FSL-1 Pre-Administration Protects Radiation-Induced Hematopoietic Organs Through the Modulation of the TLR Signaling Pathway
Abstract
:1. Introduction
2. Results
2.1. FSL-1 Provides Significant Survival Benefit When Given 6 or 12 h Pre-TBI in C57BL/6 Mice Exposed to Either Gamma or MF Radiation
2.2. Accelerated Recovery from Radiation-Induced Pancytopenia, Hematopoietic Progenitor Cell Loss, and Sternal Megakaryocyte Depletion
2.3. Effect of FSL-1 Administration Pre-TBI on Inflammatory Markers in Mouse Serum
2.4. FSL-1 Administration Pre-TBI Prevents the Dysregulation of Toll-Like Receptor-Mediated Immune Response After Radiation Exposure
3. Discussion
4. Materials and Methods
4.1. Murine Model for Hematopoietic ARS
4.2. Ethics Statement
4.3. Drug Preparation and Administration
4.4. Total Body Irradiation (TBI) Studies Using Cobalt-60
4.5. Total Body Irradiation (TBI) Studies Using Mixed-Field Neutron and Gamma Radiation in the AFRRI TRIGA Facility
4.6. Housing and Care of Animals After Irradiation
4.7. Prophylactic Survival Efficacy with a Single Dose of FSL-1 Using Gamma and Mixed-Field Radiation in Male and Female C57BL/6 Mice
4.8. Harvesting Blood and Tissues for Various Molecular Assays
4.9. Hematological Recovery with FSL-1
4.9.1. Analysis of Peripheral Blood Cells and Biomarkers
4.9.2. Hematopoietic Progenitor Clonogenic Assay
4.9.3. Sternal Histopathology
4.9.4. Hematopoietic Stem Cell Staining of Femoral Bone Marrow Using Flow Cytometry
4.10. RT2-Profiler PCR Array
RNA Extraction and cDNA Synthesis
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FSL-1 | Fibroblast-Stimulating Lipopeptide 1 |
TLR | Toll-Like Receptor |
MF | Mixed Field |
IND | Improvised Nuclear |
LET | Linear Energy Transfer |
FDA | Food and Drug Administration |
H-ARS | Hematopoietic Acute Radiation Syndrome |
DSB | Double-Stranded Break |
LMDS | Locally Multiply Damaged Site |
DNA | Deoxyribonucleic Acid |
G-CSF | Granulocyte Colony-Stimulating Factor |
TPOm | Thrombopoietin Mimetic |
TBI | Total Body Irradiation |
TRIGA | Training, Research, Isotopes, and General Atomics |
AFRRI | Armed Forces Radiobiology Research Institute |
DLAR | Department of Laboratory Animal Resources |
HEPA | High-Efficiency Particulate Air |
IACUC | Institutional Animal Care and Use Committee |
AAALAC | Association for the Assessment and Accreditation of Laboratory Animal Care |
NIST | National Institute of Standards and Technology |
AVMA | American Veterinary Medical Association |
RT-PCR | Reverse Transcription Polymerase Chain Reaction |
CBC | Complete Blood Cell |
WBC | White Blood Cell |
NEU | Neutrophil |
MONO | Monocyte |
LYM | Lymphocyte |
PLT | Platelet |
ELISA | Enzyme-Linked Immunosorbent Assay |
EDTA | Ethylenediaminetetraacetic Acid |
H&E | Hematoxylin and Eosin |
CFU | Colony-Forming Unit |
RNA | Ribonucleic Acid |
ANOVA | Analysis of Variance |
HSC | Hematopoietic Stem Cell |
RV | Radiated Vehicle |
RD | Radiated Drug |
NATO | North Atlantic Treaty Organization |
JAK/STAT | Janus Kinases (JAKs), Signal Transducer, and Activator of Transcription Proteins (STATs) |
JNK | c-Jun N-Terminal Kinases |
References
- Barendsen, G.W. RBE-LET relationships for different types of lethal radiation damage in mammalian cells: Comparison with DNA dsb and an interpretation of differences in radiosensitivity. Int. J. Radiat. Biol. 1994, 66, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Amgen. Neupogen (Filgrastim) Injection for Subcutaneous or Intravenous Use; FDA: Silver Spring, MD, USA, 2015. [Google Scholar]
- Amgen. NEULASTA® (Pegfilgrastim) Injection, for Subcutaneous Use; FDA: Silver Spring, MD, USA, 2015. [Google Scholar]
- Sanofi-Aventis. LEUKINE® (Sargramostim) for Injection, for Subcutaneous or Intravenous Use. 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/103362s5240lbl.pdf (accessed on 29 May 2025).
