024, 277, 134194. [Google Scholar] [CrossRef]
- Yasin, J.K.; Mishra, B.K.; Pillai, M.A.; Chinnusamy, V. Physical map of lncRNAs and lincRNAs linked with stress responsive miRs and genes network of pigeonpea (Cajanus cajan L.). J. Plant Biochem. Biotechnol. 2021, 31, 271–292. [Google Scholar] [CrossRef]
- Kang, Y.J.; Kim, S.K.; Kim, M.Y.; Lestari, P.; Kim, K.H.; Ha, B.-K.; Jun, T.H.; Hwang, W.J.; Lee, T.; Lee, J.; et al. Genome sequence of mungbean and insights into evolution within Vigna species. Nat. Commun. 2014, 5, 5443. [Google Scholar] [CrossRef]
- Ha, J.; Satyawan, D.; Jeong, H.; Lee, E.; Cho, K.H.; Kim, M.Y.; Lee, S.H. A near-complete genome sequence of mungbean (Vigna radiata L.) provides key insights into the modern breeding program. Plant Genome 2021, 14, e20121. [Google Scholar] [CrossRef]
- Tangphatsornruang, S.; Sangsrakru, D.; Chanprasert, J.; Uthaipaisanwong, P.; Yoocha, T.; Jomchai, N.; Tragoonrung, S. The Chloroplast Genome Sequence of Mungbean (Vigna radiata) Determined by High-throughput Pyrosequencing: Structural Organization and Phylogenetic Relationships. DNA Res. 2009, 17, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Liu, Y.; Feng, M.; Huang, Y.; Zhao, Y.; Chen, J.; Li, T.; Zhong, C.; Ge, W. Genome-wide characterization of PEBP genes in Mung bean (Vigna radiata L.) with functional analysis of VrFT1 in relation to photoperiod. Sci. Rep. 2024, 14, 26413. [Google Scholar] [CrossRef]
- Leng, Y.; Niu, Z.-B.; Liu, S.-H.; Qiao, F.-J.; Liu, G.-F.; Cheng, B.; Li, S.-W. Characterization of cytochrome c oxidase-coding genes from mung bean and their response to cadmium stress based on genome-wide identification and transcriptome analysis. Mol. Biol. Rep. 2024, 52, 17. [Google Scholar] [CrossRef]
- Li, M.; Ding, D.; Zhang, Y.; Liu, J.; Cai, D.; Cao, L.; Chen, J.; Yang, S. Genome-wide identification and expression analysis of JmjC domain-containing gene family related to abiotic stress and photoperiodic treatments in Mung bean (Vigna radiata L.). Cienc. Rural 2023, 53, e20220241. [Google Scholar] [CrossRef]
- Zhang, W.; Ye, S.; Du, Y.; Zhao, Q.; Du, J.; Zhang, Q. Identification and Expression Analysis of bZIP Members under Abiotic Stress in Mung Bean (Vigna radiata). Life 2022, 12, 938. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, Y.; Zhang, P.; Ai, J.; Wang, Y.; Wang, F. Functional characterization of VrNAC15 for drought resistance in mung beans. Gene 2024, 926, 148621. [Google Scholar] [CrossRef]
- Kang, Y.J.; Satyawan, D.; Shim, S.; Lee, T.; Lee, J.; Hwang, W.J.; Kim, S.K.; Lestari, P.; Laosatit, K.; Kim, K.H.; et al. Draft genome sequence of adzuki bean, Vigna angularis. Sci. Rep. 2015, 5, 8069. [Google Scholar] [CrossRef]
- Yang, K.; Tian, Z.; Chen, C.; Luo, L.; Zhao, B.; Wang, Z.; Yu, L.; Li, Y.; Sun, Y.; Li, W.; et al. Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proc. Natl. Acad. Sci. USA 2015, 112, 13213–13218. [Google Scholar] [CrossRef]
- Lian, H.; Qin, C.; Zhao, Q.; Begum, N.; Zhang, S. Exogenous calcium promotes growth of adzuki bean (Vigna angularis Willd.) seedlings under nitrogen limitation through the regulation of nitrogen metabolism. Plant Physiol. Biochem. 2022, 190, 90–100. [Google Scholar] [CrossRef]
