Extracellular Vesicles Profile and Risk of Venous Thromboembolism in Patients with Diffuse Large B-Cell Lymphoma
Abstract
1. Introduction
2. Results
3. Discussion
4. Methods
Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khorana, A.A.; Francis, C.W.; Culakova, E.; Kuderer, N.M.; Lyman, G.H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J. Thromb. Haemost. 2007, 5, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Hohaus, S.; Bartolomei, F.; Cuccaro, A.; Maiolo, E.; Alma, E.; D’Alò, F.; Bellesi, S.; Rossi, E.; De Stefano, V. Venous Thromboembolism in Lymphoma: Risk Stratification and Antithrombotic Prophylaxis. Cancers 2020, 12, 1291. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, e12404. [Google Scholar] [CrossRef] [PubMed]
- Gangoda, L.; Boukouris, S.; Liem, M.; Kalra, H.; Mathivanan, S. Extracellular vesicles including exosomes are mediators of signal transduction: Are they protective or pathogenic? Proteomics 2015, 15, 260–271. [Google Scholar] [CrossRef] [PubMed]
- van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Abels, E.R.; Breakefield, X.O. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol. Neurobiol. 2016, 36, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Sanwlani, R.; Gangoda, L. Role of Extracellular Vesicles in Cell Death and Inflammation. Cells 2021, 10, 2663. [Google Scholar] [CrossRef]
- Kalluri, R. The biology and function of exosomes in cancer. J. Clin. Investig. 2016, 126, 1208–1215. [Google Scholar] [CrossRef]
- Kim, A.S.; Khorana, A.A.; McCrae, K.R. Mechanisms and biomarkers of cancer-associated thrombosis. Transl. Res. J. Lab. Clin. Med. 2020, 225, 33–53. [Google Scholar] [CrossRef]
- Wang, J.-G.; Geddings, J.E.; Aleman, M.M.; Cardenas, J.C.; Chantrathammachart, P.; Williams, J.C.; Kirchhofer, D.; Bogdanov, V.Y.; Bach, R.R.; Rak, J.; et al. Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood 2012, 119, 5543–5552. [Google Scholar] [CrossRef]
- Campello, E.; Zanetto, A.; Spiezia, L.; Radu, C.M.; Gavasso, S.; Ferrarese, A.; Farinati, F.; Senzolo, M.; Simioni, P. Hypercoagulability detected by circulating microparticles in patients with hepatocellular carcinoma and cirrhosis. Thromb. Res. 2016, 143, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Dharmavaram, G.; Cao, S.; Sundaram, S.; Ayyappan, S.; Boughan, K.; Gallogly, M.; Malek, E.; Metheny, L.; Tomlinson, B.; Otegbeye, F.; et al. Aggressive lymphoma subtype is a risk factor for venous thrombosis. Development of lymphoma-specific venous thrombosis prediction models. Am. J. Hematol. 2020, 95, 918–926. [Google Scholar] [CrossRef]
- Otasevic, V.; Mihaljevic, B.; Milic, N.; Stanisavljevic, D.; Vukovic, V.; Tomic, K.; Fareed, J.; Antic, D. Immune activation and inflammatory biomarkers as predictors of venous thromboembolism in lymphoma patients. Thromb. J. 2022, 20, 20. [Google Scholar] [CrossRef]
- Caruso, V.; Di Castelnuovo, A.; Meschengieser, S.; Lazzari, M.A.; de Gaetano, G.; Storti, S.; Iacoviello, L.; Donati, M.B. Thrombotic complications in adult patients with lymphoma: A meta-analysis of 29 independent cohorts including 18,018 patients and 1149 events. Blood 2010, 115, 5322–5328. [Google Scholar] [CrossRef]
