Mediation of Osseointegration, Osteoimmunology, and Osteoimmunologic Integration by Tregs and Macrophages: A Narrative Review
Abstract
1. Introduction
Osteoimmunology—Fundamentals of Immunity and Immune Cells
2. T-Regulatory Cell (Tregs) Interactions with Other Immune Cells
2.1. T-Helper17 (Th17)/Treg
2.2. Tregs and Adenosine
2.3. Tregs and Neutrophils
2.4. Tregs and Dendritic Cells (DCs)
2.5. Tregs and Mesenchymal Stem Cells (MSCs)
2.6. Tregs and Macrophages
3. M1/M2 Polarization in Dental Implants
4. Immunologic Understanding of Osseointegration (Osteoimmunologic Integration: OII)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
A | Adenosine |
A2AAR | A2A Adenosine Receptor |
A2BAR | A2B Adenosine Receptor |
A3AR | A3 Adenosine Receptor |
AC | Adenylyl Cyclase |
APC | Antigen Presenting Cell |
ATP | Adenosine Triphosphate |
cAMP | cyclic Adenosine Monophosphate |
CD4 | Cluster of Differentiation 4 |
CD4+ | T helper Cell |
CD39 | Ectonucleoside Triphosphate Diphosphohydrolase-1 |
CD73 | Ecto-5′ Nucleotidase |
CTL | Cytotoxic T Lymphocyte |
CTLA-4 | Cytotoxic T Lymphocyte-Associated Antigen-4 |
DC | Dendritic Cell |
ENT1 | Equilibrative Nucleoside Transporter 1 |
EV | Extracellular Vesicle |
FBE | Foreign Body Equilibrium |
FBR | Foreign Body Reaction |
Foxp3+ | Forkhead box P3+ |
HLA-DR | Human Leukocyte Antigen-DR Isotype |
HO-1 | Heme Oxygenase-1 |
HSC | Hematopoietic Stem Cell |
IDO | Indoleamine 2,3-Dioxygenase |
IFN-γ | Interferon-γ |
IL-4 | Interleukin-4 |
IL-10 | Interleukin-10 |
IL-17 | Interleukin-17 |
KLF10 | Krüpel-like Factor 10 |
LAG-3 | Lymphocyte Antigen Gene-3 |
LPS | Lipopolysaccharide |
M1 | Pro-Inflammatory Macrophage |
M2 | Anti-Inflammatory Macrophage |
MCP-1 | Monocyte Chemoattractant Protein-1 |
MHC-II | Major Histocompatibility Complex-II |
MIP | Macrophage Inflammatory Protein |
MSC | Mesenchymal Stem Cell |
mTORC1 | mammalian Target of Rapamycin Complex 1 |
NET | Neutrophil Extracellular Trap |
NK | Natural Killer |
NO | Nitrogen oxide |
Nrp | Neuropilin |
OB | Osteoblast |
OC | Osteoclast |
OPG | Osteoprotegerin |
PD-1 | Programmed Cell Death Protein-1 |
PDRN | Polydeoxyribonucleotide |
pre-OC | pre-Osteoclast |
RANKL | Receptor Activator of NF-κB Ligand |
ROS | Reactive oxygen species |
Tconv | T conventional Cell |
TGF-β | Transforming Growth Factor-β |
Th17 | T helper 17 Cell |
TIGIT | T cell Immunoreceptor with Ig and ITIM Domains |
TNF-α | Tumor Necrosis Factor-α |
Treg | T-regulatory Cell |
References
- Arron, J.; Choi, Y. Bone Versus Immune System. Nature 2000, 408, 535–536. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, H. Osteoimmunology: Shared Mechanisms and Crosstalk Between the Immune and Bone Systems. Nat. Rev. Immunol. 2007, 7, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.; Monasterio, G.; Cavalla, F.; Córdova, L.A.; Hernández, M.; Heymann, D.; Garlet, G.P.; Sorsa, T.; Pärnänen, P.; Lee, H.M.; et al. Osteoimmunology of Oral and Maxillofacial Diseases: Translational Applications Based on Biological Mechanisms. Front. Immunol. 2019, 10, 1664. [Google Scholar] [CrossRef]
- Graves, D.T.; Oates, T.; Garlet, G.P. Review of Osteoimmunology and the Host Response in Endodontic and Periodontal Lesions. J. Oral Microbiol. 2011, 3, 5304. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Chess, L. How the Immune System Achieves Self-Nonself Discrimination During Adaptive Immunity. Adv. Immunol. 2009, 102, 95–133. [Google Scholar]