- Lou, H.Q.; Fan, W.; Jin, J.F.; Xu, J.M.; Chen, W.W.; Yang, J.L.; Zheng, S.J. A NAC-type transcription factor confers aluminum resistance by regulating cell wall-associated receptor kinase 1 and cell wall pectin. Plant Cell Environ. 2019, 43, 463–478. [Google Scholar] [CrossRef]
- Kamphuis, L.G.; Garg, G.; Foley, R.; Singh, K.B. Genomic resources for lupins are coming of age. Legum. Sci. 2021, 3, e77. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Q.; Yuan, W.; Xu, F.; Aslam, M.M.; Miao, R.; Li, Y.; Wang, Q.; Li, X.; Zhang, X.; et al. The genome evolution and low-phosphorus adaptation in white lupin. Nat. Commun. 2020, 11, 1069. [Google Scholar] [CrossRef]
- Książkiewicz, M.; Nazzicari, N.; Yang, H.; Nelson, M.N.; Renshaw, D.; Rychel-Bielska, S.; Ferrari, B.; Carelli, M.; Tomaszewska, M.; Stawiński, S.; et al. A high-density consensus linkage map of white lupin highlights synteny with narrow-leafed lupin and provides markers tagging key agronomic traits. Sci. Rep. 2017, 7, 15335. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, W.; Liu, B.; Zhan, Y.; Xia, T. Adaptation of high-efficiency CRISPR/Cas9-based multiplex genome editing system in white lupin by using endogenous promoters. Physiol. Plant 2023, 175, e13976. [Google Scholar] [CrossRef]
- Xia, T.; Zhu, X.; Zhan, Y.; Liu, B.; Zhou, X.; Zhang, Q.; Xu, W. The white lupin trehalase gene LaTRE1 regulates cluster root formation and function under phosphorus deficiency. Plant Physiol. 2024, 196, 2184–2198. [Google Scholar] [CrossRef]
- Mano, H.; Hasebe, M. Rapid movements in plants. J. Plant Res. 2021, 134, 3–17. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, C.H.; Wang, C.J.; Wan, J.Z. Complete chloroplast genome sequences of Mimosa diplotricha and Mimosa diplotricha var. inermis from China. Data Brief. 2023, 48, 109045. [Google Scholar] [CrossRef]
- Yang, X.; Qian, X.; Wang, Z. The complete chloroplast genome of Mimosa pudica and the phylogenetic analysis of mimosoid species. Mitochondrial DNA B Resour. 2018, 3, 1265–1266. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Y.; Xu, J.; Li, W.; Li, M. Characterization of the complete chloroplast genome sequence of Dalbergia species and its phylogenetic implications. Sci. Rep. 2019, 9, 20401. [Google Scholar] [CrossRef]
- Dasgupta, P.; Senthilkumar, S.; Barthwal, S.; Sasidharan, K.R.; Dasgupta, M.G. Characterization of the chloroplast genome of Dalbergia latifolia (Fabaceae) and its phylogenetic relationship with other Dalbergia species. Nord. J. Bot. 2023, 3, 811. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Heng, S.; Wang, Y. Complete chloroplast genome sequence of Dalbergia oliveri. Mitochondrial DNA B Resour. 2020, 5, 707–708. [Google Scholar] [CrossRef]
- Hong, Z.; He, W.; Liu, X.; Tembrock, L.R.; Wu, Z.; Xu, D.; Liao, X. Comparative Analyses of 35 Complete Chloroplast Genomes from the Genus Dalbergia (Fabaceae) and the Identification of DNA Barcodes for Tracking Illegal Logging and Counterfeit Rosewood. Forests 2022, 13, 626. [Google Scholar] [CrossRef]
