Novel Genetic Variants Associated with Diabetic Neuropathy Risk in Type 2 Diabetes: A Whole-Exome Sequencing Approach
Abstract
1. Introduction
2. Results
3. Discussion
3.1. rs922984, rs2291313, and rs4471922 SNPs of Titin Gene
3.2. rs6086563 SNP of Phospholipase C-Beta 1 Gene
3.3. rs4241602 SNP of Cyclin I Gene
3.4. rs2396295 and rs892204 SNPs of Cell Division Cycle 34 Gene
3.5. rs6682221 SNP of Anti-Proliferation Factor 2 Gene
4. Materials and Methods
4.1. Patient Selection
4.2. Neurological Assessment
4.3. Genetic Analysis
4.3.1. DNA Isolation
4.3.2. Whole-Exome Sequencing (WES)
4.4. Bioinformatic and Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ismail-Beigi, F.; Craven, T.; Banerji, M.A.; Basile, J.; Calles, J.; Cohen, R.M.; Cuddihy, R.; Cushman, W.C.; Genuth, S.; Grimm, R.H., Jr.; et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: An analysis of the ACCORD randomised trial. Lancet 2010, 376, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Dyck, P.J.; Kratz, K.M.; Karnes, J.L.; Litchy, W.J.; Klein, R.; Pach, J.M.; Wilson, D.M.; O’Brien, P.C.; Melton, L.J., 3rd; Service, F.J. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: The Rochester Diabetic Neuropathy Study. Neurology 1993, 43, 817–824. [Google Scholar] [CrossRef]
- Boulton, A.J.; Malik, R.A.; Arezzo, J.C.; Sosenko, J.M. Diabetic somatic neuropathies. Diabetes Care 2004, 27, 1458–1486. [Google Scholar] [CrossRef]
- Vági, O.E.; Svebis, M.M.; Domjan, B.A.; Korei, A.E.; Tesfaye, S.; Horvath, V.J.; Kempler, P.; Tabak, A.G. The association between distal symmetric polyneuropathy in diabetes with all-cause mortality—A meta-analysis. Front. Endocrinol. 2023, 14, 1079009. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, S.; Boulton, A.J.; Dyck, P.J.; Freeman, R.; Horowitz, M.; Kempler, P.; Lauria, G.; Malik, R.A.; Spallone, V.; Vinik, A.; et al. Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010, 33, 2285–2293. [Google Scholar] [CrossRef]
- Boulton, A.J. End-stage complications of diabetic neuropathy: Foot ulceration. Can. J. Neurol. Sci. 1994, 21, S18–S22; discussion S15–S23. [Google Scholar] [CrossRef] [PubMed]
- Dutsch, M.; Hilz, M.J.; Neundorfer, B. Diabetic autonomic neuropathy. Fortschr. Neurol. Psychiatr. 2001, 69, 423–438. [Google Scholar] [CrossRef]
- Vinik, A.I.; Maser, R.E.; Mitchell, B.D.; Freeman, R. Diabetic autonomic neuropathy. Diabetes Care 2003, 26, 1553–1579. [Google Scholar] [CrossRef]
- Maser, R.E.; Mitchell, B.D.; Vinik, A.I.; Freeman, R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: A meta-analysis. Diabetes Care 2003, 26, 1895–1901. [Google Scholar] [CrossRef]
- Vági, O.E.; Svebis, M.M.; Domjan, B.A.; Korei, A.E.; Istenes, I.; Putz, Z.; Meszaros, S.; Hajdu, N.; Bekeffy, M.; Tesfaye, S.; et al. Association of Cardiovascular Autonomic Neuropathy and Distal Symmetric Polyneuropathy with All-Cause Mortality: A Retrospective Cohort Study. J. Diabetes Res. 2021, 2021, 6662159. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Boulton, A.J.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 136–154. [Google Scholar] [CrossRef] [PubMed]
- Stratton, I.M.; Adler, A.I.; Neil, H.A.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ 2000, 321, 405–412. [Google Scholar] [CrossRef]
