Furosemide Promotes Inflammatory Activation and Myocardial Fibrosis in Swine with Tachycardia-Induced Heart Failure
Abstract
1. Introduction
2. Results
2.1. Upregulated Mitogen-Activated Protein Kinase (MAPK) Signaling Proteins in Furosemide Administration
2.2. Elevated TGF β and Its Downstream Signaling Seen in Furosemide Treatment
2.3. Growth Factor Biomarkers in the ECM Remodeling
2.4. Level of Matrix Metalloproteinases During ECM Remodeling
2.5. Histology of Collagen Deposition During ECM Remodeling
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Sample Preparation and Protein Analysis by Western Blot
4.3. Enzyme-Linked Immunosorbent Assay (ELISA)
4.4. Histological Preparation
4.5. Fluorescent Immunohistochemistry (ICH) from Frozen Tissue
4.6. Statistical Analysis
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimers
Abbreviations
Abbreviation | Meaning |
BCA | Bicinchoninic acid assay |
BNP | B-type natriuretic peptide |
CTGF | Connective tissue growth factor |
DAPI | 4′,6-diamidino-2-phenylindole |
ECM | Extracellular matrix |
EDTA | Ethylenediaminetetraacetic acid |
ELISA | Enzyme-linked immunosorbent assay |
ERKs | Extracellular signal-regulated kinases |
ET-1 | Endothelin-1 |
GDF-15 | Growth differentiation factor-15 |
HF | Heart failure |
HRP | Horseradish peroxidase |
HSD | Honestly significant difference |
IDL | Interactive data language |
IHC | Immunohistochemistry |
JNKs | c-Jun Nh2-terminal kinases |
LV | Left ventricular |
MAPK | Mitogen-activated protein kinase |
MEK | Mitogen-activated extracellular signal-regulated kinase |
mM | Millimolar |
MMP | Matrix metalloproteinases |
NIH | National Institutes of Health |
PAI-1 | Plasminogen activator inhibitor type 1 |
PBS | Phosphate-buffered saline |
RAAS | Renin-angiotensin-aldosterone system |
Raf | Rapidly accelerated fibrosarcoma |
Ras | Rat sarcoma protein |
SEM | Standard error of the mean |
Smad | Suppressor of mother against decapentaplegic |
SNKs | Stress-activated protein kinases |
TGF-β | Transforming growth factor-beta |
TIMP | Tissue inhibitor of matrix metalloproteinases |
WB | Western blot |
References
- Somasekharan, S.; Tanis, J.; Forbush, B. Loop diuretic and ion-binding residues revealed by scanning mutagenesis of transmembrane helix 3 (TM3) of Na-K-Cl cotransporter (NKCC1). J. Biol. Chem. 2012, 287, 17308–17317. [Google Scholar] [CrossRef] [PubMed]
- Palmer, L.G.; Schnermann, J. Integrated Control of Na Transport along the Nephron. Clin. J. Am. Soc. Nephrol. 2015, 10, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E., Jr.; Colvin, M.M.; Drazner, M.H.; Filippatos, G.S.; Fonarow, G.C.; Givertz, M.M.; et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol. 2017, 70, 776–803. [Google Scholar] [CrossRef] [PubMed]
- Domanski, M.; Norman, J.; Pitt, B.; Haigney, M.; Hanlon, S.; Peyster, E. Studies of Left Ventricular Dysfunction. Diuretic use, progressive heart failure, and death in patients in the Studies Of Left Ventricular Dysfunction (SOLVD). J. Am. Coll. Cardiol. 2003, 42, 705–708. [Google Scholar] [CrossRef]
- Domanski, M.; Tian, X.; Haigney, M.; Pitt, B. Diuretic use, progressive heart failure, and death in patients in the DIG study. J. Card. Fail. 2006, 12, 327–332. [Google Scholar] [CrossRef]
- Kong, P.; Christia, P.; Frangogiannis, N.G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci. 2014, 71, 549–574. [Google Scholar] [CrossRef]
- Khalil, H.; Kanisicak, O.; Prasad, V.; Correll, R.N.; Fu, X.; Schips, T.; Vagnozzi, R.J.; Liu, R.; Huynh, T.; Lee, S.-J.; et al. Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Investig. 2017, 127, 3770–3783. [Google Scholar] [CrossRef] [PubMed]
- Desmoulière, A.; Geinoz, A.; Gabbiani, F.; Gabbiani, G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 1993, 122, 103–111. [Google Scholar] [CrossRef]
- Schiller, M.; Javelaud, D.; Mauviel, A. TGF-β-induced SMAD signaling and gene regulation: Consequences for extracellular matrix remodeling and wound healing. J. Dermatol. Sci. 2004, 35, 83–92. [Google Scholar] [CrossRef]
- Shi, Y.; Massagué, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003, 113, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Tarbit, E.; Singh, I.; Peart, J.N.; Rose’meyer, R.B. Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Hear. Fail. Rev. 2018, 24, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Brooks, W.W.; Conrad, C.H. Myocardial fibrosis in transforming growth factor beta(1)heterozygous mice. J. Mol. Cell. Cardiol. 2000, 32, 187–195. [Google Scholar] [CrossRef] [PubMed]