- Amgen. NPLATE® (Romiplostim) for Injection, for Subcutaneous Use; FDA: Silver Spring, MD, USA, 2021. [Google Scholar]
- Goodhead, D.T.; Weinfeld, M. Clustered DNA Damage and its Complexity: Tracking the History. Radiat. Res. 2024, 202, 385–407. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.F. Biochemistry of DNA lesions. Radiat. Res. Suppl. 1985, 8, S103–S111. [Google Scholar] [CrossRef] [PubMed]
- Tsoulou, E.; Kalfas, C.A.; Sideris, E.G. Conformational properties of DNA after exposure to gamma rays and neutrons. Radiat. Res. 2005, 163, 90–97. [Google Scholar] [CrossRef]
- Tsoulou, E.; Kalfas, C.A.; Sideris, E.G. Changes in DNA flexibility after irradiation with gamma rays and neutrons studied with the perturbed angular correlation method. Radiat. Res. 2003, 159, 33–39. [Google Scholar] [CrossRef]
- Zolzer, F.; Streffer, C. Relative biological effectiveness of 6 MeV neutrons with respect to cell inactivation and disturbances of the G1 phase. Radiat. Res. 2008, 169, 207–213. [Google Scholar] [CrossRef]
- Singh, V.K.; Seed, T.M. Entolimod as a radiation countermeasure for acute radiation syndrome. Drug Discov. Today 2021, 26, 17–30. [Google Scholar] [CrossRef]
- Cary, L.H.; Ngudiankama, B.F.; Salber, R.E.; Ledney, G.D.; Whitnall, M.H. Efficacy of radiation countermeasures depends on radiation quality. Radiat. Res. 2012, 177, 663–675. [Google Scholar] [CrossRef]
- Elliott, T.; Ledney, G.; Harding, R.; Henderson, P.; Gerstenberg, H.; Rotruck, J.; Verdolin, M.; Stille, C.; Krieger, A. Mixed-field neutrons and gamma photons induce different changes in ileal bacteria and correlated sepsis in mice. Int. J. Radiat. Biol. 1995, 68, 311–320. [Google Scholar] [CrossRef]
- Ledney, G.D.; Elliott, T.B.; Harding, R.A.; Jackson, W.E.; Inal, C.E.; Landauer, M.R. WR-151327 increases resistance to Klebsiella pneumoniae infection in mixed-field- and gamma-photon-irradiated mice. Int. J. Radiat. Biol. 2000, 76, 261–271. [Google Scholar]
- Shibata, K.; Hasebe, A.; Into, T.; Yamada, M.; Watanabe, T. The N-terminal lipopeptide of a 44-kDa membrane-bound lipoprotein of Mycoplasma salivarium is responsible for the expression of intercellular adhesion molecule-1 on the cell surface of normal human gingival fibroblasts. J. Immunol. 2000, 165, 6538–6544. [Google Scholar] [CrossRef] [PubMed]
- Okusawa, T.; Fujita, M.; Nakamura, J.-I.; Into, T.; Yasuda, M.; Yoshimura, A.; Hara, Y.; Hasebe, A.; Golenbock, D.T.; Morita, M.; et al. Relationship between structures and biological activities of mycoplasmal diacylated lipopeptides and their recognition by toll-like receptors 2 and 6. Infect. Immun. 2004, 72, 1657–1665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liang, C. Innate recognition of microbial-derived signals in immunity and inflammation. Sci. China Life Sci. 2016, 59, 1210–1217. [Google Scholar] [CrossRef]
- Wong, S.W.; Kwon, M.-J.; Choi, A.M.; Kim, H.-P.; Nakahira, K.; Hwang, D.H. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J. Biol. Chem. 2009, 284, 27384–27392. [Google Scholar] [CrossRef]
- Burdelya, L.G.; Krivokrysenko, V.I.; Tallant, T.C.; Strom, E.; Gleiberman, A.S.; Gupta, D.; Kurnasov, O.V.; Fort, F.L.; Osterman, A.L.; DiDonato, J.A.; et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 2008, 320, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.I.; Kurnasov, O.; Natarajan, V.; Hong, M.; Gudkov, A.V.; Osterman, A.L.; Wilson, I.A. Structural basis of TLR5-flagellin recognition and signaling. Science 2012, 335, 859–864. [Google Scholar] [CrossRef]
- Ruysschaert, J.-M.; Lonez, C. Role of lipid microdomains in TLR-mediated signalling. Biochim. Et Biophys. Acta (BBA)—Biomembranes 2015, 1848, 1860–1867. [Google Scholar] [CrossRef]