- Yokoyama, K.; Murata, M.; Ikeda, Y.; Okamoto, S. Incidence and risk factors for developing venous thromboembolism in Japanese with diffuse large b-cell lymphoma. Thromb. Res. 2012, 130, 7–11. [Google Scholar] [CrossRef]
- Borg, I.H.; Bendtsen, M.D.; Bøgsted, M.; Madsen, J.; Severinsen, M.T. Incidence of venous thromboembolism in patients with diffuse large B-cell lymphoma. Leuk. Lymphoma 2016, 57, 2771–2776. [Google Scholar] [CrossRef] [PubMed]
- Lekovic, D.; Miljic, P.; Mihaljevic, B. Increased risk of venous thromboembolism in patients with primary mediastinal large B-cell lymphoma. Thromb. Res. 2010, 126, 477–480. [Google Scholar] [CrossRef]
- Antic, D.; Jelicic, J.; Vukovic, V.; Nikolovski, S.; Mihaljevic, B. Venous thromboembolic events in lymphoma patients: Actual relationships between epidemiology, mechanisms, clinical profile and treatment. Blood Rev. 2018, 32, 144–158. [Google Scholar] [CrossRef]
- Byun, J.M.; Hong, J.; Yoon, S.-S.; Koh, Y.; Ock, C.-Y.; Kim, T.M.; Lee, J.H.; Kim, S.-H.; Lee, J.-O.; Bang, S.-M.; et al. Incidence and characteristics of venous thromboembolism in Asian patients with primary central nervous system lymphoma undergoing chemotherapy. Thromb. Res. 2019, 183, 131–135. [Google Scholar] [CrossRef]
- Colombo, R.; Gallipoli, P.; Castelli, R. Thrombosis and hemostatic abnormalities in hematological malignancies. Clin. Lymphoma Myeloma Leuk. 2014, 14, 441–450. [Google Scholar] [CrossRef]
- Santi, R.M.; Ceccarelli, M.; Bernocco, E.; Monagheddu, C.; Evangelista, A.; Valeri, F.; Monaco, F.; Vitolo, U.; Cortelazzo, S.; Cabras, M.G.; et al. Khorana score and histotype predicts incidence of early venous thromboembolism in non-Hodgkin lymphomas. A pooled-data analysis of 12 clinical trials of Fondazione Italiana Linfomi (FIL). Thromb. Haemost. 2017, 117, 1615–1621. [Google Scholar] [CrossRef]
- Ma, M.; Alrwashdeh, M.; Abdel-Razeq, N.; Alfar, R.; Edaily, S.; Authors Mohammad Ma, A.; Bater, R.; Zmaily, M.; Almomani, M.; Abdel-Razeq, H. Prevalence, Patterns and Predictors of Venous Thromboembolic Events in Patients Undergoing Salvage Chemotherapy and Autologous Stem Cell Transplantation for Relapsed Lymphomas. Hematol. Oncol. Stem Cell Ther. 2022, 16, 4. [Google Scholar] [CrossRef]
- Gangaraju, R.; Chen, Y.; Hageman, L.; Wu, J.; Francisco, L.; Kung, M.; Ness, E.; Parman, M.; Weisdorf, D.J.; Forman, S.J.; et al. Risk of venous thromboembolism in patients with non-Hodgkin lymphoma surviving blood or marrow transplantation. Cancer 2019, 125, 4498–4508. [Google Scholar] [CrossRef]
- Goldschmidt, N.; Linetsky, E.; Shalom, E.; Varon, D.; Siegal, T. High incidence of thromboembolism in patients with central nervous system lymphoma. Cancer 2003, 98, 1239–1242. [Google Scholar] [CrossRef]
- Saito, M.; Wages, N.A.; Schiff, D. Incidence, risk factors and management of venous thromboembolism in patients with primary CNS lymphoma. J. Neurooncol. 2021, 154, 41–47. [Google Scholar] [CrossRef]
- Mahajan, A.; Brunson, A.; Keegan, T.H.M.; Rosenberg, A.; Wun, T. High incidence of venous thromboembolism and major bleeding in patients with primary CNS lymphoma. Leuk. Lymphoma 2020, 61, 2605–2613. [Google Scholar] [CrossRef]
