The Role of the RecFOR Complex in Genome Stability
Abstract
1. Introduction
2. Sequence Similarity
3. Structural Similarity
4. Protein Domain Organization
5. Higher-Order Structural Insight and Partner Binding
6. The Mechanism of Action of RecFOR
6.1. RecO and ssDNA Annealing
6.2. Impact of RecR Binding to RecO
6.3. The Concerted Actions of RecF, O, and R as RecFOR
7. Summary
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Bianco, P.R.; Tracy, R.B.; Kowalczykowski, S.C. DNA strand exchange proteins: A biochemical and physical comparison. Front. Biosci. 1998, 3, D570–D603. [Google Scholar] [PubMed]
- Bianco, P.R. RecA Protein. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; pp. 1–12. [Google Scholar]
- Roman, L.J.; Dixon, D.A.; Kowalczykowski, S.C. RecBCD-dependent joint molecule formation promoted by the Escherichia coli RecA and SSB proteins. Proc. Natl. Acad. Sci. USA 1991, 88, 3367–3371. [Google Scholar] [CrossRef]
- Dillingham, M.S.; Kowalczykowski, S.C. RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol. Mol. Biol. Rev. 2008, 72, 642–671. [Google Scholar] [CrossRef] [PubMed]
- Wigley, D.B. Bacterial DNA repair: Recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat. Rev. Microbiol. 2013, 11, 9–13. [Google Scholar] [CrossRef]
- Clark, A.J. Rec genes and homologous recombination proteins in Escherichia coli. Biochimie 1991, 73, 523–532. [Google Scholar] [CrossRef]
- Horii, Z.-I.; Clark, A.J. Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: Isolation and characterization of mutants. J. Mol. Biol. 1973, 80, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.G.; Buckman, C. Identification and genetic analysis of sbcC mutations in commonly used recBC sbcB strains of Escherichia coli K-12. J. Bacteriol. 1985, 164, 836–844. [Google Scholar] [CrossRef]
- Michel, B.; Leach, D. Homologous Recombination-Enzymes and Pathways. EcoSal Plus 2012, 5. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.; Sandler, S. Homologous genetic recombination: The pieces begin to fall into place. Crit. Rev. Microbiol. 1994, 20, 125–142. [Google Scholar] [CrossRef]
- Kowalczykowski, S.C.; Dixon, D.A.; Eggleston, A.K.; Lauder, S.D.; Rehrauer, W.M. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 1994, 58, 401–465. [Google Scholar] [CrossRef]
- Handa, N.; Morimatsu, K.; Lovett, S.T.; Kowalczykowski, S.C. Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli. Genes Dev. 2009, 23, 1234–1245. [Google Scholar] [CrossRef] [PubMed]
- Morimatsu, K.; Wu, Y.; Kowalczykowski, S.C. RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5’ terminus: Implication for repair of stalled replication forks. J. Biol. Chem. 2012, 287, 35621–35630. [Google Scholar] [CrossRef]
- Morimatsu, K.; Kowalczykowski, S.C. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: A universal step of recombinational repair. Mol. Cell 2003, 11, 1337–1347. [Google Scholar] [CrossRef] [PubMed]
- Sandler, S.J.; Bonde, N.J.; Wood, E.A.; Cox, M.M.; Keck, J.L. The intrinsically disordered linker in the single-stranded DNA-binding protein influences DNA replication restart and recombination pathways in Escherichia coli K-12. J. Bacteriol. 2024, 206, e0033023. [Google Scholar] [CrossRef]
- Bianco, P.R.; Pottinger, S.; Tan, H.Y.; Nguyenduc, T.; Rex, K.; Varshney, U. The IDL of E. coli SSB links ssDNA and protein binding by mediating protein-protein interactions. Protein Sci. 2017, 26, 227–241. [Google Scholar] [CrossRef]
- Ryzhikov, M.; Koroleva, O.; Postnov, D.; Tran, A.; Korolev, S. Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic Acids Res. 2011, 39, 6305–6314. [Google Scholar] [CrossRef] [PubMed]