- McCurley, J.M.; Hanlon, S.U.; Wei, S.-K.; Wedam, E.F.; Michalski, M.; Haigney, M.C. Furosemide and the progression of left ventricular dysfunction in experimental heart failure. J. Am. Coll. Cardiol. 2004, 44, 1301–1307. [Google Scholar] [CrossRef]
- Weber, K.T. Cardiac interstitium in health and disease: The fibrillar collagen network. J. Am. Coll. Cardiol. 1989, 13, 1637–1652. [Google Scholar] [CrossRef]
- Haq, S.; Choukroun, G.; Lim, H.; Tymitz, K.M.; del Monte, F.; Gwathmey, J.; Grazette, L.; Michael, A.; Hajjar, R.; Force, T.; et al. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 2001, 103, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Vita, J.; Ruiz-Ortega, M.; Rupérez, M.; Esteban, V.; Sanchez-López, E.; Plaza, J.J.; Egido, J. Endothelin-1, via ETA receptor and independently of transforming growth factor-beta, increases the connective tissue growth factor in vascular smooth muscle cells. Circ. Res. 2005, 97, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Lacolley, P.; Labat, C.; Pujol, A.; Delcayre, C.; Benetos, A.; Safar, M. Increased carotid wall elastic modulus and fibronectin in aldosterone-salt-treated rats: Effects of eplerenone. Circulation 2002, 106, 2848–2853. [Google Scholar] [CrossRef]
- Veeraveedu, P.T.; Watanabe, K.; Ma, M.; Thandavarayan, R.A.; Palaniyandi, S.S.; Yamaguchi, K.; Suzuki, K.; Kodama, M.; Aizawa, Y. Comparative effects of torasemide and furosemide in rats with heart failure. Biochem. Pharmacol. 2008, 75, 649–659. [Google Scholar] [CrossRef]
- Balsam, P.; Ozierański, K.; Marchel, M.; Gawałko, M.; Niedziela, Ł.; Tymińska, A.; Sieradzki, B.; Sieradzki, M.; Fojt, A.; Bakuła, E.; et al. Comparative effectiveness of torasemide versus furosemide in symptomatic therapy in heart failure patients: Preliminary results from the randomized TORNADO trial. Cardiol. J. 2020, 26, 661–668. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamazaki, T.; Izumi, Y.; Nakamura, Y.; Yamashita, N.; Fujiki, H.; Osada-Oka, M.; Shiota, M.; Hanatani, A.; Shimada, K.; Iwao, H.; et al. Tolvaptan improves left ventricular dysfunction after myocardial infarction in rats. Circ. Hear. Fail. 2012, 5, 794–802. [Google Scholar] [CrossRef] [PubMed]
- Okamura, A.; Rakugi, H.; Ohishi, M.; Yanagitani, Y.; Takiuchi, S.; Moriguchi, K.; Fennessy, P.A.; Higaki, J.; Ogihara, T. Upregulation of renin-angiotensin system during differentiation of monocytes to macrophages. J. Hypertens. 1999, 17, 537–545. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, E.; Pecoraro, M.; Rusciano, M.R.; Ciccarelli, M.; Popolo, A. Cross-Talk between Neurohormonal Pathways and the Immune System in Heart Failure: A Review of the Literature. Int. J. Mol. Sci. 2019, 20, 1698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hara, A.; Niwa, M.; Kanayama, T.; Noguchi, K.; Niwa, A.; Matsuo, M.; Kuroda, T.; Hatano, Y.; Okada, H.; Tomita, H. Galectin-3: A Potential Prognostic and Diagnostic Marker for Heart Disease and Detection of Early Stage Pathology. Biomolecules 2020, 10, 1277. [Google Scholar] [CrossRef]
- Bošnjak, I.; Selthofer-Relatić, K.; Včev, A. Prognostic value of galectin-3 in patients with heart failure. Dis. Markers 2015, 2015, 1–6. [Google Scholar] [CrossRef]
- Di Gregoli, K.; Somerville, M.; Bianco, R.; Thomas, A.C.; Frankow, A.; Newby, A.C.; George, S.J.; Jackson, C.L.; Johnson, J.L. Galectin-3 Identifies a Subset of Macrophages With a Potential Beneficial Role in Atherosclerosis. Arter. Thromb. Vasc. Biol. 2020, 40, 1491–1509. [Google Scholar] [CrossRef]
- Vaughan, D.E.; Lazos, S.A.; Tong, K. Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. J. Clin. Investig. 1995, 95, 995–1001. [Google Scholar] [CrossRef]
- Eddy, A.C.; Trask, A.J. Growth differentiation factor-15 and its role in diabetes and cardiovascular disease. Cytokine Growth Factor Rev. 2020, 57, 11–18. [Google Scholar] [CrossRef]
- Wang, F.; Guo, Y.; Yu, H.; Zheng, L.; Mi, L.; Gao, W. Growth differentiation factor 15 in different stages of heart failure: Potential screening implications. Biomarkers 2010, 15, 671–676. [Google Scholar] [CrossRef]
- Kim, E.K.; Choi, E.-J. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta 2010, 1802, 396–405. [Google Scholar] [CrossRef]