- Lund, J.L.; Østgård, L.S.; Prandoni, P.; Sørensen, H.T.; de Nully Brown, P. Incidence, determinants and the transient impact of cancer treatments on venous thromboembolism risk among lymphoma patients in Denmark. Thromb. Res. 2015, 136, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.; Hochreiter, B.; Schmid, J.A. Extracellular Vesicles Linking Inflammation, Cancer and Thrombotic Risks. Front. Cell Dev. Biol. 2022, 10, 859863. [Google Scholar] [CrossRef] [PubMed]
- Ayers, L.; Kohler, M.; Harrison, P.; Sargent, I.; Dragovic, R.; Schaap, M.; Nieuwland, R.; Brooks, S.A.; Ferry, B. Measurement of circulating cell-derived microparticles by flow cytometry: Sources of variability within the assay. Thromb. Res. 2011, 127, 370–377. [Google Scholar] [CrossRef]
- Cizmar, P.; Yuana, Y. Detection and Characterization of Extracellular Vesicles by Transmission and Cryo-Transmission Electron Microscopy. Methods Mol. Biol. 2017, 1660, 221–232. [Google Scholar] [CrossRef]
- Luddington, R.; Baglin, T. Clinical measurement of thrombin generation by calibrated automated thrombography requires contact factor inhibition. J. Thromb. Haemost. JTH 2004, 2, 1954–1959. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, K.; Antoniak, S.; Monroe, D.M.; Khorana, A.A.; Mackman, N. Subcommittee on Hemostasis and Malignancy of the Scientific and Standardization Committee of the International Society on Thrombosis and Hemostasis Evaluation of a new commercial assay to measure microparticle tissue factor activity in plasma: Communication from the SSC of the ISTH. J. Thromb. Haemost. JTH 2014, 12, 1932–1934. [Google Scholar] [CrossRef]
- Miszta, A.; Kopec, A.K.; Pant, A.; Holle, L.A.; Byrnes, J.R.; Lawrence, D.A.; Hansen, K.C.; Flick, M.J.; Luyendyk, J.P.; de Laat, B.; et al. A high-fat diet delays plasmin generation in a thrombomodulin-dependent manner in mice. Blood 2020, 135, 1704–1717. [Google Scholar] [CrossRef]
- Kriebel, P.W.; Majumdar, R.; Jenkins, L.M.; Senoo, H.; Wang, W.; Ammu, S.; Chen, S.; Narayan, K.; Iijima, M.; Parent, C.A. Extracellular vesicles direct migration by synthesizing and releasing chemotactic signals. J. Cell Biol. 2018, 217, 2891–2910. [Google Scholar] [CrossRef] [PubMed]
- Kilinc, S.; Paisner, R.; Camarda, R.; Gupta, S.; Momcilovic, O.; Kohnz, R.A.; Avsaroglu, B.; L’Etoile, N.D.; Perera, R.M.; Nomura, D.K.; et al. Oncogene-regulated release of extracellular vesicles. Dev. Cell 2021, 56, 1989–2006.e6. [Google Scholar] [CrossRef]
- Matthiesen, R.; Gameiro, P.; Henriques, A.; Bodo, C.; Moraes, M.C.S.; Costa-Silva, B.; Cabeçadas, J.; Gomes da Silva, M.; Beck, H.C.; Carvalho, A.S. Extracellular Vesicles in Diffuse Large B Cell Lymphoma: Characterization and Diagnostic Potential. Int. J. Mol. Sci. 2022, 23, 13327. [Google Scholar] [CrossRef]
- Rutherford, S.C.; Fachel, A.A.; Li, S.; Sawh, S.; Muley, A.; Ishii, J.; Saxena, A.; Dominguez, P.M.; Lopes, E.C.; Agirre, X.; et al. Extracellular vesicles in DLBCL provide abundant clues to aberrant transcriptional programming and genomic alterations. Blood 2018, 132, e13–e23. [Google Scholar] [CrossRef]
- Gardiner, C.; Harrison, P.; Belting, M.; Böing, A.; Campello, E.; Carter, B.S.; Collier, M.E.; Coumans, F.; Ettelaie, C.; van Es, N.; et al. Extracellular vesicles, tissue factor, cancer and thrombosis–discussion themes of the ISEV 2014 Educational Day. J. Extracell. Vesicles 2015, 4, 26901. [Google Scholar] [CrossRef]