- Hoebe, K.; Janssen, E.; Beutler, B. The Interface Between Innate and Adaptive Immunity. Nat. Immunol. 2004, 5, 971–974. [Google Scholar] [CrossRef]
- Ossanna, R.; Veronese, S.; Quintero Sierra, L.A.; Conti, A.; Conti, G.; Sbarbati, A. Multilineage-Differentiating Stress-Enduring Cells (Muse Cells): An Easily Accessible, Pluripotent Stem Cell Niche with Unique and Powerful Properties for Multiple Regenerative Medicine Applications. Biomedicines 2023, 11, 1587. [Google Scholar] [CrossRef]
- Raza, Y.; Salman, H.; Luberto, C. Sphingolipids in Hematopoiesis: Exploring Their Role in Lineage Commitment. Cells 2021, 10, 2507. [Google Scholar] [CrossRef]
- Hirsova, P.; Bamidele, A.O.; Wang, H.; Povero, D.; Revelo, X.S. Emerging Roles of T Cells in the Pathogenesis of Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. Front. Endocrinol. 2021, 12, 760860. [Google Scholar] [CrossRef]
- Stashenko, P.; Gonçalves, R.B.; Lipkin, B.; Ficarelli, A.; Sasaki, H.; Campos-Neto, A. Th1 Immune Response Promotes Severe Bone Resorption Caused by Porphyromonas gingivalis. Am. J. Pathol. 2007, 170, 203–213. [Google Scholar] [CrossRef]
- Chen, Z.; Andreev, D.; Oeser, K.; Krljanac, B.; Hueber, A.; Kleyer, A.; Voehringer, D.; Schett, G.; Bozec, A. Th2 and Eosinophil Responses Suppress Inflammatory Arthritis. Nat. Commun. 2016, 7, 11596. [Google Scholar] [CrossRef]
- Takeichi, O.; Haber, J.; Kawai, T.; Smith, D.J.; Moro, I.; Taubman, M.A. Cytokine Profiles of T-Lymphocytes from Gingival Tissues with Pathological Pocketing. J. Dent. Res. 2000, 79, 1548–1555. [Google Scholar] [CrossRef]
- Berglundh, T.; Liljenberg, B.; Lindhe, J. Some Cytokine Profiles of T-Helper Cells in Lesions of Advanced Periodontitis. J. Clin. Periodontol. 2002, 8, 705–709. [Google Scholar] [CrossRef]
- Stadhouders, R.; Lubberts, E.; Hendriks, R.W. A Cellular and Molecular View of T-Helper 17 Cell Plasticity in Autoimmunity. J. Autoimmun. 2018, 87, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dutzan, N.; Vernal, R.; Vaque, J.P.; García-Sesnich, J.; Hernandez, M.; Abusleme, L.; Dezerega, A.; Gutkind, J.S.; Gamonal, J. Interleukin-21 Expression and Its Association with Proinflammatory Cytokines in Untreated Chronic Periodontitis Patients. J. Periodontol. 2012, 83, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Wang, C.; Li, P.; Lu, H.; Li, A.; Xu, S. Role of immune dysregulation in peri-implantitis. Front. Immunol. 2024, 15, 1466417. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.; Rojas, C.; Rojas, L.; Cafferata, E.A.; Monasterio, G.; Vernal, R. Regulatory T-Lymphocytes in Periodontitis: A Translational View. Mediat. Inflamm. 2018, 2018, 7806912. [Google Scholar] [CrossRef]
- Baecher-Allan, C.; Brown, J.A.; Freeman, G.J.; Hafler, D.A. CD4+CD25High Regulatory Cells in Human Peripheral Blood. J. Immunol. 2001, 167, 1245–1253. [Google Scholar] [CrossRef]
- Sakaguchi, S. The Origin of FOXP3-Expressing CD4+ Regulatory T-Cells: Thymus or Periphery. J. Clin. Investig. 2003, 112, 1310–1312. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, M.; Hao, M.; Tang, J. Periodontal Ligament Stem Cells in the Periodontitis Niche: Inseparable Interactions and Mechanisms. J. Leukoc. Biol. 2021, 110, 565–576. [Google Scholar] [CrossRef]