- Tordai, D.Z.; Hajdu, N.; Racz, R.; Istenes, I.; Bekeffy, M.; Vagi, O.E.; Kempler, M.; Korei, A.E.; Tobias, B.; Illes, A.; et al. Genetic Factors Associated with the Development of Neuropathy in Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 1815. [Google Scholar] [CrossRef] [PubMed]
- Phan, L.J.; Jin, Y.; Zhang, H.; Qiang, W.; Shekhtman, E.; Shao, D.; Revoe, D.; Villamarin, R.; Ivanchenko, E.; Kimura, M.; et al. ALFA: Allele Frequency Aggregator; National Center for Biotechnology Information, U.S. National Library of Medicine: Bethesda, MD, USA, 2020. [Google Scholar]
- Savarese, M.; Sarparanta, J.; Vihola, A.; Udd, B.; Hackman, P. Increasing Role of Titin Mutations in Neuromuscular Disorders. J. Neuromuscul. Dis. 2016, 3, 293–308. [Google Scholar] [CrossRef]
- Nishikawa, K.; Dutta, S.; DuVall, M.; Nelson, B.; Gage, M.J.; Monroy, J.A. Calcium-dependent titin-thin filament interactions in muscle: Observations and theory. J. Muscle Res. Cell Motil. 2020, 41, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yin, Z.; Tan, B.; Guo, W. Insulin regulates titin pre-mRNA splicing through the PI3K-Akt-mTOR kinase axis in a RBM20-dependent manner. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 2363–2371. [Google Scholar] [CrossRef]
- Guo, W.; Schafer, S.; Greaser, M.L.; Radke, M.H.; Liss, M.; Govindarajan, T.; Maatz, H.; Schulz, H.; Li, S.; Parrish, A.M.; et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat. Med. 2012, 18, 766–773. [Google Scholar] [CrossRef]
- Mira Hernandez, J.; Shen, E.Y.; Ko, C.Y.; Hourani, Z.; Spencer, E.R.; Smoliarchuk, D.; Bossuyt, J.; Granzier, H.; Bers, D.M.; Hegyi, B. Differential sex-dependent susceptibility to diastolic dysfunction and arrhythmia in cardiomyocytes from obese diabetic heart failure with preserved ejection fraction model. Cardiovasc Res. 2025, 121, 254–266. [Google Scholar] [CrossRef]
- Refaat, M.M.; Lubitz, S.A.; Makino, S.; Islam, Z.; Frangiskakis, J.M.; Mehdi, H.; Gutmann, R.; Zhang, M.L.; Bloom, H.L.; MacRae, C.A.; et al. Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm. 2012, 9, 390–396. [Google Scholar] [CrossRef]
- Krüger, M.; Babicz, K.; von Frieling-Salewsky, M.; Linke, W.A. Insulin signaling regulates cardiac titin properties in heart development and diabetic cardiomyopathy. J. Mol. Cell Cardiol. 2010, 48, 910–916. [Google Scholar] [CrossRef]
- Tabak, A.G.; Jokela, M.; Akbaraly, T.N.; Brunner, E.J.; Kivimaki, M.; Witte, D.R. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: An analysis from the Whitehall II study. Lancet 2009, 373, 2215–2221. [Google Scholar] [CrossRef] [PubMed]
- Rachdaoui, N. Insulin: The Friend and the Foe in the Development of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 1770. [Google Scholar] [CrossRef]
- Dillmann, W.H. Diabetic Cardiomyopathy. Circ. Res. 2019, 124, 1160–1162. [Google Scholar] [CrossRef] [PubMed]
- Dimitropoulos, G.; Tahrani, A.A.; Stevens, M.J. Cardiac autonomic neuropathy in patients with diabetes mellitus. World J. Diabetes 2014, 5, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, B.; Christensen, N.J. Norepinephrine, epinephrine, and dopamine contents of the cardiovascular system in long-term diabetics. Diabetes 1976, 25, 6–10. [Google Scholar] [CrossRef]
- Vanninen, E.; Mustonen, J.; Vainio, P.; Lansimies, E.; Uusitupa, M. Left ventricular function and dimensions in newly diagnosed non-insulin-dependent diabetes mellitus. Am. J. Cardiol. 1992, 70, 371–378. [Google Scholar] [CrossRef]
