New Anticancer Agents: Design, Synthesis and Evaluation
Conflicts of Interest
References
- DeVita, V.T.; Lawrence, T.S.; Rosenberg, S.A. Cancer: Principles & Practice of Oncology, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; pp. 265–272. [Google Scholar]
- National Cancer Institute: A to Z List of Cancer Drugs. Available online: https://www.cancer.gov/about-cancer/treatment/drugs (accessed on 10 June 2025).
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Galassi, C.; Chan, T.A.; Vitale, I.; Galluzzi, L. The hallmarks of cancer immune evasion. Cancer Cell 2024, 42, 1825–1863. [Google Scholar] [CrossRef] [PubMed]
- Gil-Edo, R.; Espejo, S.; Falomir, E.; Carda, M. Synthesis and Biological Evaluation of Potential Oncoimmunomodulator Agents. Int. J. Mol. Sci. 2023, 24, 2614. [Google Scholar] [CrossRef]
- Zak, K.M.; Grudnik, P.; Guzik, K.; Zieba, B.J.; Musielak, B.; Domling, A.; Dubin, G.; Holak, T.A. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget 2016, 7, 30323–30335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; LaRosa, C.; Antwi, J.; Govindarajan, R.; Werbovetz, K.A. Imidazoles as Potential Anticancer Agents: An Update on Recent Studies. Molecules 2021, 26, 4213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, H.; Jeon, Y.; Moon, H.; Lee, E.H.; Lee, T.H.; Kim, H. Synthesis of 1,4-Dialkoxynaphthalene-Based Imidazolium Salts and Their Cytotoxicity in Cancer Cell Lines. Int. J. Mol. Sci. 2023, 24, 2713. [Google Scholar] [CrossRef]
- Lee, H.; Nguyen, A.T.; Choi, H.; Kim, K.Y.; Kim, H. Anti-cancer Effects of 1,4-Dialkoxynaphthalene-Imidazolium Salt Derivatives through ERK5 kinase activity inhibition. Sci. Rep. 2025, 15, 13648. [Google Scholar] [CrossRef]
- Negi, M.; Chawla, P.; Faruk, A.; Chawla, V. The Role of 4-Thiazolidinone Scaffold in Targeting Variable Biomarkers and Pathways Involving Cancer. Anticancer Agents Med. Chem. 2022, 22, 1458–1477. [Google Scholar] [CrossRef] [PubMed]
- Roszczenko, P.; Holota, S.; Szewczyk, O.K.; Dudchak, R.; Bielawski, K.; Bielawska, A.; Lesyk, R. 4-Thiazolidinone-Bearing Hybrid Molecules in Anticancer Drug Design. Int. J. Mol. Sci. 2022, 23, 13135. [Google Scholar] [CrossRef]
- Szczepański, J.; Tuszewska, H.; Trotsko, N. Anticancer Profile of Rhodanines: Structure–Activity Relationship (SAR) and Molecular Targets—A Review. Molecules 2022, 27, 3750. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tilekar, K.; Shelke, O.; Upadhyay, N.; Lavecchia, A.; Ramaa, C.S. Current Status and Future Prospects of Molecular Hybrids with Thiazolidinedione (TZD) Scaffold in Anticancer Drug Discovery. J. Mol. Struct. 2022, 1250, 131767. [Google Scholar] [CrossRef]
- Xu, G.; Mcleod, H.L. Strategies for enzyme/prodrug cancer therapy. Clin. Cancer. Res. 2001, 7, 3314–3324. [Google Scholar] [PubMed]
- Lukasheva, E.V.; Babayeva, G.; Karshieva, S.S.; Zhdanov, D.D.; Pokrovsky, V.S. L-Lysine α-Oxidase: Enzyme with Anticancer Properties. Pharmaceuticals 2021, 14, 1070. [Google Scholar] [CrossRef] [PubMed]
- Pokrovsky, V.S.; Qoura, L.A.; Demidova, E.A.; Han, Q.; Hoffman, R.M. Targeting Methionine Addiction of Cancer Cells with Methioninase. Biochemistry 2023, 88, 944–952. [Google Scholar] [CrossRef]
- Schellmann, N.; Deckert, P.M.; Bachran, D.; Fuchs, H.; Bachran, C. Targeted enzyme prodrug therapies. Mini Rev. Med. Chem. 2010, 10, 887–904. [Google Scholar] [CrossRef] [PubMed]
- Abo Qoura, L.; Morozova, E.; Kulikova, V.; Karshieva, S.; Sokolova, D.; Koval, V.; Revtovich, S.; Demidkina, T.; Pokrovsky, V.S. Methionine γ-Lyase-Daidzein in Combination with S-Propyl-L-cysteine Sulfoxide as a Targeted Prodrug Enzyme System for Malignant Solid Tumor Xenografts. Int. J. Mol. Sci. 2022, 23, 12048. [Google Scholar] [CrossRef]
- Morozova, E.; Anufrieva, N.; Koval, V.; Lesnova, E.; Kushch, A.; Timofeeva, V.; Solovieva, A.; Kulikova, V.; Revtovich, S.; Demidkina, T. Conjugates of methionine γ-lyase with polysialic acid: Two approaches to antitumor therapy. Int. J. Biol. Macromol. 2021, 182, 394–401. [Google Scholar] [CrossRef]