- Cardoso, C.R.; Garlet, G.P.; Moreira, A.P.; Júnior, W.M.; Rossi, M.A.; Silva, J.S. Characterization of CD4+CD25+ Natural Regulatory T-Cells in the Inflammatory Infiltrate of Human Chronic Periodontitis. J. Leukoc. Biol. 2008, 84, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Giro, G.; Tebar, A.; Franco, L.; Racy, D.; Bastos, M.F.; Shibli, J.A. Treg and TH17 Link to Immune Response in Individuals with Peri-Implantitis: A Preliminary Report. Clin. Oral Investig. 2021, 25, 1291–1297. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, M.; Xu, H.; Huang, H. Th-Cell Subsets of Submandibular Lymph Nodes in Peri-Implantitis. J. Craniofac. Surg. 2024, 35, 692–698. [Google Scholar] [CrossRef]
- Bozec, A.; Zaiss, M.M. T Regulatory Cells in Bone Remodelling. Curr. Osteoporos. Rep. 2017, 15, 121–125. [Google Scholar] [CrossRef]
- Kazemzadeh-Narbat, M.; Annabi, N.; Tamayol, A.; Oklu, R.; Ghanem, A.; Khademhosseini, A. Adenosine-Associated Delivery Systems. J. Drug Target. 2015, 23, 580–596. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Leone, M.; Viviand, X.; Ayem, M.L.; Guieu, R. High Adenosine Plasma Concentration as a Prognostic Index for Outcome in Patients with Septic Shock. Crit. Care Med. 2000, 28, 3198–3202. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Sitkovsky, M.V.; Robson, S.C. Purinergic Signaling During Inflammation. N. Engl. J. Med. 2012, 367, 2322–2333. [Google Scholar] [CrossRef] [PubMed]
- Faas, M.M.; Sáez, T.; De Vos, P. Extracellular ATP and Adenosine: The Yin and Yang in Immune Responses? Mol. Asp. Med. 2017, 55, 9–19. [Google Scholar] [CrossRef]
- Borea, P.A.; Gessi, S.; Merighi, S.; Vincenzi, F.; Varani, K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol. Rev. 2018, 98, 1591–1625. [Google Scholar] [CrossRef]
- Bitto, A.; Oteri, G.; Pisano, M.; Polito, F.; Irrera, N.; Minutoli, L.; Squadrito, F.; Altavilla, D. Adenosine Receptor Stimulation by Polynucleotides (PDRN) Reduces Inflammation in Experimental Periodontitis. J. Clin. Periodontol. 2013, 40, 26–32. [Google Scholar] [CrossRef]
- Ernst, P.B.; Garrison, J.C.; Thompson, L.F. Much Ado About Adenosine: Adenosine Synthesis and Function in Regulatory T Cell Biology. J. Immunol. 2010, 185, 1993–1998. [Google Scholar] [CrossRef]
- Kinsey, G.R.; Huang, L.; Jaworska, K.; Khutsishvili, K.; Becker, D.A.; Ye, H.; Lobo, P.I.; Okusa, M.D. Autocrine Adenosine Signaling Promotes Regulatory T Cell-Mediated Renal Protection. J. Am. Soc. Nephrol. 2012, 23, 1528–1537. [Google Scholar] [CrossRef]
- Becker, C.; Taube, C.; Bopp, T.; Becker, C.; Michel, K.; Kubach, J.; Reuter, S.; Dehzad, N.; Neurath, M.F.; Reifenberg, K.; et al. Protection from Graft-Versus-Host Disease by HIV-1 Envelope Protein Gp120-Mediated Activation of Human CD4+CD25+ Regulatory T Cells. Blood 2009, 114, 1263–1269. [Google Scholar] [CrossRef]
- Ohta, A.; Sitkovsky, M. Extracellular Adenosine-Mediated Modulation of Regulatory T Cells. Front. Immunol. 2014, 5, 304. [Google Scholar] [CrossRef]
- Toumi, H.; F’guyer, S.; Best, T.M. The Role of Neutrophils in Injury and Repair Following Muscle Stretch. J. Anat. 2006, 208, 459–470. [Google Scholar] [CrossRef]