- Schultz, J.E.J.; Witt, S.A.; Glascock, B.J.; Nieman, M.L.; Reiser, P.J.; Nix, S.L.; Kimball, T.R.; Doetschman, T. TGF-β1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J. Clin. Investig. 2002, 109, 787–796. [Google Scholar] [CrossRef]
- Biernacka, A.; Dobaczewski, M.; Frangogiannis, N.G. TGF-β signaling in fibrosis. Growth Factors 2011, 29, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Dobaczewski, M.; Chen, W.; Frangogiannis, N.G. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J. Mol. Cell. Cardiol. 2011, 51, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Koitabashi, N.; Danner, T.; Zaiman, A.L.; Pinto, Y.M.; Rowell, J.; Mankowski, J.; Zhang, D.; Nakamura, T.; Takimoto, E.; Kass, D.A. Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload. J. Clin. Investig. 2011, 121, 2301–2312. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Joyce, J.; Margulies, K.B.; Tsuda, T. Enhanced bioactive myocardial transforming growth factor-β in advanced human heart failure. Circ. J. 2014, 78, 2711–2718. [Google Scholar] [CrossRef]
- Almendral, J.L.; Shick, V.; Rosendorff, C.; Atlas, S.A. Association between transforming growth factor-β1 and left ventricular mass and diameter in hypertensive patients. J. Am. Soc. Hypertens. 2010, 4, 135–141. [Google Scholar] [CrossRef]
- Heldin, C.-H.; Miyazono, K.; Dijke, P.T. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997, 390, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Massagué, J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef]
- Mann, D.L.; Taegtmeyer, H. Dynamic regulation of the extracellular matrix after mechanical unloading of the failing human heart: Recovering the missing link in left ventricular remodeling. Circulation 2001, 104, 1089–1091. [Google Scholar] [CrossRef]
- Humeres, C.; Frangogiannis, N.G. Fibroblasts in the Infarcted, Remodeling, and Failing Heart. JACC: Basic Transl. Sci. 2019, 4, 449–467. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Takawale, A.; Lee, J.; Kassiri, Z. Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 2012, 5, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tayebjee, M.H.; Nadar, S.; Blann, A.D.; Garethbeevers, D.; MacFadyen, R.J.; Lip, G.Y. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in hypertension and their relationship to cardiovascular risk and treatment: A substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Am. J. Hypertens. 2004, 17, 764–769. [Google Scholar] [CrossRef]
- Mukherjee, D.; Sen, S. Alteration of cardiac collagen phenotypes in hypertensive hypertrophy: Role of blood pressure. J. Mol. Cell. Cardiol. 1993, 25, 185–196. [Google Scholar] [CrossRef]
- Spinale, F.G.; Coker, M.L.; Thomas, C.V.; Walker, J.D.; Mukherjee, R.; Hebbar, L. Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: Relation to ventricular and myocyte function. Circ. Res. 1998, 82, 482–495. [Google Scholar] [CrossRef]
- Tyagi, S.C. Proteinases and myocardial extracellular matrix turnover. Mol. Cell. Biochem. 1997, 168, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Euler, G.; Locquet, F.; Kociszewska, J.; Osygus, Y.; Heger, J.; Schreckenberg, R.; Schlüter, K.-D.; Kenyeres, É.; Szabados, T.; Bencsik, P.; et al. Matrix Metalloproteinases Repress Hypertrophic Growth in Cardiac Myocytes. Cardiovasc. Drugs Ther. 2021, 35, 353–365. [Google Scholar] [CrossRef]
- Peterson, J.T.; Li, H.; Dillon, L.; Bryant, J.W. Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc. Res. 2000, 46, 307–315. [Google Scholar] [CrossRef]
- Li, L.; Fan, D.; Wang, C.; Wang, J.-Y.; Cui, X.-B.; Wu, D.; Zhou, Y.; Wu, L.-L. Angiotensin II increases periostin expression via Ras/p38 MAPK/CREB and ERK1/2/TGF-β1 pathways in cardiac fibroblasts. Cardiovasc. Res. 2011, 91, 80–89. [Google Scholar] [CrossRef]
- Lovern, C.S.; Swecker, W.S.; Lee, J.C.; Moon, M.L. Additive effects of a sodium chloride restricted diet and furosemide administration in healthy dogs. Am. J. Veter- Res. 2001, 62, 1793–1796. [Google Scholar] [CrossRef]
- American Heart Association. Position of the American Heart Association on research animal use. Circulation 1985, 71, 849A–850A. [Google Scholar] [PubMed]
- National Research Council. Guide for the Care and Use of Laboratory Animals: Eighth Edition; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- LI-COR. Near-Infrared Western Blot Detection Protocol. Available online: https://www.licorbio.com/support/contents/applications/western-blots/fluorescent-western-blot-detection-protocol.html?Highlight=on-cell (accessed on 7 June 2025).