- Shakhov, A.N.; Singh, V.K.; Bone, F.; Cheney, A.; Kononov, Y.; Krasnov, P.; Bratanova-Toshkova, T.K.; Shakhova, V.V.; Young, J.; Weil, M.M.; et al. Prevention and mitigation of acute radiation syndrome in mice by synthetic lipopeptide agonists of Toll-like receptor 2 (TLR2). PLoS ONE 2012, 7, e33044. [Google Scholar] [CrossRef]
- Karin, M.; Lin, A. NF-kappaB at the crossroads of life and death. Nat. Immunol. 2002, 3, 221–227. [Google Scholar] [CrossRef]
- Xu, Y.; Kiningham, K.K.; Devalaraja, M.N.; Yeh, C.-C.; Majima, H.; Kasarskis, E.J.; Clair, D.K.S. An intronic NF-kappaB element is essential for induction of the human manganese superoxide dismutase gene by tumor necrosis factor-alpha and interleukin-1beta. DNA Cell Biol. 1999, 18, 709–722. [Google Scholar] [CrossRef]
- Grassl, C.; Luckow, B.; Schlöndorff, D.; Dendorfer, U. Transcriptional regulation of the interleukin-6 gene in mesangial cells. J. Am. Soc. Nephrol. 1999, 10, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Simpson, M.E.; Petri, W.A., Jr. TLR2 as a Therapeutic Target in Bacterial Infection. Trends Mol. Med. 2020, 26, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Himes, S.R.; Coles, L.S.; Katsikeros, R.; Lang, R.K.; Shannon, M.F. HTLV-1 tax activation of the GM-CSF and G-CSF promoters requires the interaction of NF-kB with other transcription factor families. Oncogene 1993, 8, 3189–3197. [Google Scholar] [PubMed]
- Spohn, R.; Buwitt-Beckmann, U.; Brock, R.; Jung, G.; Ulmer, A.J.; Wiesmüller, K.-H. Synthetic lipopeptide adjuvants and Toll-like receptor 2--structure-activity relationships. Vaccine 2004, 22, 2494–2499. [Google Scholar] [CrossRef]
- Kurkjian, C.J.; Guo, H.; Montgomery, N.D.; Cheng, N.; Yuan, H.; Merrill, J.R.; Sempowski, G.D.; Brickey, W.J.; Ting, J.P.-Y. The Toll-Like Receptor 2/6 Agonist, FSL-1 Lipopeptide, Therapeutically Mitigates Acute Radiation Syndrome. Sci. Rep. 2017, 7, 17355. [Google Scholar] [CrossRef]
- Brickey, W.J.; Caudell, D.L.; Macintyre, A.N.; Olson, J.D.; Dai, Y.; Li, S.; Dugan, G.O.; Bourland, J.D.; O’donnell, L.M.; Tooze, J.A.; et al. The TLR2/TLR6 ligand FSL-1 mitigates radiation-induced hematopoietic injury in mice and nonhuman primates. Proc. Natl. Acad. Sci. USA 2023, 120, e2122178120. [Google Scholar] [CrossRef]
- Holmes-Hampton, G.P.; Kumar, V.P.; Valenzia, K.; Ghosh, S.P. FSL-1: A Synthetic Peptide Increases Survival in a Murine Model of Hematopoietic Acute Radiation Syndrome. Radiat. Res. 2024, 201, 449–459. [Google Scholar] [CrossRef]
- North Atlantic Treaty Organization. NATO Handbook on the Medical Aspects of NBC Defensive Operations; North Atlantic Treaty Organization: Brussels, Belgium, 1996; A Med. [Google Scholar]
- Kumar, V.P.; Holmes-Hampton, G.P.; Biswas, S.; Stone, S.; Sharma, N.K.; Hritzo, B.; Guilfoyle, M.; Eichenbaum, G.; Guha, C.; Ghosh, S.P. Mitigation of total body irradiation-induced mortality and hematopoietic injury of mice by a thrombopoietin mimetic (JNJ-26366821). Sci. Rep. 2022, 12, 3485. [Google Scholar] [CrossRef]
- Challen, G.A.; Boles, N.; Lin, K.K.; Goodell, M.A. Mouse hematopoietic stem cell identification and analysis. Cytom. A 2009, 75, 14–24. [Google Scholar] [CrossRef]
- Coleman, C.N.; Knebel, A.R.; Hick, J.L.; Weinstock, D.M.; Casagrande, R.; Caro, J.J.; DeRenzo, E.G.; Dodgen, D.; Norwood, A.E.; Sherman, S.E.; et al. Scarce resources for nuclear detonation: Project overview and challenges. Disaster. Med. Public Health Prep. 2011, 5 (Suppl. 1), S13–S19. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Hirouchi, T.; Yokoyama, K.; Nishiyama, A.; Murakami, S.; Kashiwakura, I. The thrombopoietin mimetic romiplostim leads to the complete rescue of mice exposed to lethal ionizing radiation. Sci. Rep. 2018, 8, 10659. [Google Scholar] [CrossRef] [PubMed]
