Protection of Mitochondria, Cells and Organs from Ischemia–Reperfusion Damage Through Preventive Redox Bioregulation by Ozone
Abstract
:1. Introduction
2. I/R Damage and the Regulation by Oxidative Preconditioning Through Low-Dose Medical Ozone
2.1. Mechanism of Action and the Ozone Effect
2.2. Heart Protection Against I/R Damage Through Ozone-Mediated Mitochondrial Biogenesis
2.3. Protection of Mitochondria in the Heart Muscle Against I/R Damage
3. Protection Against Brain I/R Injury
3.1. Cell Model: Protection of Neuronal Cells
3.2. Cerebral I/R Injury Animal Model
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Liu, Q.; Meng, H.; Duan, H.; Liu, X.; Wu, J.; Gao, F.; Wang, S.; Tan, R.; Yuan, J. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Léon, O.S.; Menéndez, S.; Merino, N.; Castillo, R.; Sam, S.; Pérez, L.; Cruz, E.; Bocci, V. Ozone oxidative preconditioning: A protection against cellular damage by free radicals. Mediat. Inflamm. 1998, 7, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Ajamieh, H.; Merino, N.; Candelario-Jalil, E.; Menendez, S.; Martinez-Sanchez, G.; Re, L.; Giuliani, A.; Leon, O.S. Similar protective effect of ischemic and ozone oxidative preconditioning in liver/ischemia/reperfusion injury. Pharmacol. Res. 2002, 45, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Ajamieh, H.; Menendez, S.; Martınez-Sanchez, G.; Candelario-Jalil, E.; Re, L.; Giuliani, A.; Leon Fernandez, O. Effects of ozone oxidative preconditioning on nitric oxide generation and cellular redox balance in a rat model of hepatic ischaemia–reperfusion. Liver Int. 2004, 24, 55–62. [Google Scholar] [CrossRef]
- Ajamieh, H.; Berlanga, J.; Merino, N.; Martinez Sanchez, G.; Carmona, A.; Menendez Cepero, S.; Giuliani, A.; Re, L.; Leon, O.S. Role of protein synthesis in the protection conferred by ozone-oxidative-preconditioning in hepatic ischaemia/reperfusion. Transpl. Int. 2005, 18, 604–612. [Google Scholar] [CrossRef]
- Calunga, J.; Zamora, Z.; Borrego, A.; Del Rıo, S.; Barber, E.; Menendez, S.; Hernandez, F.; Montero, T.; Taboada, D. Ozone Therapy on Rats Submitted to Subtotal Nephrectomy: Role of Antioxidant System. Mediat. Inflamm. 2005, 4, 221–227. [Google Scholar] [CrossRef]
- Zamora, Z.; Borrego, A.; Lopez, O.; Delgado, T.; Gonzalez, R.; Menedez, S.; Hernandez, F.; Schulz, S. Effects of ozone oxidative preconditioning on TNF-alpha release and intracellular antioxidant-prooxidant balance in mice during endotoxic shock. Mediat. Inflamm. 2005, 2005, 16–22. [Google Scholar] [CrossRef]
- Santana-Rodríguez, N.; Llontop, P.; Clavo, B.; Fiuza-Perez, M.; Zerecero, K.; Ayub, A.; Alshehri, K.; Yordi, N.; Re, L.; Raad, W.; et al. Ozone Therapy Protects Against Rejection in a Lung Transplantation Model: A New Treatment? Ann. Thorac. Surg. 2017, 104, 258–464. [Google Scholar] [CrossRef]
- Clavo, B.; Catalá, L.; Pérez, J.; Rodríguez, V.; Robaina, F. Ozone Therapy on Cerebral Blood Flow: A Preliminary Report. Evid.-Based Complement. Altern. Med. 2004, 1, 315–319. [Google Scholar] [CrossRef]
- Zhu, F.; Ding, S.; Liu, Y.; Wang, X.; Wu, Z. Ozone-mediated cerebral protection: Unraveling the mechanism through ferroptosis and the NRF2/SLC7A11/GPX4 signaling pathway. J. Chem. Neuroanat. 2024, 136, 102387. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Liu, Y.; Du, Y.; Liu, X. Ozone oxidative postconditioning inhibits oxidative stress and apoptosis in renal ischemia and reperfusion injury through inhibition of MAPK signaling pathway. Drug Des. Dev. Ther. 2018, 12, 1293–1301. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Cui, Y.; Ren, Q.; Yan, B.; Zhao, Y.; Yu, P.; Gao, G.; Shi, H.; Chang, S.; Chang, Y. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis. 2021, 12, 447. [Google Scholar] [CrossRef] [PubMed]