- Yang, Z.; Sharma, A.K.; Linden, J.; Kron, I.L.; Laubach, V.E. CD4+ T Lymphocytes Mediate Acute Pulmonary Ischemia-Reperfusion Injury. J. Thorac. Cardiovasc. Surg. 2009, 137, 695–702. [Google Scholar] [CrossRef]
- Zemans, R.L.; Briones, N.; Campbell, M.; McClendon, J.; Young, S.K.; Suzuki, T.; Yang, I.V.; De Langhe, S.; Reynolds, S.D.; Mason, R.J.; et al. Neutrophil Transmigration Triggers Repair of the Lung Epithelium via Beta-Catenin Signaling. Proc. Natl. Acad. Sci. USA 2011, 108, 15990–15995. [Google Scholar] [CrossRef]
- Herrero-Cervera, A.; Soehnlein, O.; Kenne, E. Neutrophils in Chronic Inflammatory Diseases. Cell Mol. Immunol. 2022, 19, 177–191. [Google Scholar] [CrossRef]
- Lewkowicz, N.; Klink, M.; Mycko, M.P.; Lewkowicz, P. Neutrophil—CD4+CD25+ T Regulatory Cell Interactions: A Possible New Mechanism of Infectious Tolerance. Immunobiology 2013, 218, 455–464. [Google Scholar] [CrossRef]
- D’Alessio, F.R.; Tsushima, K.; Aggarwal, N.R.; West, E.E.; Willett, M.H.; Britos, M.F.; Pipeling, M.R.; Brower, R.G.; Tuder, R.M.; McDyer, J.F.; et al. CD4+CD25+Foxp3+ Tregs Resolve Experimental Lung Injury in Mice and are Present in Humans with Acute Lung Injury. J. Clin. Investig. 2009, 119, 2898–2913. [Google Scholar] [CrossRef]
- Lewkowicz, P.; Lewkowicz, N.; Sasiak, A.; Tchórzewski, H. Lipopolysaccharide-Activated CD4+CD25+ T Regulatory Cells Inhibit Neutrophil Function and Promote their Apoptosis and Death. J. Immunol. 2006, 177, 7155–7163. [Google Scholar] [CrossRef]
- Weirather, J.; Hofmann, U.D.; Beyersdorf, N.; Ramos, G.C.; Vogel, B.; Frey, A.; Ertl, G.; Kerkau, T.; Frantz, S. Foxp3+ CD4+ T Cells Improve Healing After Myocardial Infarction by Modulating Monocyte/Macrophage Differentiation. Circ. Res. 2014, 115, 55–67. [Google Scholar] [CrossRef]
- Wilensky, A.; Segev, H.; Mizraji, G.; Shaul, Y.; Capucha, T.; Shacham, M.; Hovav, A.H. Dendritic Cells and Their Role in Periodontal Disease. Oral Dis. 2014, 20, 119–126. [Google Scholar] [CrossRef]
- Aoyagi, T.; Yamazaki, K.; Kabasawa-Katoh, Y.; Nakajima, T.; Yamashita, N.; Yoshie, H.; Hara, K. Elevated CTLA-4 Expression on CD4 T Cells from Periodontitis Patients Stimulated with Porphyromonas gingivalis Outer Membrane Antigen. Clin. Exp. Immunol. 2000, 119, 280–286. [Google Scholar] [CrossRef]
- Wilson, J.M.; Ross, W.G.; Agbai, O.N.; Frazier, R.; Figler, R.A.; Rieger, J.; Linden, J.; Ernst, P.B. The A2B Adenosine Receptor Impairs the Maturation and Immunogenicity of Dendritic Cells. J. Immunol. 2009, 182, 4616–4623. [Google Scholar] [CrossRef]
- Larmonier, N.; Marron, M.; Zeng, Y.; Cantrell, J.; Romanoski, A.; Sepassi, M.; Thompson, S.; Chen, X.; Andreansky, S.; Katsanis, E. Tumor-Derived CD4+CD25+ Regulatory T Cell Suppression of Dendritic Cell Function Involves TGF-Beta and IL-10. Cancer Immunol. Immunother. 2007, 56, 48–59. [Google Scholar] [CrossRef]
- Haller, S.; Duval, A.; Migliorini, R.; Stevanin, M.; Mack, V.; Acha-Orbea, H. Interleukin-35-Producing CD8α+ Dendritic Cells Acquire a Tolerogenic State and Regulate T Cell Function. Front. Immunol. 2017, 8, 98. [Google Scholar] [CrossRef]
- Tung, S.L.; Boardman, D.A.; Sen, M.; Letizia, M.; Peng, Q.; Cianci, N.; Dioni, L.; Carlin, L.; Lechler, R.; Bollati, V.; et al. Regulatory T Cell-Derived Extracellular Vesicles Modify Dendritic Cell Function. Sci. Rep. 2018, 8, 6065. [Google Scholar] [CrossRef]
