Anti-Inflammatory Effects of Solanum tuberosum L. Polysaccharide and Its Limited Gene Expression Profile
Abstract
1. Introduction
2. Results
2.1. In Vitro Study of Anti-Inflammatory Activity
2.2. Carrageenan-Induced Oedema Model
2.3. Air Pouch Granuloma Model
3. Discussion
4. Materials and Methods
4.1. Studied Substance
4.2. In Vivo Study of Anti-Inflammatory Activity
4.2.1. Experimental Animals
4.2.2. Carrageenan-Induced Oedema Model
- Control group—animals received a sterile 0.9% NaCl solution (n = 8);
- Experimental group—animals received a sterile 0.9% NaCl solution containing STP at a dose of 500 µg/rat (n = 8);
- Comparison group—animals received ibuprofen intraperitoneally at a dose of 100 mg/kg (n = 8).
4.2.3. Air Pouch Granuloma Model
- Control group—animals received a sterile 0.9% NaCl solution (n = 8);
- Experimental group—animals received a sterile 0.9% NaCl solution containing STP at a dose of 500 µg/rat (n = 8);
- Comparison group—animals received intraperitoneally ibuprofen at a dose of 100 mg/kg (n = 8).
4.3. In Vitro Study of Anti-Inflammatory Activity
4.3.1. Cell Line and Culture Conditions
4.3.2. Differentiation of Monocytes into Macrophage-like Cells
4.3.3. Induction of Inflammation and Treatment with the Investigated Substance
4.3.4. Gene Expression Analysis by Real-Time Quantitative PCR
Primers Design
RNA Extraction and Reverse Transcription
Real-Time Quantitative PCR
Data Analysis and Quality Control
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
STP | Solanum tuberosum L. polysaccharide |
cDNA | Complementary DNA |
IQR | Interquartile range |
References
- Shen, Y.; Zhao, H.; Wang, X.; Wu, S.; Wang, Y.; Wang, C.; Zhang, Y.; Zhao, H. Unraveling the web of defense: The crucial role of polysaccharides in immunity. Front. Immunol. 2024, 15, 1406213. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.J.; Fehrenbach, G.W.; Abidin, I.Z.; Buckley, C.; Montgomery, T.; Pogue, R.; Murray, P.; Major, I.; Rezoagli, E. Polysaccharides—Naturally occurring immune modulators. Polymers 2023, 15, 2373. [Google Scholar] [CrossRef] [PubMed]
- Generalov, E.; Yakovenko, L. Receptor basis of biological activity of polysaccharides. Biophys. Rev. 2023, 15, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Zhang, Q.; Feng, J.; Zhang, X.; Li, T.; Liu, S.; Chen, Y.; Li, X.; Wu, Q.; Xue, Y.; et al. β-Glucan produced by Lentinus edodes suppresses breast cancer progression via the inhibition of macrophage M2 polarization by integrating autophagy and inflammatory signals. Immun. Inflamm. Dis. 2023, 11, e876. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signalling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef]
- Ayeka, P.A. Potential of mushroom compounds as immunomodulators in cancer immunotherapy: A review. Evid. Based Complement. Altern. Med. 2018, 2018, 7271509. [Google Scholar] [CrossRef]
- Arifkhodzhaev, A.O. Galactans and galactan-containing polysaccharides of higher plants. Chem. Nat. Compd. 2000, 36, 229–244. [Google Scholar] [CrossRef]
- Goellner, E.M.; Utermoehlen, J.; Kramer, R.; Classen, B. Structure of arabinogalactan from Larix laricina and its reactivity with antibodies directed against type-II-arabinogalactans. Carbohydr. Polym. 2011, 86, 1739–1744. [Google Scholar] [CrossRef]
- Generalov, E.A. Study of the structure and immunoenhancing activity of glucan ADVA. Mosc. Univ. Phys. 2013, 68, 470–477. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, H.; Lee, J.H.; Hwangbo, C. Toll-like receptor 4 (TLR4): New insight immune and aging. Immun. Ageing 2023, 20, 67. [Google Scholar] [CrossRef]
- Fitton, J.H. Therapies from fucoidan: Multifunctional marine polymers. Mar. Drugs 2011, 9, 1731–1760. [Google Scholar] [CrossRef] [PubMed]
- Generalov, E.A.; Levashova, N.T.; Sidorova, A.E.; Chumakov, P.M.; Yakovenko, L.V. An autowave model of the bifurcation behavior of transformed cells in response to polysaccharide. Biophysics 2017, 62, 717–721. [Google Scholar] [CrossRef]
