Hyperarousal, Dissociation, Emotion Dysregulation and Re-Experiencing—Towards Understanding Molecular Aspects of PTSD Symptoms
Abstract
1. Introduction
1.1. Complex Symptomatology of PTSD and CPTSD
1.2. Complex Pathogenesis of Post-Traumatic Stress Disorders
1.3. Hyperarousal, Dissociation, Emotion Dysregulation and Re-Experiencing as Neurobiological Processes Typical for Post-Traumatic Stress Disorder
- Dissociation—loss of continuity of subjective experience due to unwanted intrusions associated with the traumatic memory, lack of access to information or control of mental functions, or the experience of detachment from oneself or reality [1,44]. When traumatic experiences are so difficult that they cannot be fully integrated, structural dissociation of the personality can occur [45,46,47].
2. Hyperarousal
2.1. HPA Axis
2.2. Glutamatergic and GABAergic Activity
2.3. Catecholaminergic Activity
2.4. Molecular Networks
2.5. Dynamics of Changes After Childhood Trauma
3. Emotion Dysregulation
4. Dissociation
5. Re-Experiencing
6. Biology—Environment Interplay
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; DSM-5-TR; American Psychiatric Association Publishing: Washington, DC, USA, 2022; ISBN 9780890425756. [Google Scholar]
- van der Kolk, B.A.; Pynoos, R.S.; Cicchetti, D.; Cloitre, M.; D’Andrea, W.; Ford, J.D.; Teicher, M. Proposal to Include a Developmental Trauma Disorder Diagnosis for Children and Adolescents in DSM-V. Available online: https://complextrauma.org/wp-content/uploads/2019/03/Complex-Trauma-Resource-3-Joseph-Spinazzola.pdf (accessed on 4 April 2025).
- Van Der Kolk, B.A.; Roth, S.; Pelcovitz, D.; Sunday, S.; Spinazzola, J. Disorders of Extreme Stress: The Empirical Foundation of a Complex Adaptation to Trauma. J. Trauma. Stress 2005, 18, 389–399. [Google Scholar] [CrossRef]
- D’Andrea, W.; Ford, J.; Stolbach, B.; Spinazzola, J.; van der Kolk, B.A. Understanding Interpersonal Trauma in Children: Why We Need a Developmentally Appropriate Trauma Diagnosis. Am. J. Orthopsychiatry 2012, 82, 187–200. [Google Scholar] [CrossRef]
- Ford, J.D.; Spinazzola, J.; Van Der Kolk, B.; Chan, G. Toward an Empirically Based Developmental Trauma Disorder Diagnosis and Semi-structured Interview for Children: The DTD Field Trial Replication. Acta Psychiatr. Scand. 2022, 145, 628–639. [Google Scholar] [CrossRef]
- World Health Organization International Statistical Classification of Diseases and Related Health Problems (11th Ed.). Available online: https://icd.who.int/ (accessed on 4 April 2025).
- Cloitre, M.; Garvert, D.W.; Weiss, B.; Carlson, E.B.; Bryant, R.A. Distinguishing PTSD, Complex PTSD, and Borderline Personality Disorder: A Latent Class Analysis. Eur. J. Psychotraumatology 2014, 5, 25097. [Google Scholar] [CrossRef]
- Cloitre, M.; Stolbach, B.C.; Herman, J.L.; Kolk, B.V.D.; Pynoos, R.; Wang, J.; Petkova, E. A Developmental Approach to Complex PTSD: Childhood and Adult Cumulative Trauma as Predictors of Symptom Complexity. J. Trauma. Stress 2009, 22, 399–408. [Google Scholar] [CrossRef]
- Jackson, B.N.; Weathers, F.W.; Jeffirs, S.M.; Preston, T.J.; Brydon, C.M. The Revised Clinician-Administered PTSD Scale for DSM-5 (CAPS-5-R): Initial Psychometric Evaluation in a Trauma-exposed Community Sample. J. Trauma. Stress 2025, 38, 40–52. [Google Scholar] [CrossRef]
- Havermans, D.C.D.; Coeur, E.M.N.; Jiaqing, O.; Rippey, C.S.; Cook, J.M.; Olff, M.; Hoeboer, C.; Sobczak, S.; Lawrence, K.A. The Diagnostic Accuracy of PTSD Assessment Instruments Used in Older Adults: A Systematic Review. Eur. J. Psychotraumatology 2025, 16, 2498191. [Google Scholar] [CrossRef]
- Wortmann, J.H.; Jordan, A.H.; Weathers, F.W.; Resick, P.A.; Dondanville, K.A.; Hall-Clark, B.; Foa, E.B.; Young-McCaughan, S.; Yarvis, J.S.; Hembree, E.A.; et al. Psychometric Analysis of the PTSD Checklist-5 (PCL-5) among Treatment-Seeking Military Service Members. Psychol. Assess. 2016, 28, 1392–1403. [Google Scholar] [CrossRef]