- Glenn, J.D.; Whartenby, K.A. Mesenchymal Stem Cells: Emerging Mechanisms of Immunomodulation and Therapy. World J. Stem Cells 2014, 6, 526–539. [Google Scholar] [CrossRef]
- Cahill, E.F.; Tobin, L.M.; Carty, F.; Mahon, B.P.; English, K. Jagged-1 is Required for the Expansion of CD4+ CD25+ FoxP3+ Regulatory T Cells and Tolerogenic Dendritic Cells by Murine Mesenchymal Stromal Cells. Stem Cell Res. Ther. 2015, 6, 19. [Google Scholar] [CrossRef]
- Schuler, P.J.; Saze, Z.; Hong, C.S.; Muller, L.; Gillespie, D.G.; Cheng, D.; Harasymczuk, M.; Mandapathil, M.; Lang, S.; Jackson, E.K.; et al. Human CD4+ CD39+ Regulatory T Cells Produce Adenosine Upon Co-Expression of Surface CD73 or Contact with CD73+ Exosomes or CD73+ Cells. Clin. Exp. Immunol. 2014, 177, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Saldanha-Araujo, F.; Ferreira, F.I.; Palma, P.V.; Araujo, A.G.; Queiroz, R.H.; Covas, D.T.; Zago, M.A.; Panepucci, R.A. Mesenchymal Stromal Cells Up-Regulate CD39 and Increase Adenosine Production to Suppress Activated T-Lymphocytes. Stem Cell Res. 2011, 7, 66–74. [Google Scholar] [CrossRef]
- Gharibi, B.; Abraham, A.A.; Ham, J.; Evans, B.A. Adenosine Receptor Subtype Expression and Activation Influence the Differentiation of Mesenchymal Stem Cells to Osteoblasts and Adipocytes. J. Bone Miner. Res. 2011, 26, 2112–2124. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.; Agua-Doce, A.; Duarte, J.; Soares, M.P.; Graca, L. Regulatory T Cell Maintenance of Dominant Tolerance: Induction of Tissue Self-Defense? Transpl. Immunol. 2006, 17, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Wong, P.; Li, J.; Lv, Z.; Xu, L.; Zhu, G.; He, M.; Luo, Y. Osteoimmunology: The Correlation Between Osteoclasts and the Th17/Treg Balance in Osteoporosis. J. Cell Mol. Med. 2022, 26, 3591–3597. [Google Scholar] [CrossRef] [PubMed]
- Petrie, T.A.; Strand, N.S.; Yang, C.T.; Rabinowitz, J.S.; Moon, R.T. Macrophages Modulate Adult Zebrafish Tail Fin Regeneration. Development 2014, 141, 2581–2591. [Google Scholar] [CrossRef]
- Tiemessen, M.M.; Jagger, A.L.; Evans, H.G.; Van Herwijnen, M.J.; John, S.; Taams, L.S. CD4+CD25+Foxp3+ Regulatory T Cells Induce Alternative Activation of Human Monocytes/Macrophages. Proc. Natl. Acad. Sci. USA 2007, 104, 19446–19451. [Google Scholar] [CrossRef]
- Yiling, F.; Shounan, Y.; Jingjing, W.; Elvira, J.; Denbigh, S.; Wayne, H.; Philip, O.C. In Vitro Suppression of Xenoimmune-Mediated Macrophage Activation by Human CD4+CD25+ Regulatory T Cells. Transplantation 2008, 86, 865–874. [Google Scholar]
- Robinson, T.O.; Zhang, M.; Ochsenbauer, C.; Smythies, L.E.; Cron, R.Q. CD4 Regulatory T Cells Augment HIV-1 Expression of Polarized M1 and M2 Monocyte Derived Macrophages. Virology 2017, 504, 79–87. [Google Scholar] [CrossRef]
- Rojas, C.; Campos-Mora, M.; Cárcamo, I.; Villalón, N.; Elhusseiny, A.; Contreras-Kallens, P.; Refisch, A.; Gálvez-Jirón, F.; Emparán, I.; Montoya-Riveros, A.; et al. Regulatory Cells-Derived Extracellular Vesicles and Their Contribution to the Generation of Immune Tolerance. J. Leukoc. Biol. 2020, 108, 813–824. [Google Scholar] [CrossRef]