- Barakat, S.; Saleh, N.; Thabet, S.; El Missiri, A.; Badawy, M. Ischämie/Reperfusions-Modell am Herzen nach oxidativer Konditionierung durch Ozon [Ozone Oxidative Preconditioning in Ischemia/Reperfusion Model on the Myocardium]. In Ozone-Textbook, Basics-Prevention-Therapy; Viebahn-Hänsler, R., Knoch, H.G., Eds.; Ecomed Publisher: Landsberg, Germany, 2006. [Google Scholar]
- Meng, W.; Xu, Y.; Lic, D.; Zhua, E.; Deng, L.; Liu, Z.; Zhang, G.; Liu, H. Ozone protects rat heart against ischemia-reperfusion injury: A role for oxidative preconditioning in attenuating mitochondrial injury. Biomed. Pharmacother. 2017, 88, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Xi, T.; Zheng, L.; Huang, L.; Peng, Y.; Liao, R.; Zhu, Y. Ozone alleviates ischemia/reperfusion injury by inhibiting mitochondrion-mediated apoptosis pathway in SH-SY5Y cells. Cell Biol. Int. 2020, 44, 975–984. [Google Scholar] [CrossRef]
- Wang, R.; Liu, F.; Huang, P.; Zhang, Y.; He, J.; Pang, X.; Zhang, D.; Guan, Y. Ozone preconditioning protects rabbit heart against global ischemia-reperfusion injury in vitro by up-regulating HIF-1. Biomed. Pharmacother. 2022, 150, 113033. [Google Scholar] [CrossRef]
- Ding, S.; Duanmu, X.; Xu, L.; Zhu, L.; Wu, Z. Ozone pretreatment alleviates ischemia–reperfusion injury-induced myocardial ferroptosis by activating the Nrf2/Slc7a11/Gpx4. Biomed. Pharmacother. 2023, 165, 115185. [Google Scholar] [CrossRef]
- Dash, U.; Nayak, V.; Navani, S.; Samal, R.; Agrawal, P.; Singh, A.; Majhi, S.; Mogaref, D.G.; Duttaroy, A.; Jena, A.B. Understanding the molecular bridges between the drugs and immune cell. Pharmacol. Ther. 2025, 267, 108805. [Google Scholar] [CrossRef]
- Viebahn-Haensler, R.; León Fernández, O. Ozone in Medicine. The Low-Dose Ozone Concept. The Redox-Bioregulatory Effect as Prominent Biochemical Mechanism and the Role of Glutathione. Ozone Sci. Eng. 2024, 46, 267–279. [Google Scholar] [CrossRef]
- Sagai, M.; Bocci, V. Mechanisms of Action Involved in Ozone Therapy: Is Healing Induced via a Mild Oxidative Stress? Med. Gas Res. 2011, 1, 29. [Google Scholar] [CrossRef]
- Togi, M.; Nagashima, S.; Kitay, Y.; Muromoto, R.; Kashiwakura, J.; Miura, T.; Matsuda, T. Implication of NF-kB Activation on Ozone-Induced HO-1 Activation. BPB Rep. 2021, 4, 59–63. [Google Scholar] [CrossRef]
- Zong, Y.; Li, H.; Liao, P.; Chen, L.; Pan, Y.; Zheng, Y.; Zhang, C.; Liu, D.; Zheng, M.; Gao, J. Mitochondrial dysfunction: Mechanisms and advances in Therapy. Signal Transduct. Target. Ther. 2024, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta 2017, 1863, 1066–1077. [Google Scholar] [CrossRef] [PubMed]
- Viebahn-Haensler, R.; León Fernández, O.S. Mitochondrial Dysfunction, Its Oxidative Stress-Induced Pathologies and Redox Bioregulation through Low-Dose Medical Ozone: A Systematic Review. Molecules 2024, 29, 2738. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, G.; Tritto, I. Reperfusion injury: Experimental evidence and clinical implications. Am. Heart J. 1999, 138, 69–75. [Google Scholar] [CrossRef]
- Jun, L.; Knight, E.; Broderick, T.L.; Al-Nakkash, L.; Tobin, B.; Geetha, T.; Babu, J.R. Moderate-Intensity Exercise Enhances Mitochondrial Biogenesis Markers in the Skeletal Muscle of a Mouse Model Affected by Diet-Induced Obesity. Nutrients 2024, 16, 1836. [Google Scholar] [CrossRef]
- Galié, M.; Covi, V.; Tabaracci, G.; Malatesta, M. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int. J. Mol. Sci. 2019, 16, 4009. [Google Scholar] [CrossRef]