- Blevins, C.A.; Weathers, F.W.; Davis, M.T.; Witte, T.K.; Domino, J.L. The Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5): Development and Initial Psychometric Evaluation. J. Trauma. Stress 2015, 28, 489–498. [Google Scholar] [CrossRef]
- Connor, K.M.; Davidson, J.R.T. SPRINT: A Brief Global Assessment of Post-Traumatic Stress Disorder. Int. Clin. Psychopharmacol. 2001, 16, 279–284. [Google Scholar] [CrossRef]
- Cloitre, M.; Hyland, P.; Prins, A.; Shevlin, M. The International Trauma Questionnaire (ITQ) Measures Reliable and Clinically Significant Treatment-Related Change in PTSD and Complex PTSD. Eur. J. Psychotraumatology 2021, 12, 1930961. [Google Scholar] [CrossRef] [PubMed]
- Redican, E.; Nolan, E.; Hyland, P.; Cloitre, M.; McBride, O.; Karatzias, T.; Murphy, J.; Shevlin, M. A Systematic Literature Review of Factor Analytic and Mixture Models of ICD-11 PTSD and CPTSD Using the International Trauma Questionnaire. J. Anxiety Disord. 2021, 79, 102381. [Google Scholar] [CrossRef] [PubMed]
- Arzoumanian, M.A.; Verbeck, E.G.; Estrellado, J.E.; Thompson, K.J.; Dahlin, K.; Hennrich, E.J.; Stevens, J.M.; Dalenberg, C.J.; Trauma Research Institute. Psychometrics of Three Dissociation Scales: Reliability and Validity Data on the DESR, DES-II, and DESC. J. Trauma Dissociation 2023, 24, 214–228. [Google Scholar] [CrossRef]
- Leeds, A.M.; Madere, J.A.; Coy, D.M. Beyond the DES-II: Screening for Dissociative Disorders in EMDR Therapy. J. EMDR Pract. Res. 2022, 16, 25–38. [Google Scholar] [CrossRef]
- Dell, P.F. The Multidimensional Inventory of Dissociation (MID): A Comprehensive Measure of Pathological Dissociation. J. Trauma Dissociation 2006, 7, 77–106. [Google Scholar] [CrossRef]
- Contractor, A.A.; Jin, L.; Weiss, N.H.; O’Hara, S. A Psychometric Investigation on the Diagnostic Utility of the Posttrauma Risky Behaviors Questionnaire. Psychiatry Res. 2021, 296, 113667. [Google Scholar] [CrossRef]
- Natesan Batley, P.; Contractor, A.A.; Weiss, N.H.; Compton, S.E.; Price, M. Psychometric Evaluation of the Posttrauma Risky Behaviors Questionnaire: Item Response Theory Analyses. Assessment 2022, 29, 1824–1841. [Google Scholar] [CrossRef]
- Young, A. Reasons and Causes for Post-Traumatic Stress Disorder. Transcult. Psychiatr. Res. Rev. 1995, 32, 287–298. [Google Scholar] [CrossRef]
- Newport, D. Neurobiology of Posttraumatic Stress Disorder. Curr. Opin. Neurobiol. 2000, 10, 211–218. [Google Scholar] [CrossRef]
- Karl, A.; Schaefer, M.; Malta, L.; Dorfel, D.; Rohleder, N.; Werner, A. A Meta-Analysis of Structural Brain Abnormalities in PTSD. Neurosci. Biobehav. Rev. 2006, 30, 1004–1031. [Google Scholar] [CrossRef]
- Gong, Q.; Li, L.; Tognin, S.; Wu, Q.; Pettersson-Yeo, W.; Lui, S.; Huang, X.; Marquand, A.F.; Mechelli, A. Using Structural Neuroanatomy to Identify Trauma Survivors with and without Post-Traumatic Stress Disorder at the Individual Level. Psychol. Med. 2014, 44, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R. Biology of Posttraumatic Stress Disorder. J. Clin. Psychiatry 2000, 61 (Suppl. 7), 14–21. [Google Scholar] [PubMed]
- Yehuda, R. Neuroendocrine Aspects of PTSD. In Anxiety and Anxiolytic Drugs; Holsboer, F., Ströhle, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 371–403. ISBN 9783540280828. [Google Scholar]
- Rasmusson, A.M.; Pineles, S.L. Neurotransmitter, Peptide, and Steroid Hormone Abnormalities in PTSD: Biological Endophenotypes Relevant to Treatment. Curr. Psychiatry Rep. 2018, 20, 52. [Google Scholar] [CrossRef] [PubMed]
- Pape, J.C.; Binder, E.B. The Role of Genetics and Epigenetics in the Pathogenesis of Posttraumatic Stress Disorder. Psychiatr. Ann. 2016, 46, 510–518. [Google Scholar] [CrossRef]
- Sheerin, C.M.; Lind, M.J.; Bountress, K.E.; Nugent, N.R.; Amstadter, A.B. The Genetics and Epigenetics of PTSD: Overview, Recent Advances, and Future Directions. Curr. Opin. Psychol. 2017, 14, 5–11. [Google Scholar] [CrossRef]
- Yehuda, R.; Koenen, K.C.; Galea, S.; Flory, J.D. The Role of Genes in Defining a Molecular Biology of PTSD. Dis. Markers 2011, 30, 67–76. [Google Scholar] [CrossRef]