- Wara, A.K.; Rawal, S.; Yang, X.; Pérez-Cremades, D.; Sachan, M.; Chen, J.; Feinberg, M.W. KLF10 Deficiency in CD4+ T Cells Promotes Atherosclerosis Progression by Altering Macrophage Dynamics. Atherosclerosis 2022, 359, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhang, Y.; Xu, C.; Li, X.; Li, D. mTORC1 Signaling is Crucial for Regulatory T Cells to Suppress Macrophage-Mediated Inflammatory Response After Acute Myocardial Infarction. Immunol. Cell Biol. 2016, 94, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Wu, J.; Cao, C.; Ma, L. Exosomes Derived from Regulatory T Cells Ameliorate Acute Myocardial Infarction by Promoting Macrophage M2 Polarization. IUBMB Life 2020, 72, 2409–2419. [Google Scholar] [CrossRef] [PubMed]
- Lis-López, L.; Bauset, C.; Seco-Cervera, M.; Cosín-Roger, J. Is the Macrophage Phenotype Determinant for Fibrosis Development? Biomedicines 2021, 9, 1747. [Google Scholar] [CrossRef]
- Galarraga-Vinueza, M.E.; Obreja, K.; Ramanauskaite, A.; Magini, R.; Begic, A.; Sader, R.; Schwarz, F. Macrophage Polarization in Peri-implantitis Lesions. Clin. Oral Investig. 2021, 25, 2335–2344. [Google Scholar] [CrossRef]
- Yu, T.; Zhao, L.; Huang, X.; Ma, C.; Wang, Y.; Zhang, J.; Xuan, D. Enhanced Activity of the Macrophage M1/M2 Phenotypes and Phenotypic Switch to M1 in Periodontal Infection. J. Periodontol. 2016, 87, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Fretwurst, T.; Garaicoa-Pazmino, C.; Nelson, K.; Giannobile, W.V.; Squarize, C.H.; Larsson, L.; Castilho, R.M. Characterization of Macrophages Infiltrating Peri-Implantitis Lesions. Clin. Oral Implant. Res. 2020, 31, 274–281. [Google Scholar] [CrossRef]
- Lee, J.W.Y.; Bance, M.L. Physiology of Osseointegration. Otolaryngol. Clin. N. Am. 2019, 52, 231–242. [Google Scholar] [CrossRef]
- Schlundt, C.; El Khassawna, T.; Serra, A.; Dienelt, A.; Wendler, S.; Schell, H.; van Rooijen, N.; Radbruch, A.; Lucius, R.; Hartmann, S.; et al. Macrophages in Bone Fracture Healing: Their Essential Role in Endochondral Ossification. Bone 2018, 106, 78–89. [Google Scholar] [CrossRef]
- Lampiasi, N.; Russo, R.; Zito, F. The Alternative Faces of Macrophage Generate Osteoclasts. BioMed Res. Int. 2016, 2016, 9089610. [Google Scholar] [CrossRef]
- Liang, B.; Wang, H.; Wu, D.; Wang, Z. Macrophage M1/M2 Polarization Dynamically Adapts to Changes in Microenvironment and Modulates Alveolar Bone Remodeling After Dental Implantation. J. Leukoc. Biol. 2021, 110, 433–447. [Google Scholar] [CrossRef]
- Song, Z.; Cheng, Y.; Chen, M.; Xie, X. Macrophage Polarization in Bone Implant Repair: A Review. Tissue Cell 2023, 82, 102112. [Google Scholar] [CrossRef]
- Albrektsson, T.; Tengvall, P.; Amengual, L.; Coli, P.; Kotsakis, G.A.; Cochran, D. Osteoimmune Regulation Underlies Oral Implant Osseointegration and Its Perturbation. Front. Immunol. 2023, 13, 1056914. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Huang, Z.; Ge, Q.; Yang, L.; Liang, D.; Huang, Y.; Jiang, Y.; Pathak, J.L.; Wang, L.; Ge, L. Glipizide Alleviates Periodontitis Pathogenicity via Inhibition of Angiogenesis, Osteoclastogenesis and M1/M2 Macrophage Ratio in Periodontal Tissue. Inflammation 2023, 46, 1917–1931. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xie, Z.; Yang, S.; Wu, H.; Bi, Z.; Zhang, Q.; Xiao, Y. Machine Learning Approach to Investigating Macrophage Polarization on Various Titanium Surface Characteristics. BME Front. 2025, 6, 0100. [Google Scholar] [CrossRef] [PubMed]