- Lenzen, M.J.; Scholte op Reimer, W.J.; Boersma, E.; Vantrimpont, P.J.; Follath, F.; Swedberg, K.; Cleland, J.; Komajda, M. Differences between patients with a preserved and a depressed left ventricular function: A report from the EuroHeart Failure Survey. Eur. Heart J. 2004, 25, 1214–1220. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Low, P.A.; Waberski, B.H.; Martin, C.L.; Albers, J.W.; Feldman, E.L.; Sommer, C.; Cleary, P.A.; Lachin, J.M.; Herman, W.H.; et al. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation 2009, 119, 2886–2893. [Google Scholar] [CrossRef]
- Jin, J.; Wang, W.; Zhu, L.; Gu, T.; Niu, Q.; Li, P.; Bi, Y.; Zhu, D. Cardiovascular Autonomic Neuropathy Is an Independent Risk Factor for Left Ventricular Diastolic Dysfunction in Patients with Type 2 Diabetes. Biomed. Res. Int. 2017, 2017, 3270617. [Google Scholar] [CrossRef]
- Caricasole, A.; Sala, C.; Roncarati, R.; Formenti, E.; Terstappen, G.C. Cloning and characterization of the human phosphoinositide-specific phospholipase C-beta 1 (PLC beta 1). Biochim Biophys Acta 2000, 1517, 63–72. [Google Scholar] [CrossRef]
- Pacheco, M.A.; Jope, R.S. Phosphoinositide signaling in human brain. Prog. Neurobiol. 1996, 50, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Schoonjans, A.S.; Meuwissen, M.; Reyniers, E.; Kooy, F.; Ceulemans, B. PLCB1 epileptic encephalopathies; Review and expansion of the phenotypic spectrum. Eur. J. Paediatr. Neurol. 2016, 20, 474–479. [Google Scholar] [CrossRef]
- Croze, M.L.; Soulage, C.O. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie 2013, 95, 1811–1827. [Google Scholar] [CrossRef]
- Contreras, A.; Jones, M.K.; Eldon, E.D.; Klig, L.S. Inositol in Disease and Development: Roles of Catabolism via myo-Inositol Oxygenase in Drosophila melanogaster. Int. J. Mol. Sci. 2023, 24, 4185. [Google Scholar] [CrossRef] [PubMed]
- Arner, R.J.; Prabhu, K.S.; Krishnan, V.; Johnson, M.C.; Reddy, C.C. Expression of myo-inositol oxygenase in tissues susceptible to diabetic complications. Biochem. Biophys. Res. Commun. 2006, 339, 816–820. [Google Scholar] [CrossRef]
- Sima, A.A.; Dunlap, J.A.; Davidson, E.P.; Wiese, T.J.; Lightle, R.L.; Greene, D.A.; Yorek, M.A. Supplemental myo-inositol prevents L-fucose-induced diabetic neuropathy. Diabetes 1997, 46, 301–306. [Google Scholar] [CrossRef]
- Brinkkoetter, P.T.; Olivier, P.; Wu, J.S.; Henderson, S.; Krofft, R.D.; Pippin, J.W.; Hockenbery, D.; Roberts, J.M.; Shankland, S.J. Cyclin I activates Cdk5 and regulates expression of Bcl-2 and Bcl-XL in postmitotic mouse cells. J. Clin. Investig. 2009, 119, 3089–3101. [Google Scholar] [CrossRef] [PubMed]
- Weishaupt, J.H.; Neusch, C.; Bahr, M. Cyclin-dependent kinase 5 (CDK5) and neuronal cell death. Cell Tissue Res. 2003, 312, 1–8. [Google Scholar] [CrossRef]
- Ao, C.; Li, C.; Chen, J.; Tan, J.; Zeng, L. The role of Cdk5 in neurological disorders. Front. Cell Neurosci. 2022, 16, 951202. [Google Scholar] [CrossRef]
- Hu, M.; Doyle, A.D.; Yamada, K.M.; Kulkarni, A.B. Visualization of trigeminal ganglion sensory neuronal signaling regulated by Cdk5. Cell Rep. 2022, 38, 110458. [Google Scholar] [CrossRef]