- Duncan, L.E.; Cooper, B.N.; Shen, H. Robust Findings from 25 Years of PTSD Genetics Research. Curr. Psychiatry Rep. 2018, 20, 115. [Google Scholar] [CrossRef]
- Raabe, F.J.; Spengler, D. Epigenetic Risk Factors in PTSD and Depression. Front. Psychiatry 2013, 4, 80. [Google Scholar] [CrossRef]
- Heinzelmann, M.; Gill, J. Epigenetic Mechanisms Shape the Biological Response to Trauma and Risk for PTSD: A Critical Review. Nurs. Res. Pract. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Mehta, D.; Binder, E.B. Gene × Environment Vulnerability Factors for PTSD: The HPA-Axis. Neuropharmacology 2012, 62, 654–662. [Google Scholar] [CrossRef]
- Broekman, B.F.P.; Olff, M.; Boer, F. The Genetic Background to PTSD. Neurosci. Biobehav. Rev. 2007, 31, 348–362. [Google Scholar] [CrossRef] [PubMed]
- Boscarino, J.A.; Erlich, P.M.; Hoffman, S.N.; Rukstalis, M.; Stewart, W.F. Association of FKBP5, COMT and CHRNA5 Polymorphisms with PTSD among Outpatients at Risk for PTSD. Psychiatry Res. 2011, 188, 173–174. [Google Scholar] [CrossRef] [PubMed]
- Daskalakis, N.P.; Rijal, C.M.; King, C.; Huckins, L.M.; Ressler, K.J. Recent Genetics and Epigenetics Approaches to PTSD. Curr. Psychiatry Rep. 2018, 20, 30. [Google Scholar] [CrossRef]
- Marchese, S.; Huckins, L.M. Trauma Matters: Integrating Genetic and Environmental Components of PTSD. Adv. Genet. 2023, 4, 2200017. [Google Scholar] [CrossRef]
- DiGangi, J.A.; Gomez, D.; Mendoza, L.; Jason, L.A.; Keys, C.B.; Koenen, K.C. Pretrauma Risk Factors for Posttraumatic Stress Disorder: A Systematic Review of the Literature. Clin. Psychol. Rev. 2013, 33, 728–744. [Google Scholar] [CrossRef]
- Kessler, R.C.; Rose, S.; Koenen, K.C.; Karam, E.G.; Stang, P.E.; Stein, D.J.; Heeringa, S.G.; Hill, E.D.; Liberzon, I.; McLaughlin, K.A.; et al. How Well Can Post-Traumatic Stress Disorder Be Predicted from Pre-Trauma Risk Factors? An Exploratory Study in the WHO World Mental Health Surveys. World Psychiatry 2014, 13, 265–274. [Google Scholar] [CrossRef]
- Breslau, N.; Chilcoat, H.D.; Kessler, R.C.; Davis, G.C. Previous Exposure to Trauma and PTSD Effects of Subsequent Trauma: Results from the Detroit Area Survey of Trauma. Am. J. Psychiatry 1999, 156, 902–907. [Google Scholar] [CrossRef]
- Weston, C.S.E. Posttraumatic Stress Disorder: A Theoretical Model of the Hyperarousal Subtype. Front. Psychiatry 2014, 5, 37. [Google Scholar] [CrossRef]
- Bernstein, R.E.; Delker, B.C.; Knight, J.A.; Freyd, J.J. Hypervigilance in College Students: Associations with Betrayal and Dissociation and Psychometric Properties in a Brief Hypervigilance Scale. Psychol. Trauma Theory Res. Pract. Policy 2015, 7, 448–455. [Google Scholar] [CrossRef]
- Carlson, E.B.; Dalenberg, C.; McDade-Montez, E. Dissociation in Posttraumatic Stress Disorder Part I: Definitions and Review of Research. Psychol. Trauma Theory Res. Pract. Policy 2012, 4, 479–489. [Google Scholar] [CrossRef]
- Van Der Hart, O.; Nijenhuis, E.R.S.; Steele, K. Dissociation: An Insufficiently Recognized Major Feature of Complex Posttraumatic Stress Disorder. J. Trauma. Stress 2005, 18, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Nijenhuis, E.R.S.; Van Der Hart, O. Dissociation in Trauma: A New Definition and Comparison with Previous Formulations. J. Trauma Dissociation 2011, 12, 416–445. [Google Scholar] [CrossRef] [PubMed]
- Nijenhuis, E.; van der Hart, O.; Steele, K. Trauma-Related Structural Dissociation of the Personality. Act. Nerv. Super. 2010, 52, 1–23. [Google Scholar] [CrossRef]
- Ford, J.D. Dissociation and Emotion Dysregulation: New Findings and Nuances. J. Trauma Dissociation 2025, 26, 151–158. [Google Scholar] [CrossRef]
- Jannini, T.B.; Daniele, G.; Rossi, R.; Niolu, C.; Lorenzo, G.D. Emotional Dysregulation in Complex Post-Traumatic Stress Disorder: A Narrative Review. J. Psychopathol. 2025, 31, 25–36. [Google Scholar] [CrossRef]