- Ma, R.; Luo, J.; Wang, W.; Song, T.; Fu, Y. Function of the R2R3-MYB Transcription Factors in Dalbergia odorifera and Their Relationship with Heartwood Formation. Int. J. Mol. Sci. 2023, 24, 12430. [Google Scholar] [CrossRef]
- Zhao, W.; Meng, X.; Xu, J.; Liu, Z.; Hu, Y.; Li, B.; Chen, J.; Cao, B. Integrated mRNA and small RNA sequencing reveals microRNAs associated with xylem development in Glycyrrhiza uralensis. Front. Genet. 2022, 13, 883422. [Google Scholar] [CrossRef]
- Dang, H.; Zhang, T.; Li, Y.; Li, G.; Zhuang, L.; Pu, X. Population Evolution, Genetic Diversity and Structure of the Medicinal Legume, Glycyrrhiza uralensis and the Effects of Geographical Distribution on Leaves Nutrient Elements and Photosynthesis. Front Plant Sci. 2022, 12, 708709. [Google Scholar] [CrossRef]
- Kawasaki, A.; Chikugo, A.; Tamura, K.; Seki, H.; Muranaka, T. Characterization of UDP-glucose dehydrogenase isoforms in the medicinal legume Glycyrrhiza uralensis. Plant Biotechnol. 2021, 38, 205–218. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, C.; Sun, W.; Zhou, A.; Wang, Y.; Zhang, G.; Zhou, X.; Huo, Y.; Li, C. Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants. Metab. Eng. 2018, 45, 43–50. [Google Scholar] [CrossRef]
- Li, Y.; Xia, C.; Luo, M.; Huang, Y.; Xia, Z.; Li, Y.; Wang, Y. Comparative genomics of three medicinal Glycyrrhiza species unveiled novel candidates for the production of important bioactive compounds. Plant J. 2025, 122, e70223. [Google Scholar] [CrossRef]
- Kaur, S.; Cogan, N.O.; Pembleton, L.W.; Shinozuka, M.; Savin, K.W.; Materne, M.; Forster, J.W. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genom. 2011, 12, 265. [Google Scholar] [CrossRef]
- Gutierrez-Gonzalez, J.J.; García, P.; Polanco, C.; González, A.I.; Vaquero, F.; Vences, F.J.; de la Vega, M.P.; and de Miera, L.E.S. Multi-species transcriptome assemblies of cultivated and wild lentils (Lens sp.) provide a first glimpse at the lentil pangenome. Agronomy 2022, 12, 1619. [Google Scholar] [CrossRef]
- Bozkurt, A.; Kaymaz, Y.; Ateş, D.; Tanyolaç, M.B. The complete sequence of Lens tomentosus chloroplast genome. Acta Physiol. Plant. 2023, 46, 2. [Google Scholar] [CrossRef]
- Dissanayake, R.; Braich, S.; Cogan, N.O.I.; Smith, K.; Kaur, S. Characterization of Genetic and Allelic Diversity Amongst Cultivated and Wild Lentil Accessions for Germplasm Enhancement. Front. Genet. 2020, 11, 546. [Google Scholar] [CrossRef]
- Sohrabi, S.S.; Ismaili, A.; Nazarian-Firouzabadi, F.; Fallahi, H.; Hosseini, S.Z. Identification of key genes and molecular mechanisms associated with temperature stress in lentil. Gene 2022, 807, 145952. [Google Scholar] [CrossRef]
- Balech, R.; Maalouf, F.; Kaur, S.; Jighly, A.; Joukhadar, R.; Alsamman, A.M.; Hamwieh, A.; Khater, L.A.; Rubiales, D.; Kumar, S. Identification of novel genes associated with herbicide tolerance in Lentil (Lens culinaris ssp. culinaris Medik.). Sci. Rep. 2024, 14, 10215. [Google Scholar] [CrossRef]