- Sidney, L.E.; Branch, M.J.; Dunphy, S.E.; Dua, H.S.; Hopkinson, A. Concise review: Evidence for CD34 as a common marker for diverse progenitors. Stem Cells 2014, 32, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Holyoake, T.L.; Alcorn, M.J. CD34+ positive haemopoietic cells: Biology and clinical applications. Blood Rev. 1994, 8, 113–124. [Google Scholar] [CrossRef]
- Radu, P.; Zurzu, M.; Paic, V.; Bratucu, M.; Garofil, D.; Tigora, A.; Georgescu, V.; Prunoiu, V.; Pasnicu, C.; Popa, F.; et al. CD34-Structure, Functions and Relationship with Cancer Stem Cells. Medicina 2023, 59, 938. [Google Scholar] [CrossRef]
- Fadini, G.P.; Losordo, D.; Dimmeler, S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ. Res. 2012, 110, 624–637. [Google Scholar] [CrossRef] [PubMed]
- Ingram, D.A.; Krier, T.R.; Mead, L.E.; McGuire, C.; Prater, D.N.; Bhavsar, J.; Saadatzadeh, M.R.; Bijangi-Vishehsaraei, K.; Li, F.; Yoder, M.C.; et al. Clonogenic endothelial progenitor cells are sensitive to oxidative stress. Stem Cells 2007, 25, 297–304. [Google Scholar] [CrossRef]
- Fadini, G.P.; Sartore, S.; Agostini, C.; Avogaro, A. Significance of endothelial progenitor cells in subjects with diabetes. Diabetes Care 2007, 30, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Krankel, N.; Adams, V.; Linke, A.; Gielen, S.; Erbs, S.; Lenk, K.; Schuler, G.; Hambrecht, R. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 698–703. [Google Scholar] [CrossRef]
- Gadau, S.; Emanueli, C.; Van Linthout, S.; Graiani, G.; Todaro, M.; Meloni, M.; Campesi, I.; Invernici, G.; Spillmann, F.; Ward, K.; et al. Benfotiamine accelerates the healing of ischaemic diabetic limbs in mice through protein kinase B/Akt-mediated potentiation of angiogenesis and inhibition of apoptosis. Diabetologia 2006, 49, 405–420. [Google Scholar] [CrossRef]
- Marchetti, V.; Menghini, R.; Rizza, S.; Vivanti, A.; Feccia, T.; Lauro, D.; Fukamizu, A.; Lauro, R.; Federici, M. Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling. Diabetes 2006, 55, 2231–2237. [Google Scholar] [CrossRef]
- Tirone, F. The gene PC3(TIS21/BTG2), prototype member of the PC3/BTG/TOB family: Regulator in control of cell growth, differentiation, and DNA repair? J. Cell Physiol. 2001, 187, 155–165. [Google Scholar] [CrossRef]
- Farioli-Vecchioli, S.; Saraulli, D.; Costanzi, M.; Leonardi, L.; Cina, I.; Micheli, L.; Nutini, M.; Longone, P.; Oh, S.P.; Cestari, V.; et al. Impaired terminal differentiation of hippocampal granule neurons and defective contextual memory in PC3/Tis21 knockout mice. PLoS ONE 2009, 4, e8339. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, G.; Tan, X.; Qu, L.; Zhang, C.; Ma, L.; Luo, P.; Cao, X.; Yang, F.; Liu, Y.; et al. ID1/ID3 mediate the contribution of skin fibroblasts to local nerve regeneration through Itga6 in wound repair. Stem Cells Transl. Med. 2021, 10, 1637–1649. [Google Scholar] [CrossRef] [PubMed]
- Pitei, D.L.; Watkins, P.J.; Stevens, M.J.; Edmonds, M.E. The value of the Neurometer in assessing diabetic neuropathy by measurement of the current perception threshold. Diabet. Med. 1994, 11, 872–876. [Google Scholar] [CrossRef]
- Masson, E.A.; Veves, A.; Fernando, D.; Boulton, A.J. Current perception thresholds: A new, quick, and reproducible method for the assessment of peripheral neuropathy in diabetes mellitus. Diabetologia 1989, 32, 724–728. [Google Scholar] [CrossRef]