- Toth, B.; Liebhardt, S.; Steinig, K.; Ditsch, N.; Rank, A.; Bauerfeind, I.; Spannagl, M.; Friese, K.; Reininger, A.J. Platelet-derived microparticles and coagulation activation in breast cancer patients. Thromb. Haemost. 2008, 100, 663–669. [Google Scholar] [CrossRef]
- Dymicka-Piekarska, V.; Gryko, M.; Lipska, A.; Korniluk, A.; Siergiejko, E.; Kemona, H. Platelet-Derived Microparticles in Patients with Colorectal Cancer. J. Cancer Ther. 2012, 3, 898–901. [Google Scholar] [CrossRef]
- Kim, H.K.; Song, K.S.; Park, Y.S.; Kang, Y.H.; Lee, Y.J.; Lee, K.R.; Kim, H.K.; Ryu, K.W.; Bae, J.M.; Kim, S. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: Possible role of a metastasis predictor. Eur. J. Cancer 2003, 39, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.-C.; Wang, C.-C.; Chang, H.-C.; Tsai, T.-H.; Chang, L.-T.; Huang, K.-T.; Leu, S.; Yen, C.-H.; Liu, S.-F.; Chen, C.-H.; et al. Levels of circulating microparticles in lung cancer patients and possible prognostic value. Dis. Markers 2013, 35, 301–310. [Google Scholar] [CrossRef]
- Ren, J.G.; Man, Q.W.; Zhang, W.; Li, C.; Xiong, X.P.; Zhu, J.Y.; Wang, W.M.; Sun, Z.J.; Jia, J.; Zhang, W.F.; et al. Elevated Level of Circulating Platelet-derived Microparticles in Oral Cancer. J. Dent. Res. 2016, 95, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Haghbin, M.; Hashemi Tayer, A.; Kamravan, M.; Sotoodeh Jahromi, A. Platelet-Derived Procoagulant Microparticles as Blood-based Biomarker of Breast Cancer. Asian Pac. J. Cancer Prev. APJCP 2021, 22, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, Y.; Sawai, Y.; Nomura, S. Platelet-Derived Microparticles are an Important Biomarker in Patients with Cancer-Associated Thrombosis. Int. J. Gen. Med. 2019, 12, 491–497. [Google Scholar] [CrossRef]
- Mallat, Z.; Hugel, B.; Ohan, J.; Lesèche, G.; Freyssinet, J.M.; Tedgui, A. Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: A role for apoptosis in plaque thrombogenicity. Circulation 1999, 99, 348–353. [Google Scholar] [CrossRef]
- Thomas, G.M.; Panicot-Dubois, L.; Lacroix, R.; Dignat-George, F.; Lombardo, D.; Dubois, C. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J. Exp. Med. 2009, 206, 1913–1927. [Google Scholar] [CrossRef] [PubMed]
- Jamaly, S.; Basavaraj, M.G.; Starikova, I.; Olsen, R.; Braekkan, S.K.; Hansen, J.-B. Elevated plasma levels of P-selectin glycoprotein ligand-1-positive microvesicles in patients with unprovoked venous thromboembolism. J. Thromb. Haemost. JTH 2018, 16, 1546–1554. [Google Scholar] [CrossRef]
- van den Berg, Y.W.; Osanto, S.; Reitsma, P.H.; Versteeg, H.H. The relationship between tissue factor and cancer progression: Insights from bench and bedside. Blood 2012, 119, 924–932. [Google Scholar] [CrossRef]
- van Es, N.; Hisada, Y.; Di Nisio, M.; Cesarman, G.; Kleinjan, A.; Mahé, I.; Otten, H.-M.; Kamphuisen, P.W.; Berckmans, R.J.; Büller, H.R.; et al. Extracellular vesicles exposing tissue factor for the prediction of venous thromboembolism in patients with cancer: A prospective cohort study. Thromb. Res. 2018, 166, 54–59. [Google Scholar] [CrossRef]