- Nicholson, A.A.; Rabellino, D.; Densmore, M.; Frewen, P.A.; Paret, C.; Kluetsch, R.; Schmahl, C.; Théberge, J.; Neufeld, R.W.J.; McKinnon, M.C.; et al. The Neurobiology of Emotion Regulation in Posttraumatic Stress Disorder: Amygdala Downregulation via Real-time fMRI Neurofeedback. Hum. Brain Mapp. 2017, 38, 541–560. [Google Scholar] [CrossRef]
- Ehlers, A.; Hackmann, A.; Michael, T. Intrusive Re-experiencing in Post-traumatic Stress Disorder: Phenomenology, Theory, and Therapy. Memory 2004, 12, 403–415. [Google Scholar] [CrossRef]
- Kimble, M.; Boxwala, M.; Bean, W.; Maletsky, K.; Halper, J.; Spollen, K.; Fleming, K. The Impact of Hypervigilance: Evidence for a Forward Feedback Loop. J. Anxiety Disord. 2014, 28, 241–245. [Google Scholar] [CrossRef]
- Iacoviello, B.M.; Wu, G.; Abend, R.; Murrough, J.W.; Feder, A.; Fruchter, E.; Levinstein, Y.; Wald, I.; Bailey, C.R.; Pine, D.S.; et al. Attention Bias Variability and Symptoms of Posttraumatic Stress Disorder. J. Trauma. Stress 2014, 27, 232–239. [Google Scholar] [CrossRef]
- Rabellino, D.; Densmore, M.; Frewen, P.A.; Théberge, J.; Lanius, R.A. The Innate Alarm Circuit in Post-Traumatic Stress Disorder: Conscious and Subconscious Processing of Fear- and Trauma-Related Cues. Psychiatry Res. Neuroimaging 2016, 248, 142–150. [Google Scholar] [CrossRef]
- Aupperle, R.L.; Melrose, A.J.; Stein, M.B.; Paulus, M.P. Executive Function and PTSD: Disengaging from Trauma. Neuropharmacology 2012, 62, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Leskin, L.P.; White, P.M. Attentional Networks Reveal Executive Function Deficits in Posttraumatic Stress Disorder. Neuropsychology 2007, 21, 275–284. [Google Scholar] [CrossRef]
- Punski-Hoogervorst, J.L.; Engel-Yeger, B.; Avital, A. Attention Deficits as a Key Player in the Symptomatology of Posttraumatic Stress Disorder: A Review. J. Neurosci. Res. 2023, 101, 1068–1085. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Edgar, K.; Bar-Haim, Y.; McDermott, J.M.; Chronis-Tuscano, A.; Pine, D.S.; Fox, N.A. Attention Biases to Threat and Behavioral Inhibition in Early Childhood Shape Adolescent Social Withdrawal. Emotion 2010, 10, 349–357. [Google Scholar] [CrossRef]
- Tsur, N.; Defrin, R.; Lahav, Y.; Solomon, Z. The Traumatized Body: Long-Term PTSD and Its Implications for the Orientation towards Bodily Signals. Psychiatry Res. 2018, 261, 281–289. [Google Scholar] [CrossRef]
- Von Majewski, K.; Kraus, O.; Rhein, C.; Lieb, M.; Erim, Y.; Rohleder, N. Acute Stress Responses of Autonomous Nervous System, HPA Axis, and Inflammatory System in Posttraumatic Stress Disorder. Transl. Psychiatry 2023, 13, 36. [Google Scholar] [CrossRef]
- Olff, M.; Langeland, W.; Gersons, B.P.R. The Psychobiology of PTSD: Coping with Trauma. Psychoneuroendocrinology 2005, 30, 974–982. [Google Scholar] [CrossRef]
- Van Der Kolk, B.A. Clinical Implications of Neuroscience Research in PTSD. Ann. N. Y. Acad. Sci. 2006, 1071, 277–293. [Google Scholar] [CrossRef]
- Marshall, R.D.; Garakani, A. Psychobiology of the Acute Stress Response and Its Relationship to the Psychobiology of Post-Traumatic Stress Disorder. Psychiatr. Clin. N. Am. 2002, 25, 385–395. [Google Scholar] [CrossRef]
- Ali, N.; Nater, U.M. Salivary Alpha-Amylase as a Biomarker of Stress in Behavioral Medicine. Int. J. Behav. Med. 2020, 27, 337–342. [Google Scholar] [CrossRef]
- Yoon, S.A.; Weierich, M.R. Salivary Biomarkers of Neural Hypervigilance in Trauma-Exposed Women. Psychoneuroendocrinology 2016, 63, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, R.M. Hemispheric Asymmetry in Stress Processing in Rat Prefrontal Cortex and the Role of Mesocortical Dopamine. Stress 2004, 7, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Van Der Kolk, B.A. The Psychobiology and Psychopharmacology of PTSD. Hum. Psychopharmacol. Clin. Exp. 2001, 16, S49–S64. [Google Scholar] [CrossRef]
- Zach, P.; Vales, K.; Stuchlik, A.; Cermakova, P.; Mrzilkova, J.; Koutela, A.; Kutova, M. Effect of Stress on Structural Brain Asymmetry. Neuro Endocrinol. Lett. 2016, 37, 253–264. [Google Scholar]