- Shinn, M.K.; Chaturvedi, S.K.; Kozlov, A.G.; Lohman, T.M. Allosteric effects of E. coli SSB and RecR proteins on RecO protein binding to DNA. Nucleic Acids Res. 2023, 51, 2284–2297. [Google Scholar] [CrossRef]
- Ivancic-Bace, I.; Peharec, P.; Moslavac, S.; Skrobot, N.; Salaj-Smic, E.; Brcic-Kostic, K. RecFOR function is required for DNA repair and recombination in a RecA loading-deficient recB mutant of Escherichia coli. Genetics 2003, 163, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Gurung, D.; Blumenthal, R.M. Distribution of RecBCD and AddAB recombination-associated genes among bacteria in 33 phyla. Microbiology 2020, 166, 1047–1064. [Google Scholar] [CrossRef]
- Gupta, R.; Barkan, D.; Redelman-Sidi, G.; Shuman, S.; Glickman, M.S. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways. Mol. Microbiol. 2011, 79, 316–330. [Google Scholar] [CrossRef]
- Sinha, K.M.; Unciuleac, M.C.; Glickman, M.S.; Shuman, S. AdnAB: A new DSB-resecting motor-nuclease from mycobacteria. Genes Dev. 2009, 23, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.B.; Xu, J.Z.; Zhang, F.; Liu, S.; Liu, J.; Zhang, W.G. Review of DNA repair enzymes in bacteria: With a major focus on AddAB and RecBCD. DNA Repair 2022, 118, 103389. [Google Scholar] [CrossRef]
- Makarova, K.S.; Aravind, L.; Wolf, Y.I.; Tatusov, R.L.; Minton, K.W.; Koonin, E.V.; Daly, M.J. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 2001, 65, 44–79. [Google Scholar] [CrossRef]
- Gomez-Campo, C.L.; Abdelmoteleb, A.; Pulido, V.; Gost, M.; Sanchez-Hevia, D.L.; Berenguer, J.; Mencia, M. Differential requirement for RecFOR pathway components in Thermus thermophilus. Environ. Microbiol. Rep. 2024, 16, e13269. [Google Scholar] [CrossRef]
- Lenhart, J.S.; Brandes, E.R.; Schroeder, J.W.; Sorenson, R.J.; Showalter, H.D.; Simmons, L.A. RecO and RecR are necessary for RecA loading in response to DNA damage and replication fork stress. J. Bacteriol. 2014, 196, 2851–2860. [Google Scholar] [CrossRef]
- Mutte, S.K.; Barendse, P.; Ugarte, P.B.; Swarts, D.C. Distribution of bacterial DNA repair proteins and their co-occurrence with immune systems. Cell Rep. 2025, 44, 115110. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.C.; Plank, J.L.; Dombrowski, C.C.; Kowalczykowski, S.C. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature 2012, 491, 274–278. [Google Scholar] [CrossRef]
- Kolodner, R.; Fishel, R.A.; Howard, M. Genetic recombination of bacterial plasmid DNA: Effect of recF pathway mutations on plasmid recombination in Escherichia coli. J. Bacteriol. 1985, 163, 1060–1066. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.G.; Porton, M.C.; Buckman, C. Effect of recF, recJ, recN, recO and ruv mutations on ultraviolet survival and genetic recombination in a recD strain of Escherichia coli K12. Mol. Gen. Genet. 1988, 212, 317–324. [Google Scholar] [CrossRef]
- Bentchikou, E.; Servant, P.; Coste, G.; Sommer, S. A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans. PLoS Genet. 2010, 6, e1000774. [Google Scholar] [CrossRef]
- Gupta, R.; Shuman, S.; Glickman, M.S. RecF and RecR Play Critical Roles in the Homologous Recombination and Single-Strand Annealing Pathways of Mycobacteria. J. Bacteriol. 2015, 197, 3121–3132. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Lo, L.F.; Maier, R.J. The RecRO pathway of DNA recombinational repair in Helicobacter pylori and its role in bacterial survival in the host. DNA Repair 2011, 10, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Oh, H.B.; Yoon, S.I. Crystal Structure of the Recombination Mediator Protein RecO from Campylobacter jejuni and Its Interaction with DNA and a Zinc Ion. Int. J. Mol. Sci. 2022, 23, 9667. [Google Scholar] [CrossRef]