- Hisada, Y.; Mackman, N. Cancer-associated pathways and biomarkers of venous thrombosis. Blood 2017, 130, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Geddings, J.E.; Mackman, N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood 2013, 122, 1873–1880. [Google Scholar] [CrossRef]
- Cesarman-Maus, G.; Braggio, E.; Lome-Maldonado, C.; Morales-Leyte, A.L.; Fonseca, R. Absence of tissue factor is characteristic of lymphoid malignancies of both T- and B-cell origin. Thromb. Res. 2014, 133, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhu, G.; He, Y.; Chai, X.; Yang, X.; Meng, F.; Zhuang, W. Expressions of tissue factor and vascular endothelial growth factor in diffuse large B-cell lymphoma and their clinical significances. J. Leuk. Lymphoma 2020, 29, 45–49. [Google Scholar]
- Mobarrez, F.; Antovic, J.; Egberg, N.; Hansson, M.; Jörneskog, G.; Hultenby, K.; Wallén, H. A multicolor flow cytometric assay for measurement of platelet-derived microparticles. Thromb. Res. 2010, 125, e110–e116. [Google Scholar] [CrossRef]
Demographic/Clinical Characteristic | DLBCL pts with VTE | DLBCL pts Without VTE | p |
---|---|---|---|
Age, median (range) | 64 (22–74) | 56 (20–87) | 0.568 |
Male/female | 4/7 | 28/23 | 0.264 |
Relapse, n (%) | 2 (18.2) | 1 (2) | 0.023 |
B symptoms, n (%) | 6 (54.5) | 23 (45.1) | 0.569 |
Bulky disease, n (%) | 7 (63.6) | 15 (29.4) | 0.031 |
Extranodal localization, n (%) | 6 (54.5) | 38 (74.5) | 0.186 |
Mediastinal involvement | 4 (36.4) | 13 (25.5) | 0.463 |
CNS involvement, n (%) | 0 | 5 (8.1) | 0.279 |
PCNSL DLBCL | 0 | 4 (6.4) | |
Dissemination of the disease to CNS | 0 | 1 (1.6) | |
Hemoglobin level, g/L, median (range) | 119 (96–149) | 129 (51–166) | 0.257 |
White blood cell count, ×109/L, median (range) | 5.8 (3.8–13.7) | 6.9 (2.2–20.6) | 0.063 |
Platelet count, ×109/L, median (range) | 295 (103–467) | 265 (29–570) | 0.775 |
ECOG PS > 1, % | 5 (45.5) | 12 (23.5) | 0.139 |
EVs | DLBCL pts, All | Healthy Controls | p | ||
---|---|---|---|---|---|
Median ×109 EV/L | IQR ×109 EV/L | Median ×109 EV/L | IQR ×109 EV/L | ||
Annexin V+ | 423 | 155–828 | 407 | 126–615 | 0.326 |
PEVs | 228 | 89–449 | 158 | 69–207 | 0.018 |
TF+ | 140 | 50–272 | 174 | 56–221 | 0.750 |
E-selectin+ | 151 | 74–325 | 90 | 47–133 | 0.008 |
P-selectin+ | 306 | 138–628 | 252 | 88–292 | 0.042 |
CD19+ | 7 | 3–10 | 6 | 4–8 | 0.437 |
CD45+ | 137 | 71–276 | 158 | 32–212 | 0.350 |
CD20+ | 272 | 109–587 | 229 | 56–340 | 0.066 |
TF+ PEVs | 280 | 104–539 | 313 | 97–419 | 0.658 |
TF+/CD19+ | 72 | 26–129 | 105 | 32–152 | 0.490 |
TF+/CD45+ | 295 | 89–547 | 339 | 69–573 | 0.996 |
TF+/CD20+ | 86 | 51–186 | 23 | 7–40 | <0.001 |
TF+/CD19+/CD20+ | 54 | 18–109 | 85 | 17–166 | 0.290 |
TF− PEVs | 81 | 49–184 | 313 | 47–419 | 0.041 |
TF−/CD19+ | 30 | 14–54 | 10 | 5–21 | <0.001 |
TF−/CD45+ | 76 | 45–156 | 19 | 6–32 | <0.001 |
TF−/CD20+ | 86 | 51–186 | 23 | 7–40 | <0.001 |
TF−/CD19+/CD20+ | 64 | 26–129 | 90 | 18–173 | 0.690 |
EVs | DLBCL pts with VTE | DLBCL pts Without VTE | p | ||
---|---|---|---|---|---|
Median ×109 EV/L | IQR ×109 EV/L | Median ×109 EV/L | IQR ×109 EV/L | ||
Annexin V+ | 510 | 152–1213 | 423 | 155–789 | 0.513 |
PEVs | 285 | 80–659 | 222 | 89–434 | 0.599 |
TF+ | 214 | 32–385 | 140 | 50–255 | 0.747 |