- Kitayama, N.; Brummer, M.; Hertz, L.; Quinn, S.; Kim, Y.; Bremner, J.D. Morphologic Alterations in the Corpus Callosum in Abuse-Related Posttraumatic Stress Disorder: A Preliminary Study. J. Nerv. Ment. Dis. 2007, 195, 1027–1029. [Google Scholar] [CrossRef]
- Jackowski, A.P.; Douglas-Palumberi, H.; Jackowski, M.; Win, L.; Schultz, R.T.; Staib, L.W.; Krystal, J.H.; Kaufman, J. Corpus Callosum in Maltreated Children with Posttraumatic Stress Disorder: A Diffusion Tensor Imaging Study. Psychiatry Res. Neuroimaging 2008, 162, 256–261. [Google Scholar] [CrossRef]
- Villarreal, G.; Hamilton, D.A.; Graham, D.P.; Driscoll, I.; Qualls, C.; Petropoulos, H.; Brooks, W.M. Reduced Area of the Corpus Callosum in Posttraumatic Stress Disorder. Psychiatry Res. Neuroimaging 2004, 131, 227–235. [Google Scholar] [CrossRef]
- Ocklenburg, S.; Korte, S.M.; Peterburs, J.; Wolf, O.T.; Güntürkün, O. Stress and Laterality—The Comparative Perspective. Physiol. Behav. 2016, 164, 321–329. [Google Scholar] [CrossRef]
- LeDoux, J.E. Emotion, Memory and the Brain. Sci. Am. 1994, 270, 50–57. [Google Scholar] [CrossRef]
- LeDoux, J. The Emotional Brain, Fear, and the Amygdala. Cell Mol. Neurobiol. 2003, 23, 727–738. [Google Scholar] [CrossRef]
- LeDoux, J.E. Emotion Circuits in the Brain. FOC 2009, 7, 274. [Google Scholar] [CrossRef]
- LeDoux, J. Rethinking the Emotional Brain. Neuron 2012, 73, 653–676. [Google Scholar] [CrossRef] [PubMed]
- LeDoux, J.E.; Pine, D.S. Using Neuroscience to Help Understand Fear and Anxiety: A Two-System Framework. Am. J. Psychiatry 2016, 173, 1083–1093. [Google Scholar] [CrossRef]
- Yehuda, R. Psychoneuroendocrinology of Post-Traumatic Stress Disorder. Psychiatr. Clin. N. Am. 1998, 21, 359–379. [Google Scholar] [CrossRef]
- Yehuda, R. Current Status of Cortisol Findings in Post-Traumatic Stress Disorder. Psychiatr. Clin. N. Am. 2002, 25, 341–368. [Google Scholar] [CrossRef]
- McFarlane, A.C.; Barton, C.A.; Yehuda, R.; Wittert, G. Cortisol Response to Acute Trauma and Risk of Posttraumatic Stress Disorder. Psychoneuroendocrinology 2011, 36, 720–727. [Google Scholar] [CrossRef]
- Yehuda, R.; Yang, R.-K.; Buchsbaum, M.S.; Golier, J.A. Alterations in Cortisol Negative Feedback Inhibition as Examined Using the ACTH Response to Cortisol Administration in PTSD. Psychoneuroendocrinology 2006, 31, 447–451. [Google Scholar] [CrossRef]
- Lehrner, A.; Daskalakis, N.; Yehuda, R. Cortisol and the Hypothalamic–Pituitary–Adrenal Axis in PTSD. In Posttraumatic Stress Disorder; Bremner, J.D., Ed.; Wiley: Hoboken, NJ, USA, 2016; pp. 265–290. ISBN 9781118356111. [Google Scholar]
- Heim, C.; Ehlert, U.; Hellhammer, D.H. The Potential Role of Hypocortisolism in the Pathophysiology of Stress-Related Bodily Disorders. Psychoneuroendocrinology 2000, 25, 1–35. [Google Scholar] [CrossRef]
- Delahanty, D.L.; Raimonde, A.J.; Spoonster, E. Initial Posttraumatic Urinary Cortisol Levels Predict Subsequent PTSD Symptoms in Motor Vehicle Accident Victims. Biol. Psychiatry 2000, 48, 940–947. [Google Scholar] [CrossRef]
- Delahanty, D.L.; Nugent, N.R.; Christopher, N.C.; Walsh, M. Initial Urinary Epinephrine and Cortisol Levels Predict Acute PTSD Symptoms in Child Trauma Victims. Psychoneuroendocrinology 2005, 30, 121–128. [Google Scholar] [CrossRef]
- Delahanty, D.L.; Raimonde, A.J.; Spoonster, E.; Cullado, M. Injury Severity, Prior Trauma History, Urinary Cortisol Levels, and Acute PTSD in Motor Vehicle Accident Victims. J. Anxiety Disord. 2003, 17, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R.; Golier, J.A.; Halligan, S.L.; Meaney, M.; Bierer, L.M. The ACTH Response to Dexamethasone in PTSD. Am. J. Psychiatry 2004, 161, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R. Disease Markers: Molecular Biology of PTSD. Dis. Markers 2011, 30, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R.; Cai, G.; Golier, J.A.; Sarapas, C.; Galea, S.; Ising, M.; Rein, T.; Schmeidler, J.; Müller-Myhsok, B.; Holsboer, F.; et al. Gene Expression Patterns Associated with Posttraumatic Stress Disorder Following Exposure to the World Trade Center Attacks. Biological Psychiatry 2009, 66, 708–711. [Google Scholar] [CrossRef]