- Shivaprasad, K.M.; Dikshit, H.K.; Mishra, G.P.; Sinha, S.K.; Aski, M.; Kohli, M.; Mishra, D.C.; Singh, A.K.; Gupta, S.; Singh, A.; et al. Delineation of loci governing an extra-earliness trait in lentil (Lens culinaris Medik.) using the QTL-Seq approach. Plant Biotechnol. J. 2024, 22, 2932–2949. [Google Scholar] [CrossRef]
- Gebremedhin, A.; Li, Y.; Shunmugam, A.S.K.; Sudheesh, S.; Valipour-Kahrood, H.; Hayden, M.J.; Rosewarne, G.M.; Kaur, S. Genomic selection for target traits in the Australian lentil breeding program. Front. Plant Sci. 2024, 14, 1284781. [Google Scholar] [CrossRef]
- Basso, M.F.; Girardin, G.; Vergata, C.; Buti, M.; Martinelli, F. Genome-wide transcript expression analysis reveals major chickpea and lentil genes associated with plant branching. Front. Plant Sci. 2024, 15, 1384237. [Google Scholar] [CrossRef]
- Kaila, T.; Chaduvla, P.K.; Saxena, S.; Bahadur, K.; Gahukar, S.J.; Chaudhury, A.; Sharma, T.R.; Singh, N.K.; Gaikwad, K. Chloroplast genome sequence of pigeonpea (Cajanus cajan) and its comparison with other legumes. Front. Plant Sci. 2016, 7, 1847. [Google Scholar] [CrossRef]
- Singh, S.; Kudapa, H.; Garg, V.; Varshney, R.K. Comprehensive analysis and identification of drought-responsive candidate NAC genes in three semi-arid tropics (SAT) legume crops. BMC Genom. 2021, 22, 289. [Google Scholar] [CrossRef]
- Serra-Picó, M.; Hecht, V.; Weller, J.L.; Benlloch, R.; Madueño, F. Identification and characterization of putative targets of VEGETATIVE1/FULc, a key regulator of development of the compound inflorescence in pea and related legumes. Front. Plant Sci. 2022, 13, 765095. [Google Scholar] [CrossRef]
- Thorpe, P.; Altmann, S.; Lopez-Cobollo, R.; Douglas, N.; Iqbal, J.; Kanvil, S.; Simon, J.-C.; Carolan, J.C.; Bos, J.; Turnbull, C. Multi-omics approaches define novel aphid effector candidates associated with virulence and avirulence phenotypes. BMC Genom. 2024, 25, 1065. [Google Scholar] [CrossRef]
- Jha, U.C.; Nayyar, H.; Parida, S.K.; Beena, R.; Pang, J.; Siddique, K.H. Breeding and genomics approaches for improving phosphorus-use efficiency in grain legumes. Environ. Exp. Bot. 2023, 205, 105120. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Wang, H.; Zhu, X.; Li, Y.; Zhang, B.; Tadege, M.; Wu, S.; Qi, Z.; Xia, Z. Functional Genomics: From Soybean to Legume. Int. J. Mol. Sci. 2025, 26, 6323. https://doi.org/10.3390/ijms26136323
Zhou C, Wang H, Zhu X, Li Y, Zhang B, Tadege M, Wu S, Qi Z, Xia Z. Functional Genomics: From Soybean to Legume. International Journal of Molecular Sciences. 2025; 26(13):6323. https://doi.org/10.3390/ijms26136323
Chicago/Turabian StyleZhou, Can, Haiyan Wang, Xiaobin Zhu, Yuqiu Li, Bo Zhang, Million Tadege, Shihao Wu, Zhaoming Qi, and Zhengjun Xia. 2025. "Functional Genomics: From Soybean to Legume" International Journal of Molecular Sciences 26, no. 13: 6323. https://doi.org/10.3390/ijms26136323
APA StyleZhou, C., Wang, H., Zhu, X., Li, Y., Zhang, B., Tadege, M., Wu, S., Qi, Z., & Xia, Z. (2025). Functional Genomics: From Soybean to Legume. International Journal of Molecular Sciences, 26(13), 6323. https://doi.org/10.3390/ijms26136323