- Catanzaro, E.; Canistro, D.; Pellicioni, V.; Vivarelli, F.; Fimognari, C. Anticancer potential of allicin: A review. Pharmacol. Res. 2022, 177, 106118. [Google Scholar] [CrossRef]
- Morozova, E.A.; Kulikova, V.V.; Rodionov, A.N.; Revtovich, S.V.; Anufrieva, N.V.; Demidkina, T.V. Engineered Citrobacter freundii methionine γ-lyase effectively produces antimicrobial thiosulfinates. Biochimie 2016, 128–129, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, M.M.; Sharifi-Rad, J.; Herrera-Bravo, J.; Jara, E.L.; Salazar, L.A.; Kregiel, D.; Uprety, Y.; Akram, M.; Iqbal, M.; Martorell, M.; et al. Therapeutic Potential of Isoflavones with an Emphasis on Daidzein. Oxidative Med. Cell. Longev. 2021, 2021, 6331630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morozova, E.; Abo Qoura, L.; Anufrieva, N.; Koval, V.; Lesnova, E.; Kushch, A.; Kulikova, V.; Revtovich, S.; Pokrovsky, V.S.; Demidkina, T. Daidzein-directed methionine γ-lyase in enzyme prodrug therapy against breast cancer. Biochimie 2022, 201, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Trushina, D.B.; Borodina, T.N.; Belyakov, S.; Antipina, M.N. Calcium carbonate vaterite particles for drug delivery: Advances and challenges. Mater. Today Adv. 2022, 14, 100214. [Google Scholar] [CrossRef]
- Luo, W.; Li, Z.; Zhang, L.; Xingyi, X. Polyethylenimine-CO2 adduct templated CaCO3 nanoparticles as anticancer drug carrier. Cancer Nano. 2023, 14, 7. [Google Scholar] [CrossRef]
- Lakkakula, J.R.; Kurapati, R.; Tynga, I.; Abrahamse, H.; Raichur, A.M.; Macedo Krause, R.W. Cyclodextrin grafted calcium carbonate vaterite particles: Efficient system for tailored release of hydrophobic anticancer or hormone drugs. RSC Adv. 2016, 6, 104537–104548. [Google Scholar] [CrossRef]
- Dunuweera, S.P.; Rajapakse, R.G.M. Synthesis of Unstable Vaterite Polymorph of Hollow Calcium Carbonate Nanoparticles and Encapsulation of the Anticancer Drug Cisplatin. J. Adv. Med. Pharm. Sci. 2016, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Niza-Pérez, N.; Quiroz-Troncoso, J.; Alegría-Aravena, N.; Gómez-Ruiz, S.; Díaz-García, D.; Ramírez-Castillejo, C. New Carbonate-Based Materials and Study of Cytotoxic Capacity in Cancer Cells. Int. J. Mol. Sci. 2023, 24, 5546. [Google Scholar] [CrossRef]
- Stine, Z.E.; Schug, Z.T.; Salvino, J.M.; Dang, C.V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 2022, 21, 141–162. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, J.; Park, J.; Rai, P.; Zhai, R.G. Subcellular compartmentalization of NAD+ and its role in cancer: A sereNADe of metabolic melodies. Pharmacol. Ther. 2019, 200, 27–41. [Google Scholar] [CrossRef]
- Ghanem, M.S.; Caffa, I.; Monacelli, F.; Nencioni, A. Inhibitors of NAD+ Production in Cancer Treatment: State of the Art and Perspectives. Int. J. Mol. Sci. 2024, 25, 2092. [Google Scholar] [CrossRef]
- Wei, Y.; Xiang, H.; Zhang, W. Review of various NAMPT inhibitors for the treatment of cancer. Front. Pharmacol. 2022, 13, 970553. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokrovsky, V.; Addeo, R.; Coluccia, M. New Anticancer Agents: Design, Synthesis and Evaluation. Int. J. Mol. Sci. 2025, 26, 6090. https://doi.org/10.3390/ijms26136090
Pokrovsky V, Addeo R, Coluccia M. New Anticancer Agents: Design, Synthesis and Evaluation. International Journal of Molecular Sciences. 2025; 26(13):6090. https://doi.org/10.3390/ijms26136090
Chicago/Turabian StylePokrovsky, Vadim, Raffaele Addeo, and Mauro Coluccia. 2025. "New Anticancer Agents: Design, Synthesis and Evaluation" International Journal of Molecular Sciences 26, no. 13: 6090. https://doi.org/10.3390/ijms26136090
APA StylePokrovsky, V., Addeo, R., & Coluccia, M. (2025). New Anticancer Agents: Design, Synthesis and Evaluation. International Journal of Molecular Sciences, 26(13), 6090. https://doi.org/10.3390/ijms26136090