- Binder, E.B. The Role of FKBP5, a Co-Chaperone of the Glucocorticoid Receptor in the Pathogenesis and Therapy of Affective and Anxiety Disorders. Psychoneuroendocrinology 2009, 34, S186–S195. [Google Scholar] [CrossRef]
- Cheung, J.; Bryant, R.A. FKBP5 Risk Alleles and the Development of Intrusive Memories. Neurobiol. Learn. Mem. 2015, 125, 258–264. [Google Scholar] [CrossRef]
- Zannas, A.S.; Wiechmann, T.; Gassen, N.C.; Binder, E.B. Gene–Stress–Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacology 2016, 41, 261–274. [Google Scholar] [CrossRef]
- Matosin, N.; Halldorsdottir, T.; Binder, E.B. Understanding the Molecular Mechanisms Underpinning Gene by Environment Interactions in Psychiatric Disorders: The FKBP5 Model. Biol. Psychiatry 2018, 83, 821–830. [Google Scholar] [CrossRef]
- Amstadter, A.B.; Nugent, N.R.; Yang, B.-Z.; Miller, A.; Siburian, R.; Moorjani, P.; Haddad, S.; Basu, A.; Fagerness, J.; Saxe, G.; et al. Corticotrophin-Releasing Hormone Type 1 Receptor Gene (CRHR1) Variants Predict Posttraumatic Stress Disorder Onset and Course in Pediatric Injury Patients. Dis. Markers 2011, 30, 89–99. [Google Scholar] [CrossRef]
- White, S.; Acierno, R.; Ruggiero, K.J.; Koenen, K.C.; Kilpatrick, D.G.; Galea, S.; Gelernter, J.; Williamson, V.; McMichael, O.; Vladimirov, V.I.; et al. Association of CRHR1 Variants and Posttraumatic Stress Symptoms in Hurricane Exposed Adults. J. Anxiety Disord. 2013, 27, 678–683. [Google Scholar] [CrossRef]
- Sanabrais-Jiménez, M.A.; Sotelo-Ramirez, C.E.; Ordoñez-Martinez, B.; Jiménez-Pavón, J.; Ahumada-Curiel, G.; Piana-Diaz, S.; Flores-Flores, G.; Flores-Ramos, M.; Jiménez-Anguiano, A.; Camarena, B. Effect of CRHR1 and CRHR2 Gene Polymorphisms and Childhood Trauma in Suicide Attempt. J. Neural Transm. 2019, 126, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.P.; Mueller, N.K.; Figueiredo, H. Role of GABA and Glutamate Circuitry in Hypothalamo-Pituitary-Adrenocortical Stress Integration. Ann. N. Y. Acad. Sci. 2004, 1018, 35–45. [Google Scholar] [CrossRef]
- Li, Y.-F.; Jackson, K.L.; Stern, J.E.; Rabeler, B.; Patel, K.P. Interaction between Glutamate and GABA Systems in the Integration of Sympathetic Outflow by the Paraventricular Nucleus of the Hypothalamus. Am. J. Physiol.-Heart Circ. Physiol. 2006, 291, H2847–H2856. [Google Scholar] [CrossRef]
- Mathew, S.J.; Coplan, J.D.; Smith, E.L.P.; Schoepp, D.D.; Rosenblum, L.A.; Gorman, J.M. Glutamate—Hypothalamic-Pituitary-Adrenal Axis Interactions: Implications for Mood and Anxiety Disorders. CNS Spectr. 2001, 6, 555–564. [Google Scholar] [CrossRef]
- Averill, L.A.; Purohit, P.; Averill, C.L.; Boesl, M.A.; Krystal, J.H.; Abdallah, C.G. Glutamate Dysregulation and Glutamatergic Therapeutics for PTSD: Evidence from Human Studies. Neurosci. Lett. 2017, 649, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Luscher, B.; Shen, Q.; Sahir, N. The GABAergic Deficit Hypothesis of Major Depressive Disorder. Mol. Psychiatry 2011, 16, 383–406. [Google Scholar] [CrossRef]
- Samardzic, J.; Jadzic, D.; Hencic, B.; Jancic, J.; Strac, D.S. Introductory Chapter: GABA/Glutamate Balance: A Key for Normal Brain Functioning. In GABA And Glutamate—New Developments In Neurotransmission Research; Samardzic, J., Ed.; IntechOpen: London, UK, 2018; ISBN 9789535138211. [Google Scholar]
- Sears, S.M.; Hewett, S.J. Influence of Glutamate and GABA Transport on Brain Excitatory/Inhibitory Balance. Exp. Biol. Med. 2021, 246, 1069–1083. [Google Scholar] [CrossRef]
- Fogaça, M.V.; Duman, R.S. Cortical GABAergic Dysfunction in Stress and Depression: New Insights for Therapeutic Interventions. Front. Cell. Neurosci. 2019, 13, 87. [Google Scholar] [CrossRef]
- Yang, C. Glutamate and GABA Imbalance Promotes Neuronal Apoptosis in Hippocampus after Stress. Med. Sci. Monit. 2014, 20, 499–512. [Google Scholar] [CrossRef]
- Rosso, I.M.; Crowley, D.J.; Silveri, M.M.; Rauch, S.L.; Jensen, J.E. Hippocampus Glutamate and N-Acetyl Aspartate Markers of Excitotoxic Neuronal Compromise in Posttraumatic Stress Disorder. Neuropsychopharmacology 2017, 42, 1698–1705. [Google Scholar] [CrossRef]