- Tseng, Y.C.; Hung, J.L.; Wang, T.C. Involvement of RecF pathway recombination genes in postreplication repair in UV-irradiated Escherichia coli cells. Mutat. Res. 1994, 315, 1–9. [Google Scholar] [CrossRef]
- Wang, T.; Smith, K. recF-dependent and recF recB-independent DNA gap-filling repair processes transfer dimer-containing parental strands to daughter strands in Escherichia coli K-12 uvrB. J. Bacteriol. 1984, 158, 727–729. [Google Scholar] [CrossRef]
- Hegde, S.; Sandler, S.; Clark, A.; Madiraju, M. recO and recR mutations delay induction of the SOS response in Escherichia coli. Mol. Gen. Genet. 1995, 246, 254–258. [Google Scholar] [CrossRef]
- Cox, M.M.; Goodman, M.F.; Keck, J.L.; van Oijen, A.; Lovett, S.T.; Robinson, A. Generation and Repair of Postreplication Gaps in Escherichia coli. Microbiol. Mol. Biol. Rev. 2023, 87, e0007822. [Google Scholar] [CrossRef] [PubMed]
- Marians, K.J. Lesion Bypass and the Reactivation of Stalled Replication Forks. Annu. Rev. Biochem. 2018, 87, 217–238. [Google Scholar] [CrossRef]
- Wu, H.Y.; Lu, C.H.; Li, H.W. RecA-SSB Interaction Modulates RecA Nucleoprotein Filament Formation on SSB-Wrapped DNA. Sci. Rep. 2017, 7, 11876. [Google Scholar] [CrossRef]
- Kowalczykowski, S.C.; Clow, J.; Somani, R.; Varghese, A. Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA. Demonstration of competitive binding and the lack of a specific protein-protein interaction. J. Mol. Biol. 1987, 193, 81–95. [Google Scholar] [CrossRef]
- Webb, B.L.; Cox, M.M.; Inman, R.B. Recombinational DNA repair: The RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 1997, 91, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Grishin, N.V. PROMALS3D: Multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information. Methods Mol. Biol. 2014, 1079, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Tang, M.; Grishin, N.V. PROMALS3D web server for accurate multiple protein sequence and structure alignments. Nucleic Acids Res. 2008, 36, W30–W34. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Kim, B.H.; Grishin, N.V. PROMALS3D: A tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 2008, 36, 2295–2300. [Google Scholar] [CrossRef]
- Koroleva, O.; Makharashvili, N.; Courcelle, C.T.; Courcelle, J.; Korolev, S. Structural conservation of RecF and Rad50: Implications for DNA recognition and RecF function. EMBO J. 2007, 26, 867–877. [Google Scholar] [CrossRef]
- Timmins, J.; Leiros, I.; McSweeney, S. Crystal structure and mutational study of RecOR provide insight into its mode of DNA binding. EMBO J. 2007, 26, 3260–3271. [Google Scholar] [CrossRef]
- Bittrich, S.; Segura, J.; Duarte, J.M.; Burley, S.K.; Rose, Y. RCSB protein Data Bank: Exploring protein 3D similarities via comprehensive structural alignments. Bioinformatics 2024, 40, btae370. [Google Scholar] [CrossRef]
- Zhang, Y.; Skolnick, J. TM-align: A protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005, 33, 2302–2309. [Google Scholar] [CrossRef]
- Nirwal, S.; Czarnocki-Cieciura, M.; Chaudhary, A.; Zajko, W.; Skowronek, K.; Chamera, S.; Figiel, M.; Nowotny, M. Mechanism of RecF-RecO-RecR cooperation in bacterial homologous recombination. Nat. Struct. Mol. Biol. 2023, 30, 650–660. [Google Scholar] [CrossRef]
- Chaudhary, S.K.; Elayappan, M.; Jeyakanthan, J.; Kanagaraj, S. Structural and functional characterization of oligomeric states of proteins in RecFOR pathway. Int. J. Biol. Macromol. 2020, 163, 943–953. [Google Scholar] [CrossRef]
- Sandler, S.J.; Chackerian, B.; Li, J.T.; Clark, A.J. Sequence and complementation analysis of recF genes from Escherichia coli, Salmonella typhimurium, Pseudomonas putida and Bacillus subtilis: Evidence for an essential phosphate binding loop. Nucleic Acids Res. 1992, 20, 839–845. [Google Scholar] [CrossRef]