- Generalova, L.V.; Laryushkin, D.P.; Leneva, I.A.; Ivanina, A.V.; Trunova, G.V.; Dolinnyi, S.V.; Generalov, E.A. Evaluation of the polysaccharide “Immeran” activity in Syrian hamsters’ model of SARS-CoV-2. Viruses 2024, 16, 423. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.W.; Li, S.S.; Ding, W.L.; Zhang, C.; Rehman, M.U.; Tareen, M.F.; Wang, L.; Huang, S.-C. From structure to function: A comprehensive overview of polysaccharide roles and applications. Food Front. 2025, 6, 15–39. [Google Scholar] [CrossRef]
- Generalov, E.; Laryushkin, D.; Kritskaya, K.; Kulchenko, N.; Sinitsyn, A.; Yakovenko, L.; Generalova, L.; Belostotsky, N. Immune basis of therapeutic effects of Solanum tuberosum L. polysaccharide on chronic peptic ulcer healing. Pharmaceuticals 2025, 18, 502. [Google Scholar] [CrossRef]
- Generalov, E.A.; Yakovenko, L.V. Composition and mitogenic activity of polysaccharide from Solanum tuberosum L. Biofizika 2023, 68, 856–862. [Google Scholar] [CrossRef]
- Lin, Z.H.; Phan, S.N.; Tran, D.N.; Lu, M.K.; Lin, T.Y. Anti-inflammatory and anticancer effects of polysaccharides from Antrodia cinnamomea: A review. J. Chin. Med. Assoc. 2025, 88, 1–11. [Google Scholar] [CrossRef]
- Murgas, P.; Cornejo, F.A.; Merino, G.; von Bernhardi, R. SR-A regulates the inflammatory activation of astrocytes. Neurotox. Res. 2014, 25, 68–80. [Google Scholar] [CrossRef]
- Li, X.; Jiang, J.; Shi, S.; Bligh, S.A.; Li, Y.; Jiang, Y.; Huang, D.; Ke, Y.; Wang, S. A RG-II Type Polysaccharide Purified from Aconitum coreanum Alleviates Lipopolysaccharide-Induced Inflammation by Inhibiting the NF-κB Signal Pathway. PLoS ONE 2014, 9, e99697. [Google Scholar] [CrossRef]
- Herbert, J.-M.; Maffrand, J.-P. Effect of pentosan polysulphate, standard heparin and related compounds on protein kinase C activity. Biochim. Biophys. Acta 1991, 1091, 432–441. [Google Scholar] [CrossRef]
- Maiorov, S.A.; Laryushkin, D.P.; Kritskaya, K.A.; Zinchenko, V.P.; Gaidin, S.G.; Kosenkov, A.M. The Role of Ion Channels and Intracellular Signalling Cascades in the Inhibitory Action of WIN 55,212-2 upon Hyperexcitation. Brain Sci. 2024, 14, 668. [Google Scholar] [CrossRef] [PubMed]
- Gaidin, S.G.; Maiorov, S.A.; Zinchenko, V.P.; Laryushkin, D.P.; Tuleukhanov, S.T.; Kairat, B.K.; Kosenkov, A.M. Pharmacological inhibition of PLC and PKC triggers epileptiform activity in hippocampal neurons. Epilepsy Res. 2025, 214, 107570. [Google Scholar] [CrossRef] [PubMed]
- Generalova, L.V.; Kritskaya, K.A.; Laryushkin, D.P.; Generalov, E.A. Polysaccharide from Solanum tuberosum L. as a potential antiulcer drug. Biofizika 2024, 69, 1376–1381. [Google Scholar] [CrossRef]
- Park, C.; Cha, H.J.; Lee, H.; Kim, G.Y.; Choi, Y.H. The regulation of the TLR4/NF-κB and Nrf2/HO-1 signaling pathways is involved in the inhibition of lipopolysaccharide-induced inflammation and oxidative reactions by morroniside in RAW 264.7 macrophages. Arch. Biochem. Biophys. 2021, 706, 108926. [Google Scholar] [CrossRef]
- Guo, Q.; Jin, Y.; Chen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2020, 217, e20190418. [Google Scholar] [CrossRef]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci. 2016, 73, 3221–3247. [Google Scholar] [CrossRef]
- Bae, T.; Hallis, S.P.; Kwak, M.K. Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Exp. Mol. Med. 2024, 56, 501–514. [Google Scholar] [CrossRef]
- Delano, D.L.; Montesinos, M.C.; D’Eustachio, P.; Wiltshire, T.; Cronstein, B.N. An interaction between genetic factors and gender determines the magnitude of the inflammatory response in the mouse air pouch model of acute inflammation. Inflammation 2005, 29, 1–7. [Google Scholar] [CrossRef]
- Rossetti, A.C.; Paladini, M.S.; Trepci, A.; Mallien, A.; Riva, M.A.; Gass, P.; Molteni, R. Differential Neuroinflammatory Response in Male and Female Mice: A Role for BDNF. Front. Mol. Neurosci. 2019, 12, 166. [Google Scholar] [CrossRef]
- Kosyreva, A.M.; Dzhalilova, D.S.; Makarova, O.V.; Tsvetkov, I.S.; Zolotova, N.A.; Diatroptova, M.A.; Ponomarenko, E.A.; Mkhitarov, V.A.; Khochanskiy, D.N. Sex differences of inflammatory and immune response in pups of Wistar rats with SIRS. Sci. Rep. 2020, 10, 15884. [Google Scholar] [CrossRef] [PubMed]
- Directive 2010/63/EU of the European Parliament and of the Council on the Protection of Animals Used for Scientific Purposes. FAOLEX. Available online: https://www.fao.org/faolex/results/details/ru/c/LEX-FAOC098296/ (accessed on 15 January 2025).