- Squadrito, F.; Bitto, A.; Irrera, N.; Pizzino, G.; Pallio, G.; Minutoli, L.; Altavilla, D. Pharmacological Activity and Clinical Use of PDRN. Front. Pharmacol. 2017, 8, 224. [Google Scholar] [CrossRef]
- Colangelo, M.T.; Galli, C.; Guizzardi, S. Polydeoxyribonucleotide Regulation of Inflammation. Adv. Wound Care 2020, 9, 576–589. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, J.K.; Jung, J.W.; Baek, S.W.; Kim, J.H.; Heo, Y.; Kim, T.H.; Han, D.K. Promotion of Bone Regeneration Using Bioinspired PLGA/MH/ECM Scaffold Combined with Bioactive PDRN. Materials 2021, 14, 4149. [Google Scholar] [CrossRef]
- Lee, H.Y.; Kim, D.S.; Hwang, G.Y.; Lee, J.K.; Lee, H.L.; Jung, J.W.; Hwang, S.Y.; Baek, S.W.; Yoon, S.L.; Ha, Y.; et al. Multi-Modulation of Immune-Inflammatory Response Using Bioactive Molecule-Integrated PLGA Composite for Spinal Fusion. Mater. Today Bio 2023, 19, 100611. [Google Scholar] [CrossRef]
- Albrektsson, T.; Brånemark, P.I.; Hansson, H.A.; Lindström, J. Osseointegrated Titanium Implants. Requirements for Ensuring a Long-Lasting, Direct Bone-to-Implant Anchorage in Man. Acta Orthop. Scand. 1981, 52, 155–170. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Li, H.; Yan, X.; Jiang, Z.; Feng, L.; Hu, W.; Fan, Y.; Lin, S.; Li, G. T cell related osteoimmunology in fracture healing: Potential targets for augmenting bone regeneration. J. Orthop. Transl. 2025, 51, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Kheder, W.; Bouzid, A.; Venkatachalam, T.; Talaat, I.M.; Elemam, N.M.; Raju, T.K.; Sheela, S.; Jayakumar, M.N.; Maghazachi, A.A.; Samsudin, A.R.; et al. Titanium Particles Modulate Lymphocyte and Macrophage Polarization in Peri-Implant Gingival Tissues. Int. J. Mol. Sci. 2023, 24, 11644. [Google Scholar] [CrossRef]
- Wang, J.; Meng, F.; Song, W.; Jin, J.; Ma, Q.; Fei, D.; Fang, L.; Chen, L.; Wang, Q.; Zhang, Y. Nanostructured Titanium Regulates Osseointegration via Influencing Macrophage Polarization in the Osteogenic Environment. Int. J. Nanomed. 2018, 13, 4029–4043. [Google Scholar] [CrossRef]
- Davison, N.L.; Gamblin, A.L.; Layrolle, P.; Yuan, H.; De Bruijn, J.D.; Barrère-de Groot, F. Liposomal Clodronate Inhibition of Osteoclastogenesis and Osteoinduction by Submicrostructured Beta-Tricalcium Phosphate. Biomaterials 2014, 35, 5088–5097. [Google Scholar] [CrossRef]
- Alexander, K.A.; Chang, M.K.; Maylin, E.R.; Kohler, T.; Müller, R.; Wu, A.C.; Van Rooijen, N.; Sweet, M.J.; Hume, D.A.; Raggatt, L.J.; et al. Osteal Macrophages Promote in Vivo Intramembranous Bone Healing in a Mouse Tibial Injury Model. J. Bone Miner. Res. 2011, 26, 1517–1532. [Google Scholar] [CrossRef]
- Aktaş, B.; Garipcan, B.; Ahi, Z.; Tuzlakoğlu, K.; Ergene, E.; Yilgor Huri, P. Osteoimmunomodulation with Biomaterials; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Albrektsson, T.; Dahlin, C.; Reinedahl, D.; Tengvall, P.; Trindade, R.; Wennerberg, A. An Imbalance of the Immune System Instead of a Disease Behind Marginal Bone Loss Around Oral Implants: Position Paper. Int. J. Oral Maxillofac. Implants. 2020, 35, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Dal-Secco, D.; Wang, J.; Zeng, Z.; Kolaczkowska, E.; Wong, C.H.; Petri, B.; Ransohoff, R.M.; Charo, I.F.; Jenne, C.N.; Kubes, P. A Dynamic Spectrum of Monocytes Arising from the In Situ Reprogramming of CCR2+ Monocytes at a Site of Sterile Injury. J. Exp. Med. 2015, 212, 447–456. [Google Scholar] [CrossRef]