- Courcelle, J.; Worley, T.K.; Courcelle, C.T. Recombination Mediator Proteins: Misnomers That Are Key to Understanding the Genomic Instabilities in Cancer. Genes 2022, 13, 437. [Google Scholar] [CrossRef] [PubMed]
- Umezu, K.; Chi, N.W.; Kolodner, R.D. Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc. Natl. Acad. Sci. USA 1993, 90, 3875–3879. [Google Scholar] [CrossRef]
- Hegde, S.P.; Rajagopalan, M.; Madiraju, M.V. Preferential binding of Escherichia coli RecF protein to gapped DNA in the presence of adenosine (gamma-thio) triphosphate. J. Bacteriol. 1996, 178, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Griffin, T.J.; Kolodner, R.D. Purification and preliminary characterization of the Escherichia coli K-12 recF protein. J. Bacteriol. 1990, 172, 6291–6299. [Google Scholar] [CrossRef] [PubMed]
- Madiraju, M.V.V.S.; Clark, A.J. Evidence for ATP binding and double-stranded DNA binding by Escherichia coli RecF protein. J. Bacteriol. 1992, 174, 7705–7710. [Google Scholar] [CrossRef]
- Webb, B.L.; Cox, M.M.; Inman, R.B. An interaction between the Escherichia coli RecF and RecR proteins dependent on ATP and double-stranded DNA. J. Biol. Chem. 1995, 270, 31397–31404. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, Y.P.; Shan, H.H.; Tian, L.F.; Zhang, J.Z.; Yan, X.X. ATP-dependent conformational change in ABC-ATPase RecF serves as a switch in DNA repair. Sci. Rep. 2018, 8, 2127. [Google Scholar] [CrossRef]
- Makharashvili, N.; Koroleva, O.; Bera, S.; Grandgenett, D.P.; Korolev, S. A novel structure of DNA repair protein RecO from Deinococcus radiodurans. Structure 2004, 12, 1881–1889. [Google Scholar] [CrossRef]
- Leiros, I.; Timmins, J.; Hall, D.R.; McSweeney, S. Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. EMBO J. 2005, 24, 906–918. [Google Scholar] [CrossRef]
- Ding, W.; Tan, H.Y.; Zhang, J.X.; Wilczek, L.A.; Hsieh, K.R.; Mulkin, J.A.; Bianco, P.R. The mechanism of Single strand binding protein-RecG binding: Implications for SSB interactome function. Protein Sci. 2020, 29, 1211–1227. [Google Scholar] [CrossRef] [PubMed]
- Ryzhikov, M.; Korolev, S. Structural studies of SSB interaction with RecO. Methods Mol. Biol. 2012, 922, 123–131. [Google Scholar] [CrossRef]
- Umezu, K.; Kolodner, R.D. Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J. Biol. Chem. 1994, 269, 30005–30013. [Google Scholar] [CrossRef]
- Aravind, L.; Leipe, D.D.; Koonin, E.V. Toprim—A conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res. 1998, 26, 4205–4213. [Google Scholar] [CrossRef] [PubMed]
- Honda, M.; Inoue, J.; Yoshimasu, M.; Ito, Y.; Shibata, T.; Mikawa, T. Identification of the RecR Toprim domain as the binding site for both RecF and RecO. A role of RecR in RecFOR assembly at double-stranded DNA-single-stranded DNA junctions. J. Biol. Chem. 2006, 281, 18549–18559. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.I.; Kim, K.H.; Park, S.J.; Eom, S.H.; Song, H.K.; Suh, S.W. Ring-shaped architecture of RecR: Implications for its role in homologous recombinational DNA repair. EMBO J. 2004, 23, 2029–2038. [Google Scholar] [CrossRef]
- Ayora, S.; Stiege, A.C.; Alonso, J.C. RecR is a zinc metalloprotein from Bacillus subtilis 168. Mol. Microbiol. 1997, 23, 639–647. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, Y.P.; Yan, X.X.; Liang, D.C. Structural and functional characterization of Cys4 zinc finger motif in the recombination mediator protein RecR. DNA Repair 2014, 24, 10–14. [Google Scholar] [CrossRef]