- Carvajal-Oliveros, A.; Uriostegui-Arcos, M.; Zurita, M.; Melchy-Perez, E.; Narváez-Padilla, V.; Reynaud, E. The BE (2)-M17 cell line has a better dopaminergic phenotype than the traditionally used for Parkinson’s research SH-SY5Y, which is mostly serotonergic. IBRO Neurosci. Rep. 2022, 13, 543–551. [Google Scholar] [CrossRef]
- Viebahn-Haensler, R.; León Fernández, O.S.; Fahmy, Z. Ozone in medicine: The low-dose ozone concept. Guidelines and treatment strategies. Ozone Sci. Eng. 2012, 34, 408–424. [Google Scholar] [CrossRef]
Subject, Type of Study | Procedure | Antioxidants/Oxidative Stress Parameters Relevant for Ozone Effect | References |
---|---|---|---|
Preclinical trial in rats. Ozone oxidative preconditioning: A protection against cellular damage by free radicals. | Six animal groups: adult female Sprague-Dawley rats, 220–250 g. Ten animals per group. Four control groups Toxicity-producing ROS: by CCl4 solution; ozone preconditioning: 15 O3 treatments as rectal insufflation (1 mg/kg), 4.5–5 mL, 50 μg/mL. | Only a few redox parameters relevant to the ozone effect: SOD in u/g; GSH in mmol/g: TBARS in nmol/g protein. | León et al., 1998 [2]. |
Preclinical trial in rats. Similar protective effect of ischemic and ozone oxidative preconditioning in liver/ischemia–reperfusion injury. | Adult male Wistar rats (250–300 g). n = 32, hepatic ischaemia I/R (n = 8): 90 min hepatic ischaemia 90 min reperfusion (n = 8). ozone preconditioning: 15 O3 treatments as rectal insufflation (n = 8) (1 mg/kg), 5–5.5 mL, 50 μg/mL. | MDA + 4-hydroxynonenal in mmol/g; total SH-groups in mol/mg protein. | Ajamieh et al., 2002 [3]. |
Preclinical trial in rats. Effects of ozone oxidative preconditioning on nitric oxide generation and cellular redox balance in a rat model of hepatic ischemia–reperfusion. | 60 adult male Wistar rats (250–300 g), 10 per group. hepatic ischemia I/R 90 min ischemia, 90 min reperfusion; ozone preconditioning: 15 O3 treatments as rectal insufflation (1 mg/kg), 5–5.5 mL, 50 μg/mL. | GSH in μg/g tissue, MDA + 4 hydroxynonenal in mmol/g. | Ajamieh et al., 2004 [4]. |
Preclinical trial in rats. Role of protein synthesis in protection conferred by ozone-oxidative-preconditioning in hepatic ischemia–reperfusion. | Adult male Wistar rats (10 per group, 250–275 g) hepatic ischemia 90 min ischemia, ozone preconditioning: 15 O3 treatments as rectal insufflation (1 mg/kg), 5–5.5 mL, 50 μg/mL. | Mn-SOD in U/g tissue (SOD 2 mitochondrial SOD); Cu/Zn-SOD in U/g tissue (SOD 1 cytosol), MDA + 4 hydroxynonenal in mmol/g. | Ajamieh et al., 2005 [5]. |
Preclinical trial in rats. Ozone Therapy on Rats Submitted to Subtotal Nephrectomy: Role of Antioxidant System. | 30 female Wistar rats (180–200 g), 10 per group: 15 treatments 2.5−2.6mL, conc. 50 μg/mL rectal insufflation 1×/day, partial nephrectomy. | GSH (nmol/mg protein) TBARS in nmol/g protein. | Calunga et al., 2005 [6]. |
Preclinical trial in rats. Ischemia–reperfusion animal model on rat myocard after ozone oxidative preconditioning. Ischämie/Reperfusions-Modell am Herzen nach oxidativer Konditionierung durch Ozon]. | 30 male albino rats (100–150 g), 3 groups, each with n = 10, preventive ozone i.p. 2× per week for 2 months or for 3 months, conc.: 4 μg/mL; 28 μg per 100 g rat (400 μg per 100 mL blood), followed by 30 min ischemia and 30 min reperfusion. | SOD, MDA, Mitochondrial biogenesis. | Barakat et al., 2006 [13]. |