E-selectin+ | 205 | 67–425 | 148 | 79–297 | 0.665 |
P-selectin+ | 415 | 118–861 | 305 | 141–590 | 0.726 |
CD19+ | 8 | 2–9 | 7 | 3–10 | 0.537 |
CD45+ | 192 | 48–347 | 130 | 71–273 | 0.861 |
CD20+ | 389 | 91–817 | 267 | 112–541 | 0.712 |
TF+ PEVs | 356 | 87–770 | 269 | 104–534 | 0.562 |
TF+/CD19+ | 106 | 17–150 | 71 | 32–124 | 0.993 |
TF+/CD45+ | 389 | 89–804 | 292 | 89–544 | 0.501 |
TF+/CD20+ | 91 | 37–236 | 80 | 51–164 | 0.574 |
TF+/CD19+/CD20+ | 82 | 13–145 | 52 | 21–102 | 0.832 |
TF− PEVs | 81 | 39–256 | 82 | 49–162 | 0.490 |
TF−/CD19+ | 44 | 9–58 | 29 | 14–52 | 0.692 |
TF−/CD45+ | 82 | 34–204 | 73 | 45–145 | 0.537 |
TF−/CD20+ | 91 | 37–236 | 80 | 51–164 | 0.574 |
TF−/CD19+/CD20+ | 121 | 20–179 | 61 | 27–128 | 0.890 |
EVs | DLBCL pts, Dead | DLBCL pts, Alive | p | ||
---|---|---|---|---|---|
Median ×109 EV/L | IQR ×109 EV/L | Median ×109 EV/L | IQR ×109 EV/L | ||
Annexin V+ | 446 | 154–985 | 404 | 170–809 | 0.858 |
PEVs | 261 | 68–551 | 211 | 102–434 | 0.658 |
TF+ | 159 | 44–332 | 136 | 55–253 | 0.620 |
E-selectin+ | 158 | 82–411 | 139 | 73–291 | 0.525 |
P-selectin+ | 343 | 132–711 | 273 | 139–576 | 0.577 |
CD19+ | 9 | 3–16 | 7 | 2–10 | 0.232 |
CD45+ | 170 | 71–304 | 124 | 62–260 | 0.556 |
CD20+ | 330 | 108–666 | 243 | 110–529 | 0.540 |
TF+ PEVs | 306 | 87–629 | 250 | 119–535 | 0.716 |
TF+/CD19+ | 78 | 32–172 | 64 | 25–124 | 0.535 |
TF+/CD45+ | 308 | 81–598 | 241 | 99–544 | 0.710 |
TF+/CD20+ | 101 | 55–224 | 86 | 49–159 | 0.609 |
TF+/CD19+/CD20+ | 72 | 22–139 | 50 | 17–106 | 0.577 |
TF− PEVs | 88 | 50–199 | 76 | 49–169 | 0.804 |
TF−/CD19+ | 43 | 17–56 | 28 | 14–50 | 0.402 |
TF−/CD45+ | 90 | 49–202 | 76 | 41–141 | 0.609 |
TF−/CD20+ | 101 | 55–224 | 86 | 49–159 | 0.609 |
TF−/CD19+/CD20+ | 94 | 27–163 | 60 | 24–125 | 0.466 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otasevic, V.; Gran, C.; Milic, N.; Ivanovic, J.; Kozarac, S.; Vukovic, V.; Mihaljevic, B.; Dukic, N.; Masic, J.V.; Fareed, J.; et al. Extracellular Vesicles Profile and Risk of Venous Thromboembolism in Patients with Diffuse Large B-Cell Lymphoma. Int. J. Mol. Sci. 2025, 26, 5655. https://doi.org/10.3390/ijms26125655
Otasevic V, Gran C, Milic N, Ivanovic J, Kozarac S, Vukovic V, Mihaljevic B, Dukic N, Masic JV, Fareed J, et al. Extracellular Vesicles Profile and Risk of Venous Thromboembolism in Patients with Diffuse Large B-Cell Lymphoma. International Journal of Molecular Sciences. 2025; 26(12):5655. https://doi.org/10.3390/ijms26125655
Chicago/Turabian StyleOtasevic, Vladimir, Charlotte Gran, Natasa Milic, Jelena Ivanovic, Sofija Kozarac, Vojin Vukovic, Biljana Mihaljevic, Nikolina Dukic, Jelena Vladicic Masic, Jawed Fareed, and et al. 2025. "Extracellular Vesicles Profile and Risk of Venous Thromboembolism in Patients with Diffuse Large B-Cell Lymphoma" International Journal of Molecular Sciences 26, no. 12: 5655. https://doi.org/10.3390/ijms26125655
APA StyleOtasevic, V., Gran, C., Milic, N., Ivanovic, J., Kozarac, S., Vukovic, V., Mihaljevic, B., Dukic, N., Masic, J. V., Fareed, J., Antovic, J., & Antic, D. (2025). Extracellular Vesicles Profile and Risk of Venous Thromboembolism in Patients with Diffuse Large B-Cell Lymphoma. International Journal of Molecular Sciences, 26(12), 5655. https://doi.org/10.3390/ijms26125655