- Veiseh, O.; Vegas, A.J. Domesticating the Foreign Body Response: Recent Advances and Applications. Adv. Drug Deliv. Rev. 2019, 144, 148–161. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Bachhuka, A.; Wei, F.; Wang, X.; Liu, G.; Vasilev, K.; Xiao, Y. Nanotopography-Based Strategy for the Precise Manip- ulation of Osteoimmunomodulation in Bone Regeneration. Nanoscale 2017, 9, 18129–18152. [Google Scholar] [CrossRef]
- Zhou, A.; Yu, H.; Liu, J.; Zheng, J.; Jia, Y.; Wu, B.; Xiang, L. Role of Hippo-YAP Signaling in Osseointegration by Regulating Osteogenesis, Angiogenesis, and Osteoimmunology. Front. Cell Dev. Biol. 2020, 8, 780. [Google Scholar] [CrossRef]
- Amengual-Peñafiel, L.; Córdova, L.A.; Constanza Jara-Sepúlveda, M.; Brañes-Aroca, M.; Marchesani-Carrasco, F.; Cartes-Velásquez, R. Osteoimmunology Drives Dental Implant Osseointegration: A New Paradigm for Implant Dentistry. Jpn. Dent. Sci. Rev. 2021, 57, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Klein, T.; Murray, R.Z.; Crawford, R.; Chang, J.; Wu, C.; Xiao, Y. Osteoimmunomodulation for the Development of Advanced Bone Biomaterials. Mater. Today 2016, 19, 304–321. [Google Scholar] [CrossRef]
- Amara, H.B.; Martinez, D.C.; Shah, F.A.; Loo, A.J.; Emanuelsson, L.; Norlindh, B.; Willumeit-Römer, R.; Plocinski, T.; Swieszkowski, W.; Palmquist, A.; et al. Magnesium implant degradation provides immunomodulatory and proangiogenic effects and attenuates peri-implant fibrosis in soft tissues. Bioact. Mater. 2023, 26, 353–369. [Google Scholar] [PubMed]
- Rahmati, M.; Stötzel, S.; El Khassawna, T.; Iskhahova, K.; Wieland, D.C.F.; Zeller-Plumhoff, B.; Haugen, H.J. Early osteoimmunomodulatory effects of magnesium-calcium-zinc alloys. J. Tissue Eng. 2021, 12, 1–19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, J.I.; Yun, S.I.; Kim, J.H.; Kim, D.G.; Lee, D.-W. Mediation of Osseointegration, Osteoimmunology, and Osteoimmunologic Integration by Tregs and Macrophages: A Narrative Review. Int. J. Mol. Sci. 2025, 26, 5421. https://doi.org/10.3390/ijms26115421
Yun JI, Yun SI, Kim JH, Kim DG, Lee D-W. Mediation of Osseointegration, Osteoimmunology, and Osteoimmunologic Integration by Tregs and Macrophages: A Narrative Review. International Journal of Molecular Sciences. 2025; 26(11):5421. https://doi.org/10.3390/ijms26115421
Chicago/Turabian StyleYun, Jong Il, Su In Yun, Jae Hong Kim, Duk Gyu Kim, and Deok-Won Lee. 2025. "Mediation of Osseointegration, Osteoimmunology, and Osteoimmunologic Integration by Tregs and Macrophages: A Narrative Review" International Journal of Molecular Sciences 26, no. 11: 5421. https://doi.org/10.3390/ijms26115421
APA StyleYun, J. I., Yun, S. I., Kim, J. H., Kim, D. G., & Lee, D.-W. (2025). Mediation of Osseointegration, Osteoimmunology, and Osteoimmunologic Integration by Tregs and Macrophages: A Narrative Review. International Journal of Molecular Sciences, 26(11), 5421. https://doi.org/10.3390/ijms26115421