Preclinical trial in rats. Ozone Therapy Protects Against Rejection in a Lung Transplantation Model: A New Treatment? | Male Sprague-Dawley rats, n = 36, rectal O3 daily for 2 weeks prior to lung transplantation (20–50 μg per animal) and 50 μg/dose 3×/week up to 3 months. | Ozone pre- and postconditioning significantly decreased the expression of all genes related to oxidative stress and chronic rejection. | Santana-Rodríguez et al., 2017 [8]. |
Preclinical trial in rats. Ozone protects rat heart against ischemia–reperfusion injury: A role for oxidative preconditioning in attenuating mitochondrial injury. | Adult male Sprague-Dawley rats (200–250 g) OzoneOP 2 mL ozone 100 μg/kg/day for 5 days, 30 min of cardiac ischemia followed by 2 h reperfusion. | SOD 1 and SOD 2 in u/mg protein | Meng et al., 2017 [14]. |
Preclinical trial in cell culture. Ozone alleviates ischemia–reperfusion injury by inhibiting mitochondrion-mediated apoptosis pathway in SH-SY5Y cells. | SH-SY5Y cells as model for neuronal function tests; ozone oxidative preconditioning via incubation with 40 μg/mL and cultured for 2, 6; 12, and 24 h. | SOD in μ/mg protein, MDA in nmol/mg protein. | Cai et al., 2020 [15]. |
Preclinical trial in rabbits. Ozone preconditioning protects rabbit heart against global ischemia–reperfusion injury in vitro by up-regulating HIF-1. | Adult rabbits (2.50–2.75 kg), ozone oxidative preconditioning: i.p. injections 10 mL daily for 5 days. Three concs: 20; 40, 80 μg/mL followed by 20 min ischemia, 60 min reperfusion. | SOD in μ/mg protein, MDA in mmol/mg protein | Wang et al., 2022 [16]. |
Preclinical trial in cell culture and in an animal model (mice). Ozone pretreatment alleviates ischemia–reperfusion injury-induced myocardial ferroptosis by activating the Nrf2/Slc7a11/Gpx4 axis. | 1. H9c2 cardiomyocytes; 2. Male C57 mice, 7 weeks of age, 22–24 g. n = 36, 12 per group, ozone preconditioning, 25 μg/mL i.p. injections, 2 mL per day for 5 days. 30 min. ischemia, 2 hrs reperfusion. | SOD activity in % of CTL (cytotoxic T lymphocyte activity), MDA in μmol/g protein | Ding et al., 2023 [17]. |
Preclinical trial in rats. Ozone-mediated cerebral protection: Unraveling the mechanism through ferroptosis and the NRF2/SLC7A11/GPX4 signaling pathway. | Sprague-Dawley (SD) rats (260–300 g), middle artery occlusion for 120 min, followed by surgery and reperfusion. Ozone oxidative preconditioning, i.p. injections (intra peritoneal), 20 μg/mL with 2.5 mL/kg/d, 5 days. | GSH in mg/g protein, LPO (lipoperoxides), MDA in μmol/g protein. | Zhu et al., 2024 [10]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viebahn-Haensler, R.; León Fernández, O.S. Protection of Mitochondria, Cells and Organs from Ischemia–Reperfusion Damage Through Preventive Redox Bioregulation by Ozone. Int. J. Mol. Sci. 2025, 26, 5557. https://doi.org/10.3390/ijms26125557
Viebahn-Haensler R, León Fernández OS. Protection of Mitochondria, Cells and Organs from Ischemia–Reperfusion Damage Through Preventive Redox Bioregulation by Ozone. International Journal of Molecular Sciences. 2025; 26(12):5557. https://doi.org/10.3390/ijms26125557
Chicago/Turabian StyleViebahn-Haensler, Renate, and Olga Sonia León Fernández. 2025. "Protection of Mitochondria, Cells and Organs from Ischemia–Reperfusion Damage Through Preventive Redox Bioregulation by Ozone" International Journal of Molecular Sciences 26, no. 12: 5557. https://doi.org/10.3390/ijms26125557
APA StyleViebahn-Haensler, R., & León Fernández, O. S. (2025). Protection of Mitochondria, Cells and Organs from Ischemia–Reperfusion Damage Through Preventive Redox Bioregulation by Ozone. International Journal of Molecular Sciences, 26(12), 5557. https://doi.org/10.3390/ijms26125557