- Mouthon, M.A.; Van der Meeren, A.; Gaugler, M.-H.; Visser, T.P.; Squiban, C.; Gourmelon, P.; Wagemaker, G. Thrombopoietin promotes hematopoietic recovery and survival after high-dose whole body irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1999, 43, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Neelis, K.J.; Hartong, S.C.; Egeland, T.; Thomas, G.R.; Eaton, D.L.; Wagemaker, G. The efficacy of single-dose administration of thrombopoietin with coadministration of either granulocyte/macrophage or granulocyte colony-stimulating factor in myelosuppressed rhesus monkeys. Blood 1997, 90, 2565–2573. [Google Scholar] [CrossRef]
- Chen, M.; Geng, J.G. P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Arch. Immunol. Ther. Exp. 2006, 54, 75–84. [Google Scholar] [CrossRef]
- Giannandrea, M.; Parks, W.C. Diverse functions of matrix metalloproteinases during fibrosis. Dis. Models Mech. 2014, 7, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef]
- Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef]
- Zarember, K.A.; Godowski, P.J. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J. Immunol. 2002, 168, 554–561. [Google Scholar] [CrossRef]
- Ghosh, S.P.; Pathak, R.; Kumar, P.; Biswas, S.; Bhattacharyya, S.; Kumar, V.P.; Hauer-Jensen, M.; Biswas, R. Gamma-Tocotrienol Modulates Radiation-Induced MicroRNA Expression in Mouse Spleen. Radiat. Res. 2016, 185, 485–495. [Google Scholar] [CrossRef]
- Perry, F.; Wilson, M.M. A Study of Techniques for Measuring the Electromagnetic Shielding Effectiveness of Materials; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1986. [Google Scholar]
- Goodman, L.J. A Practical Guide to Ionization Chamber Dosimetry at the AFRRI Reactor; Armed Forces Radiobiology Research Institute: Bethesda, MD, USA, 1985. [Google Scholar]
- Almond, P.R.; Biggs, P.J.; Coursey, B.M.; Hanson, W.F.; Huq, M.S.; Nath, R.; Rogers, D.W.O. AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med. Phys. 1999, 26, 1847–1870. [Google Scholar] [CrossRef]
- American Veterinary Medical Association. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition; American Veterinary Medical Association: Schaumburg, IL, USA, 2020. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dronamraju, V.R.; Holmes-Hampton, G.P.; Gu, E.; Kumar, V.P.; Ghosh, S.P. FSL-1 Pre-Administration Protects Radiation-Induced Hematopoietic Organs Through the Modulation of the TLR Signaling Pathway. Int. J. Mol. Sci. 2025, 26, 5303. https://doi.org/10.3390/ijms26115303
Dronamraju VR, Holmes-Hampton GP, Gu E, Kumar VP, Ghosh SP. FSL-1 Pre-Administration Protects Radiation-Induced Hematopoietic Organs Through the Modulation of the TLR Signaling Pathway. International Journal of Molecular Sciences. 2025; 26(11):5303. https://doi.org/10.3390/ijms26115303
Chicago/Turabian StyleDronamraju, Venkateshwara Rao, Gregory P. Holmes-Hampton, Emily Gu, Vidya P. Kumar, and Sanchita P. Ghosh. 2025. "FSL-1 Pre-Administration Protects Radiation-Induced Hematopoietic Organs Through the Modulation of the TLR Signaling Pathway" International Journal of Molecular Sciences 26, no. 11: 5303. https://doi.org/10.3390/ijms26115303
APA StyleDronamraju, V. R., Holmes-Hampton, G. P., Gu, E., Kumar, V. P., & Ghosh, S. P. (2025). FSL-1 Pre-Administration Protects Radiation-Induced Hematopoietic Organs Through the Modulation of the TLR Signaling Pathway. International Journal of Molecular Sciences, 26(11), 5303. https://doi.org/10.3390/ijms26115303