- Cogliati, B.; Maes, M.; Pereira, I.V.; Willebrords, J.; Da Silva, T.C.; Crespo Yanguas, S.; Vinken, M. Immunohisto- and Cytochemistry Analysis of Connexins. Methods Mol. Biol. 2016, 1437, 55–70. [Google Scholar] [CrossRef] [PubMed]
Antibody | Company | Catalog Number |
---|---|---|
TGF-β1 | Abcam, Inc. Waltham, MA, USA | ab92486 |
TGF-β Receptor1 | Abcam, Inc. Waltham, MA, USA | ab31013 |
Smad2 | Abcam, Inc. Waltham, MA, USA | ab228765 |
Smad3 | Abcam, Inc. Waltham, MA, USA | ab84177 |
Galectin-3 | Abcam, Inc. Waltham, MA, USA | ab31707 |
CTGF | Abcam, Inc. Waltham, MA, USA | ab5097 |
PAI-1 | Abcam, Inc. Waltham, MA, USA | ab66705 |
MMP-2 | Abcam, Inc. Waltham, MA, USA | ab97779 |
MMP-14 | Abcam, Inc. Waltham, MA, USA | ab38971 |
GDF-15 | Abcam, Inc. Waltham, MA, USA | ab105738 |
β-actin | Abcam, Inc. Waltham, MA, USA | ab8224 |
p44/42 MAPK (ERK1/2) | Cell signaling Danvers, MA, USA | 9102 |
TIMP-1 | Sigma-Aldrich Burlington, MA, USA | IM32 |
P38 MAPK | ThermoFisher Scientific Waltham, MA USA | 66234 |
MEK-1 | Abcam, Inc. Waltham, MA, USA | ab109556 |
Ras | Abcam, Inc. Waltham, MA, USA | ab221163 |
JNK1/JNK2/JNK3 | Abcam, Inc. Waltham, MA, USA | PA5-99528 |
Collagen I | Abcam, Inc. Waltham, MA, USA | ab34710 |
Collagen III | Abcam, Inc. Waltham, MA, USA | ab7778 |
Collagen VI | Abcam, Inc. Waltham, MA, USA | Ab6588 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plavelil, N.; Goldstein, R.; Klein, M.G.; Michaelson, L.; Haigney, M.C.; Hood, M.N. Furosemide Promotes Inflammatory Activation and Myocardial Fibrosis in Swine with Tachycardia-Induced Heart Failure. Int. J. Mol. Sci. 2025, 26, 6088. https://doi.org/10.3390/ijms26136088
Plavelil N, Goldstein R, Klein MG, Michaelson L, Haigney MC, Hood MN. Furosemide Promotes Inflammatory Activation and Myocardial Fibrosis in Swine with Tachycardia-Induced Heart Failure. International Journal of Molecular Sciences. 2025; 26(13):6088. https://doi.org/10.3390/ijms26136088
Chicago/Turabian StylePlavelil, Nisha, Robert Goldstein, Michael G. Klein, Luke Michaelson, Mark C. Haigney, and Maureen N. Hood. 2025. "Furosemide Promotes Inflammatory Activation and Myocardial Fibrosis in Swine with Tachycardia-Induced Heart Failure" International Journal of Molecular Sciences 26, no. 13: 6088. https://doi.org/10.3390/ijms26136088
APA StylePlavelil, N., Goldstein, R., Klein, M. G., Michaelson, L., Haigney, M. C., & Hood, M. N. (2025). Furosemide Promotes Inflammatory Activation and Myocardial Fibrosis in Swine with Tachycardia-Induced Heart Failure. International Journal of Molecular Sciences, 26(13), 6088. https://doi.org/10.3390/ijms26136088