- Tang, Q.; Gao, P.; Liu, Y.P.; Gao, A.; An, X.M.; Liu, S.; Yan, X.X.; Liang, D.C. RecOR complex including RecR N-N dimer and RecO monomer displays a high affinity for ssDNA. Nucleic Acids Res. 2012, 40, 11115–11125. [Google Scholar] [CrossRef]
- Hegde, S.P.; Qin, M.H.; Li, X.H.; Atkinson, M.A.; Clark, A.J.; Rajagopalan, M.; Madiraju, M.V. Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc. Natl. Acad. Sci. USA 1996, 93, 14468–14473. [Google Scholar] [CrossRef]
- Makharashvili, N.; Mi, T.; Koroleva, O.; Korolev, S. RecR-mediated modulation of RecF dimer specificity for single- and double-stranded DNA. J. Biol. Chem. 2009, 284, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Che, S.; Chen, Y.; Liang, Y.; Zhang, Q.; Bartlam, M. Crystal structure of RecR, a member of the RecFOR DNA-repair pathway, from Pseudomonas aeruginosa PAO1. Acta. Crystallogr. F Struct. Biol. Commun. 2018, 74, 222–230. [Google Scholar] [CrossRef]
- Luisi-DeLuca, C.; Kolodner, R.D. Purification and characterization of the Escherichia coli RecO protein. Renaturation of complementary single-stranded DNA molecules catalyzed by the RecO protein. J. Mol. Biol. 1994, 236, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Shinn, M.K.; Kozlov, A.G.; Lohman, T.M. Allosteric effects of SSB C-terminal tail on assembly of E. coli RecOR proteins. Nucleic Acids Res. 2021, 49, 1987–2004. [Google Scholar] [CrossRef]
- Honda, M.; Fujisawa, T.; Shibata, T.; Mikawa, T. RecR forms a ring-like tetramer that encircles dsDNA by forming a complex with RecF. Nucleic Acids Res. 2008, 36, 5013–5020. [Google Scholar] [CrossRef]
- Connolly, M.L. Solvent-accessible surfaces of proteins and nucleic acids. Science 1983, 221, 709–713. [Google Scholar] [CrossRef]
- Webb, B.L.; Cox, M.M.; Inman, R.B. ATP hydrolysis and DNA binding by the Escherichia coli RecF protein. J. Biol. Chem. 1999, 274, 15367–15374. [Google Scholar] [CrossRef] [PubMed]
- Strunnikov, A.V. SMC proteins and chromosome structure. Trends Cell Biol. 1998, 8, 454–459. [Google Scholar] [CrossRef]
- Hopfner, K.P.; Karcher, A.; Shin, D.S.; Craig, L.; Arthur, L.M.; Carney, J.P.; Tainer, J.A. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 2000, 101, 789–800. [Google Scholar] [CrossRef]
- Ryzhikov, M.; Gupta, R.; Glickman, M.; Korolev, S. RecO protein initiates DNA recombination and strand annealing through two alternative DNA binding mechanisms. J. Biol. Chem. 2014, 289, 28846–28855. [Google Scholar] [CrossRef]
- Bianco, P.R. The mechanism of action of the SSB interactome reveals it is the first OB-fold family of genome guardians in prokaryotes. Protein Sci. 2021, 30, 1757–1775. [Google Scholar] [CrossRef] [PubMed]
- Bianco, P.R.; Huang, C.Y. Insight into the mechanism of action of prokaryotic SSB interactomes. Front. Biosci.-Landmark, 2025; in press. [Google Scholar]
- Gupta, R.; Ryzhikov, M.; Koroleva, O.; Unciuleac, M.; Shuman, S.; Korolev, S.; Glickman, M.S. A dual role for mycobacterial RecO in RecA-dependent homologous recombination and RecA-independent single-strand annealing. Nucleic Acids Res. 2013, 41, 2284–2295. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Lloyd, R.G.; Buckman, C. Overlapping functions of recD, recJ and recN provide evidence of three epistatic groups of genes in Escherichia coli recombination and DNA repair. Biochimie 1991, 73, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, A.A.; Lloyd, R.G. Identification of the recR locus of Escherichia coli K-12 and analysis of its role in recombination and DNA repair. Mol. Gen. Genet. 1989, 216, 503–510. [Google Scholar] [CrossRef]
- Courcelle, J.; Carswell-Crumpton, C.; Hanawalt, P.C. recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc. Natl. Acad. Sci. USA 1997, 94, 3714–3719. [Google Scholar] [CrossRef]