- Putz, Z.; Tabak, A.G.; Toth, N.; Istenes, I.; Nemeth, N.; Gandhi, R.A.; Hermanyi, Z.; Keresztes, K.; Jermendy, G.; Tesfaye, S.; et al. Noninvasive evaluation of neural impairment in subjects with impaired glucose tolerance. Diabetes Care 2009, 32, 181–183. [Google Scholar] [CrossRef]
- Evans, E.R.; Rendell, M.S.; Bartek, J.P.; Bamisedun, O.; Connor, S.; Giitter, M. Current perception thresholds in ageing. Age Ageing 1992, 21, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Bastyr, E.J., 3rd; Price, K.L.; Bril, V.; Group, M.S. Development and validity testing of the neuropathy total symptom score-6: Questionnaire for the study of sensory symptoms of diabetic peripheral neuropathy. Clin. Ther. 2005, 27, 1278–1294. [Google Scholar] [CrossRef] [PubMed]
- Spallone, V.; Ziegler, D.; Freeman, R.; Bernardi, L.; Frontoni, S.; Pop-Busui, R.; Stevens, M.; Kempler, P.; Hilsted, J.; Tesfaye, S.; et al. Cardiovascular autonomic neuropathy in diabetes: Clinical impact, assessment, diagnosis, and management. Diabetes Metab. Res. Rev. 2011, 27, 639–653. [Google Scholar] [CrossRef]
- Ewing, D.J.; Martyn, C.N.; Young, R.J.; Clarke, B.F. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 1985, 8, 491–498. [Google Scholar] [CrossRef]
- Cingolani, P.; Patel, V.M.; Coon, M.; Nguyen, T.; Land, S.J.; Ruden, D.M.; Lu, X. Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front. Genet. 2012, 3, 35. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Marees, A.T.; de Kluiver, H.; Stringer, S.; Vorspan, F.; Curis, E.; Marie-Claire, C.; Derks, E.M. A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 2018, 27, e1608. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Gogarten, S.M.; Sofer, T.; Chen, H.; Yu, C.; Brody, J.A.; Thornton, T.A.; Rice, K.M.; Conomos, M.P. Genetic association testing using the GENESIS R/Bioconductor package. Bioinformatics 2019, 35, 5346–5348. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Levine, D.; Shen, J.; Gogarten, S.M.; Laurie, C.; Weir, B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 2012, 28, 3326–3328. [Google Scholar] [CrossRef]
- Turner, S.D. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. Biorxiv 2014. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. 2015. Available online: https://ggplot2.tidyverse.org (accessed on 28 May 2025).
T2DM with Neuropathy (n = 24) | T2DM Without Neuropathy (n = 24) | ||||
---|---|---|---|---|---|
Average | ±SD | Average | ±SD | p Value | |
Age (years) | 66.5 | 9.27 | 56.2 | 10.8 | 0.0012 |
Body mass (kg) | 93.8 | 15.8 | 86.8 | 17.4 | 0.1009 |
Body height (cm) | 172.5 | 9.9 | 170.0 | 10.5 | 0.4030 |
BMI (kg/m2) | 31.5 | 5.00 | 30.0 | 5.2 | 0.1670 |
Systolic blood pressure (Hgmm) | 137.7 | 15.7 | 134.0 | 12.2 | 0.3842 |
Diastolic blood pressure (Hgmm) | 71.3 | 7.1 | 75.0 | 9.1 | 0.1718 |
Duration of diabetes (years) | 10.3 | 6.2 | 13.2 | 7.5 | 0.1322 |
Sex (male/female) | 17/7 | 13/11 | |||
Fasting blood sugar (mmol/L) | 8.92 | 2.81 | 8.97 | 3.18 | 0.9912 |
HbA1c (%) | 7.49 | 1.09 | 7.04 | 1.00 | 0.1376 |
Cholesterol (mmol/L) | 4.80 | 0.88 | 5.05 | 1.23 | 0.5596 |
LDL cholesterol (mmol/L) | 2.91 | 0.82 | 3.2 | 0.94 | 0.4480 |
HDL cholesterol (mmol/L) | 1.26 | 0.36 | 1.17 | 0.29 | 0.6441 |
Triglyceride (mmol/L) | 1.85 | 0.88 | 2.53 | 1.73 | 0.3065 |