- Woon, F.L.; Sood, S.; Hedges, D.W. Hippocampal Volume Deficits Associated with Exposure to Psychological Trauma and Posttraumatic Stress Disorder in Adults: A Meta-Analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2010, 34, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Popoli, M.; Yan, Z.; McEwen, B.S.; Sanacora, G. The Stressed Synapse: The Impact of Stress and Glucocorticoids on Glutamate Transmission. Nat. Rev. Neurosci. 2012, 13, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Boyle, L.M. A Neuroplasticity Hypothesis of Chronic Stress in the Basolateral Amygdala. Yale J. Biol. Med. 2013, 86, 117–125. [Google Scholar] [PubMed]
- Ousdal, O.T.; Milde, A.M.; Hafstad, G.S.; Hodneland, E.; Dyb, G.; Craven, A.R.; Melinder, A.; Endestad, T.; Hugdahl, K. The Association of PTSD Symptom Severity with Amygdala Nuclei Volumes in Traumatized Youths. Transl. Psychiatry 2020, 10, 288. [Google Scholar] [CrossRef]
- Adhikari, A.; Lerner, T.N.; Finkelstein, J.; Pak, S.; Jennings, J.H.; Davidson, T.J.; Ferenczi, E.; Gunaydin, L.A.; Mirzabekov, J.J.; Ye, L.; et al. Basomedial Amygdala Mediates Top-down Control of Anxiety and Fear. Nature 2015, 527, 179–185. [Google Scholar] [CrossRef]
- Walker, D.L.; Davis, M. The Role of Amygdala Glutamate Receptors in Fear Learning, Fear-Potentiated Startle, and Extinction. Pharmacol. Biochem. Behav. 2002, 71, 379–392. [Google Scholar] [CrossRef]
- Pan, X.; Kaminga, A.C.; Wen, S.W.; Liu, A. Catecholamines in Post-Traumatic Stress Disorder: A Systematic Review and Meta-Analysis. Front. Mol. Neurosci. 2018, 11, 450. [Google Scholar] [CrossRef]
- Southwick, S.M.; Morgan, C.A.; Charney, D.S.; High, J.R. Yohimbine Use in a Natural Setting: Effects on Posttraumatic Stress Disorder. Biol. Psychiatry 1999, 46, 442–444. [Google Scholar] [CrossRef]
- Craddock, N.; Owen, M.J.; O’Donovan, M.C. The Catechol-O-Methyl Transferase (COMT) Gene as a Candidate for Psychiatric Phenotypes: Evidence and Lessons. Mol. Psychiatry 2006, 11, 446–458. [Google Scholar] [CrossRef]
- Hosák, L. Role of the COMT Gene Val158Met Polymorphism in Mental Disorders: A Review. Eur. Psychiatry 2007, 22, 276–281. [Google Scholar] [CrossRef]
- Lachman, H.M.; Papolos, D.F.; Saito, T.; Yu, Y.M.; Szumlanski, C.L.; Weinshilboum, R.M. Human Catechol-O-Methyltransferase Pharmacogenetics: Description of a Functional Polymorphism and Its Potential Application to Neuropsychiatric Disorders. Pharmacogenetics 1996, 6, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Winkler, E.A.; Yue, J.K.; Ferguson, A.R.; Temkin, N.R.; Stein, M.B.; Barber, J.; Yuh, E.L.; Sharma, S.; Satris, G.G.; McAllister, T.W.; et al. COMT ValMet Polymorphism Is Associated with Post-Traumatic Stress Disorder and Functional Outcome Following Mild Traumatic Brain Injury. J. Clin. Neurosci. 2017, 35, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Kolassa, I.-T.; Kolassa, S.; Ertl, V.; Papassotiropoulos, A.; De Quervain, D.J.-F. The Risk of Posttraumatic Stress Disorder After Trauma Depends on Traumatic Load and the Catechol-O-Methyltransferase Val158Met Polymorphism. Biol. Psychiatry 2010, 67, 304–308. [Google Scholar] [CrossRef]
- Valente, N.L.M.; Vallada, H.; Cordeiro, Q.; Bressan, R.A.; Andreoli, S.B.; Mari, J.J.; Mello, M.F. Catechol-O-Methyltransferase (COMT) Val158met Polymorphism as a Risk Factor for PTSD After Urban Violence. J. Mol. Neurosci. 2011, 43, 516–523. [Google Scholar] [CrossRef]
- Clark, R.; DeYoung, C.G.; Sponheim, S.R.; Bender, T.L.; Polusny, M.A.; Erbes, C.R.; Arbisi, P.A. Predicting Post-Traumatic Stress Disorder in Veterans: Interaction of Traumatic Load with COMT Gene Variation. J. Psychiatr. Res. 2013, 47, 1849–1856. [Google Scholar] [CrossRef]
- Amstadter, A.B.; Nugent, N.R.; Koenen, K.C.; Ruggiero, K.J.; Acierno, R.; Galea, S.; Kilpatrick, D.G.; Gelernter, J. Association Between COMT, PTSD, and Increased Smoking Following Hurricane Exposure in an Epidemiologic Sample. Psychiatry Interpers. Biol. Process. 2009, 72, 360–369. [Google Scholar] [CrossRef]