- Rangarajan, S.; Woodgate, R.; Goodman, M.F. Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins. Mol. Microbiol. 2002, 43, 617–628. [Google Scholar] [CrossRef]
- Fujii, S.; Fuchs, R.P. A Comprehensive View of Translesion Synthesis in Escherichia coli. Microbiol. Mol. Biol. Rev. 2020, 84, e00002-20. [Google Scholar] [CrossRef]
- Fujii, S.; Isogawa, A.; Fuchs, R.P. RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis. EMBO J. 2006, 25, 5754–5763. [Google Scholar] [CrossRef]
- Raychaudhury, P.; Marians, K.J. The recombination mediator proteins RecFOR maintain RecA* levels for maximal DNA polymerase V Mut activity. J. Biol. Chem. 2019, 294, 852–860. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.; Kaur, G.; Cherry, M.E.; Henrikus, S.S.; Bonde, N.J.; Sharma, N.; Beyer, H.A.; Wood, E.A.; Chitteni-Pattu, S.; van Oijen, A.M.; et al. RecF protein targeting to post-replication (daughter strand) gaps II: RecF interaction with replisomes. Nucleic Acids Res. 2023, 51, 5714–5742. [Google Scholar] [CrossRef]
- Courcelle, J.; Crowley, D.J.; Hanawalt, P.C. Recovery of DNA replication in UV-irradiated Escherichia coli requires both excision repair and recF protein function. J. Bacteriol. 1999, 181, 916–922. [Google Scholar] [CrossRef]
- Courcelle, J.; Hanawalt, P.C. Participation of recombination proteins in rescue of arrested replication forks in UV-irradiated Escherichia coli need not involve recombination. Proc. Natl. Acad. Sci. USA 2001, 98, 8196–8202. [Google Scholar] [CrossRef]
- Chow, K.H.; Courcelle, J. RecO acts with RecF and RecR to protect and maintain replication forks blocked by UV-induced DNA damage in Escherichia coli. J. Biol. Chem. 2004, 279, 3492–3496. [Google Scholar] [CrossRef]
- Michel-Marks, E.; Courcelle, C.T.; Korolev, S.; Courcelle, J. ATP binding, ATP hydrolysis, and protein dimerization are required for RecF to catalyze an early step in the processing and recovery of replication forks disrupted by DNA damage. J. Mol. Biol. 2010, 401, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Kantake, N.; Madiraju, M.V.; Sugiyama, T.; Kowalczykowski, S.C. Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination. Proc. Natl. Acad. Sci. USA 2002, 99, 15327–15332. [Google Scholar] [CrossRef]
- Luisi-DeLuca, C. Homologous pairing of single-stranded DNA and superhelical double-stranded DNA catalyzed by RecO protein from Escherichia coli. J. Bacteriol. 1995, 177, 566–572. [Google Scholar] [CrossRef]
- Inoue, J.; Nagae, T.; Mishima, M.; Ito, Y.; Shibata, T.; Mikawa, T. A mechanism for single-stranded DNA-binding protein (SSB) displacement from single-stranded DNA upon SSB-RecO interaction. J. Biol. Chem. 2011, 286, 6720–6732. [Google Scholar] [CrossRef]
- Shinn, M.K.; Kozlov, A.G.; Nguyen, B.; Bujalowski, W.M.; Lohman, T.M. Are the intrinsically disordered linkers involved in SSB binding to accessory proteins? Nucleic Acids Res. 2019, 47, 8581–8594. [Google Scholar] [CrossRef]
- Bonde, N.J.; Kozlov, A.G.; Cox, M.M.; Lohman, T.M.; Keck, J.L. Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli. Crit. Rev. Biochem. Mol. Biol. 2024, 59, 99–127. [Google Scholar] [CrossRef]
- Shereda, R.D.; Kozlov, A.G.; Lohman, T.M.; Cox, M.M.; Keck, J.L. SSB as an organizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 2008, 43, 289–318. [Google Scholar] [CrossRef] [PubMed]
- Bianco, P.R. The tale of SSB. Prog. Biophys. Mol. Biol. 2017, 127, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Huang, C. The glycine-rich flexible region in SSB is crucial for PriA stimulation. RSC Adv. 2018, 8, 35280–35288. [Google Scholar] [CrossRef] [PubMed]