- Guillen, J. FELASA guidelines and recommendations. J. Am. Assoc. Lab. Anim. Sci. 2012, 51, 311–321. [Google Scholar] [PubMed]
- Whiteley, P.E.; Dalrymple, S.A. Models of inflammation: Carrageenan-induced paw edema in the rat. Curr. Protoc. Pharmacol. 1998, 5.4.1–5.4.3. [Google Scholar] [CrossRef]
- Colville-Nash, P.; Lawrence, T. Air-pouch models of inflammation and modifications for the study of granuloma-mediated cartilage degradation. Methods Mol. Biol. 2003, 225, 181–189. [Google Scholar] [CrossRef]
- Kozera, B.; Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 2013, 54, 391–406. [Google Scholar] [CrossRef]
- Kritskaya, K.A.; Fedotova, E.I.; Nadeev, A.D.; Berezhnov, A.V. Silver Bullet of Acidification: Studying Anti-PD Neuroprotective Mechanisms of Transient pH-Decrease. Biocell 2025, 49, 451–464. [Google Scholar] [CrossRef]
Gene (Protein) | Forward Primer (5′→3′) | Reverse Primer (5′→3′) |
---|---|---|
GAPDH | GAAGGTGAAGGTCGGAGTC | GAAGATGGTGATGGGATTTC |
TNF (TNF-α) | CCTCTCTCTAATCAGCCCTCTG | GAGGACCTGGGAGTAGATGAG |
IL1B (IL-1β) | ATGATGGCTTATTACAGTGGCA | GTCGGAGATTCGTAGCTGGA |
IL6 | ACTCACCTCTTCAGAACGAAT | CCATCTTTGGAAGGTTCAGGTTG |
NFKB1 | AACAGAGAGGATTTCGTTTCC | TTTGACCTGAGGGTAAGACTTCT |
IL10 | GACTTTAAGGGTTACCTGGGT | TCACATGCGCCTTGATGTCTG |
NRF2 | TTCCCGGTCACATCGAGAG | TCCTGTTGCATACCGTCTAAATC |
BAX | CCCGAGAGGTCTTTTTCCGAG | CCAGCCCATGATGGTTCTGAT |
BCL2 | GGTGGGGTCATGTGTGTGG | CGGTTCAGGTACTCAGTCATCC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Generalov, E.; Grigoryan, I.; Minaichev, V.; Sinitsyna, O.; Yakovenko, L.; Sinitsyn, A.; Generalova, L. Anti-Inflammatory Effects of Solanum tuberosum L. Polysaccharide and Its Limited Gene Expression Profile. Int. J. Mol. Sci. 2025, 26, 5562. https://doi.org/10.3390/ijms26125562
Generalov E, Grigoryan I, Minaichev V, Sinitsyna O, Yakovenko L, Sinitsyn A, Generalova L. Anti-Inflammatory Effects of Solanum tuberosum L. Polysaccharide and Its Limited Gene Expression Profile. International Journal of Molecular Sciences. 2025; 26(12):5562. https://doi.org/10.3390/ijms26125562
Chicago/Turabian StyleGeneralov, Evgenii, Ilya Grigoryan, Vladislav Minaichev, Olga Sinitsyna, Leonid Yakovenko, Arkady Sinitsyn, and Liubov Generalova. 2025. "Anti-Inflammatory Effects of Solanum tuberosum L. Polysaccharide and Its Limited Gene Expression Profile" International Journal of Molecular Sciences 26, no. 12: 5562. https://doi.org/10.3390/ijms26125562
APA StyleGeneralov, E., Grigoryan, I., Minaichev, V., Sinitsyna, O., Yakovenko, L., Sinitsyn, A., & Generalova, L. (2025). Anti-Inflammatory Effects of Solanum tuberosum L. Polysaccharide and Its Limited Gene Expression Profile. International Journal of Molecular Sciences, 26(12), 5562. https://doi.org/10.3390/ijms26125562