Variant ID | Reference/ Alternative Allele | Position | Gene | Reference Allele Frequency (MAF) of European Population * | Logistic Regression Estimate (β) | Logistic Regression Estimate (β) Standard Error | OR for Reference Allele | p Value |
---|---|---|---|---|---|---|---|---|
rs922984 | T/C | chr2:178751160 (GRCh38.p14) | TTN | 0.070 | 3.248 | 0.989 | 26.69 | 0.001 |
rs2291313 | T/C | chr2:178767983 (GRCh38.p14) | TTN | 0.202 | 2.304 | 0.738 | 22.65 | 0.002 |
rs4471922 | G/T | chr2:178768571 (GRCh38.p14) | TTN | 0.205 | 2.304 | 0.738 | 22.65 | 0.002 |
rs6086563 | C/G | chr20:8722498 (GRCh38.p14) | PLCB1 | 0.243 | 2.787 | 0.855 | 25.99 | 0.001 |
rs4241602 | A/G | chr4:77066198 (GRCh38.p14) | CCNI | 0.081 | 4.020 | 1.264 | 24.01 | 0.001 |
rs2396295 | A/G | chr19:536437 (GRCh38.p14) | CDC34 | 0.088 | 3.213 | 0.996 | 25.16 | 0.001 |
rs892204 | G/A | chr19:536900 (GRCh38.p14) | CDC34 | 0.081 | 3.213 | 0.996 | 25.16 | 0.001 |
rs6682221 | C/A | chr1:203305408 (GRCh38.p14) | BTG2 | 0.099 | −2.761 | 0.893 | 0.045 | 0.002 |
Current Perception Threshold (Frequency) | Nervus Medianus (Normal Range in mm/s) | Nervus Peroneus (Normal Range in mm/s) |
---|---|---|
2000 Hz | 120–398 | 179–523 |
250 Hz | 22–189 | 44–208 |
5 Hz | 16–101 | 18–170 |
Method | Tested Parameter | Normal Value | Borderline Value | Abnormal Value |
---|---|---|---|---|
Tests for the investigation of parasympathetic functions | ||||
Deep breathing test | Beat-to-beat variation (beats/min) | ≥15 | 11–14 | ≤10 |
Valsalva maneuver | Valsalva ratio | ≥1.21 | 1.11–1.2 | ≤1.1 |
Heart-rate response to standing | 30/15 ratio | ≥1.04 | 1.01–1.03 | ≤1.0 |
Tests for the investigation of sympathetic functions | ||||
Blood pressure (BP) response to standing | Reduction in systolic BP (mmHg) | ≤10 | 11–29 | ≥30 |
Handgrip test | Increase in diastolic BP (mmHg) | ≥16 | 11–15 | ≤10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajdú, N.; Tordai, D.Z.; Rácz, R.; Ludvig, Z.; Istenes, I.; Békeffy, M.; Vági, O.E.; Körei, A.E.; Tóbiás, B.; Illés, A.; et al. Novel Genetic Variants Associated with Diabetic Neuropathy Risk in Type 2 Diabetes: A Whole-Exome Sequencing Approach. Int. J. Mol. Sci. 2025, 26, 6239. https://doi.org/10.3390/ijms26136239
Hajdú N, Tordai DZ, Rácz R, Ludvig Z, Istenes I, Békeffy M, Vági OE, Körei AE, Tóbiás B, Illés A, et al. Novel Genetic Variants Associated with Diabetic Neuropathy Risk in Type 2 Diabetes: A Whole-Exome Sequencing Approach. International Journal of Molecular Sciences. 2025; 26(13):6239. https://doi.org/10.3390/ijms26136239
Chicago/Turabian StyleHajdú, Noémi, Dóra Zsuzsanna Tordai, Ramóna Rácz, Zsófia Ludvig, Ildikó Istenes, Magdolna Békeffy, Orsolya Erzsébet Vági, Anna Erzsébet Körei, Bálint Tóbiás, Anett Illés, and et al. 2025. "Novel Genetic Variants Associated with Diabetic Neuropathy Risk in Type 2 Diabetes: A Whole-Exome Sequencing Approach" International Journal of Molecular Sciences 26, no. 13: 6239. https://doi.org/10.3390/ijms26136239
APA StyleHajdú, N., Tordai, D. Z., Rácz, R., Ludvig, Z., Istenes, I., Békeffy, M., Vági, O. E., Körei, A. E., Tóbiás, B., Illés, A., Pikó, H., Kósa, J. P., Árvai, K., Lakatos, P. A., Kempler, P., & Putz, Z. (2025). Novel Genetic Variants Associated with Diabetic Neuropathy Risk in Type 2 Diabetes: A Whole-Exome Sequencing Approach. International Journal of Molecular Sciences, 26(13), 6239. https://doi.org/10.3390/ijms26136239