- Su, X.C.; Wang, Y.; Yagi, H.; Shishmarev, D.; Mason, C.E.; Smith, P.J.; Vandevenne, M.; Dixon, N.E.; Otting, G. Bound or free: Interaction of the C-terminal domain of Escherichia coli single-stranded DNA-binding protein (SSB) with the tetrameric core of SSB. Biochemistry 2014, 53, 1925–1934. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, J.Y.; Kim, C.; Park, S.; Joo, S.; Kim, S.K.; Lee, N.K. Single-molecule observation of ATP-independent SSB displacement by RecO in Deinococcus radiodurans. eLife 2020, 9, e50945. [Google Scholar] [CrossRef]
- Zhou, R.; Kozlov, A.G.; Roy, R.; Zhang, J.; Korolev, S.; Lohman, T.M.; Ha, T. SSB functions as a sliding platform that migrates on DNA via reptation. Cell 2011, 146, 222–232. [Google Scholar] [CrossRef]
- Bell, J.C.; Liu, B.; Kowalczykowski, S.C. Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular condensation and insight into RecOR function. eLife 2015, 4, e08646. [Google Scholar] [CrossRef]
- Shan, Q.; Bork, J.M.; Webb, B.L.; Inman, R.B.; Cox, M.M. RecA protein filaments: End-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J. Mol. Biol. 1997, 265, 519–540. [Google Scholar] [CrossRef]
- Radzimanowski, J.; Dehez, F.; Round, A.; Bidon-Chanal, A.; McSweeney, S.; Timmins, J. An ‘open’ structure of the RecOR complex supports ssDNA binding within the core of the complex. Nucleic Acids Res. 2013, 41, 7972–7986. [Google Scholar] [CrossRef]
- Bork, J.M.; Cox, M.M.; Inman, R.B. The RecOR proteins modulate RecA protein function at 5’ ends of single-stranded DNA. EMBO J. 2001, 20, 7313–7322. [Google Scholar] [CrossRef] [PubMed]
- Madiraju, M.V.; Clark, A.J. Effect of RecF protein on reactions catalyzed by RecA protein. Nucleic Acids Res. 1991, 19, 6295–6300. [Google Scholar] [CrossRef] [PubMed]
- Pinsince, J.M.; Griffith, J.D. Early stages in RecA protein-catalyzed pairing. Analysis of coaggregate formation and non-homologous DNA contacts. J. Mol. Biol. 1992, 228, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.; Mbele, N.; Cox, M.M. RecF protein targeting to postreplication (daughter strand) gaps I: DNA binding by RecF and RecFR. Nucleic Acids Res. 2023, 51, 5699–5713. [Google Scholar] [CrossRef]
Protein | Structures Compared 1 | TM-Align Identity (%) | RMSD (Å) | Host Organisms |
---|---|---|---|---|
RecF | 5zwu; 5z67 | 29 | 2.29 | Thermus; Caldanaerobacter |
5zwu; 2o5v | 40 | 2.64 | Thermus; Deinococcus | |
5z67; 2o5v | 32 | 2.05 | Caldanaerobacter; Deinococcus | |
RecR | 1 vdd; 3 vdu | 55 | 2.17 | Deinococcus; Caldanaerobacter |
3 vdu; 5 z2 v | 46 | 2.18 | Caldanaerobacter; Pseudomonas | |
1vdd; 5z2v | 48 | 1.75 | Deinococcus; Pseudomonas | |
RecO | 3 q8 d; 7 ymo | 11 | 3.69 | E. coli; Campylobacter |
3 q8 d; 1 w3 s | 13 | 3.21 | E. coli; Deinococcus | |
3 q8 d; 8 ab0 | 17 | 2.74 | E. coli; Thermus | |
1 w3 s; 8 ab0 | 29 | 2.09 | Deinococcus; Thermus | |
7 ymo; 8 ab0 | 13 | 2.98 | Campylobacter; Thermus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, P.R. The Role of the RecFOR Complex in Genome Stability. Int. J. Mol. Sci. 2025, 26, 5441. https://doi.org/10.3390/ijms26125441
Bianco PR. The Role of the RecFOR Complex in Genome Stability. International Journal of Molecular Sciences. 2025; 26(12):5441. https://doi.org/10.3390/ijms26125441
Chicago/Turabian StyleBianco, Piero R. 2025. "The Role of the RecFOR Complex in Genome Stability" International Journal of Molecular Sciences 26, no. 12: 5441. https://doi.org/10.3390/ijms26125441
APA StyleBianco, P. R. (2025). The Role of the RecFOR Complex in Genome Stability. International Journal of Molecular Sciences, 26(12), 5441. https://doi.org/10.3390/ijms26125441