- Danzi, B.A.; La Greca, A.M. Genetic Pathways to Posttraumatic Stress Disorder and Depression in Children: Investigation of Catechol-O-Methyltransferase (COMT) Val158Met Using Different PTSD Diagnostic Models. J. Psychiatr. Res. 2018, 102, 81–86. [Google Scholar] [CrossRef]
- Hayes, J.P.; Logue, M.W.; Reagan, A.; Salat, D.; Wolf, E.J.; Sadeh, N.; Spielberg, J.M.; Sperbeck, E.; Hayes, S.M.; McGlinchey, R.E.; et al. COMT Val158Met Polymorphism Moderates the Association between PTSD Symptom Severity and Hippocampal Volume. JPN 2017, 42, 95–102. [Google Scholar] [CrossRef]
- Van Rooij, S.J.H.; Stevens, J.S.; Ely, T.D.; Fani, N.; Smith, A.K.; Kerley, K.A.; Lori, A.; Ressler, K.J.; Jovanovic, T. Childhood Trauma and COMT Genotype Interact to Increase Hippocampal Activation in Resilient Individuals. Front. Psychiatry 2016, 7, 156. [Google Scholar] [CrossRef]
- Deslauriers, J.; Acheson, D.T.; Maihofer, A.X.; Nievergelt, C.M.; Baker, D.G.; Geyer, M.A.; Risbrough, V.B.; Marine Resiliency Study Team. COMT Val158met Polymorphism Links to Altered Fear Conditioning and Extinction Are Modulated by PTSD and Childhood Trauma. Depress Anxiety 2018, 35, 32–42. [Google Scholar] [CrossRef]
- Neylan, T.C.; Schadt, E.E.; Yehuda, R. Biomarkers for Combat-Related PTSD: Focus on Molecular Networks from High-Dimensional Data. Eur. J. Psychotraumatology 2014, 5, 23938. [Google Scholar] [CrossRef] [PubMed]
- Pervanidou, P.; Kolaitis, G.; Charitaki, S.; Lazaropoulou, C.; Papassotiriou, I.; Hindmarsh, P.; Bakoula, C.; Tsiantis, J.; Chrousos, G.P. The Natural History of Neuroendocrine Changes in Pediatric Posttraumatic Stress Disorder (PTSD) After Motor Vehicle Accidents: Progressive Divergence of Noradrenaline and Cortisol Concentrations Over Time. Biol. Psychiatry 2007, 62, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Pervanidou, P.; Makris, G.; Chrousos, G.; Agorastos, A. Early Life Stress and Pediatric Posttraumatic Stress Disorder. Brain Sci. 2020, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.M.; DiGangi, J.A.; Phan, K.L. Functional Neuroanatomy of Emotion and Its Regulation in PTSD. Harv. Rev. Psychiatry 2018, 26, 116–128. [Google Scholar] [CrossRef]
- Shin, L.M.; Wright, C.I.; Cannistraro, P.A.; Wedig, M.M.; McMullin, K.; Martis, B.; Macklin, M.L.; Lasko, N.B.; Cavanagh, S.R.; Krangel, T.S.; et al. A Functional Magnetic Resonance Imaging Study of Amygdala and Medial Prefrontal Cortex Responses to Overtly Presented Fearful Faces in Posttraumatic Stress Disorder. Arch. Gen. Psychiatry 2005, 62, 273–281. [Google Scholar] [CrossRef]
- Frewen, P.A.; Dozois, D.J.A.; Neufeld, R.W.J.; Densmore, M.; Stevens, T.K.; Lanius, R.A. Social Emotions and Emotional Valence during Imagery in Women with PTSD: Affective and Neural Correlates. Psychol. Trauma Theory Res. Pract. Policy 2010, 2, 145–157. [Google Scholar] [CrossRef]
- Brohawn, K.H.; Offringa, R.; Pfaff, D.L.; Hughes, K.C.; Shin, L.M. The Neural Correlates of Emotional Memory in Posttraumatic Stress Disorder. Biol. Psychiatry 2010, 68, 1023–1030. [Google Scholar] [CrossRef]
- Holmes, S.E.; Girgenti, M.J.; Davis, M.T.; Pietrzak, R.H.; DellaGioia, N.; Nabulsi, N.; Matuskey, D.; Southwick, S.; Duman, R.S.; Carson, R.E.; et al. Altered Metabotropic Glutamate Receptor 5 Markers in PTSD: In Vivo and Postmortem Evidence. Proc. Natl. Acad. Sci. USA 2017, 114, 8390–8395. [Google Scholar] [CrossRef]
- Rodrigues, S.M.; Bauer, E.P.; Farb, C.R.; Schafe, G.E.; LeDoux, J.E. The Group I Metabotropic Glutamate Receptor mGluR5 Is Required for Fear Memory Formation and Long-Term Potentiation in the Lateral Amygdala. J. Neurosci. 2002, 22, 5219–5229. [Google Scholar] [CrossRef]
- Xuan, S.-M.; Su, Y.-W.; Liang, Y.-M.; Gao, Z.-J.; Liu, C.-Y.; Fan, B.-F.; Shi, Y.-W.; Wang, X.-G.; Zhao, H. mGluR5 in Amygdala Modulates Fear Memory Generalization. Front. Behav. Neurosci. 2023, 17, 1072642. [Google Scholar] [CrossRef]
- Badour, C.L.; Blonigen, D.M.; Boden, M.T.; Feldner, M.T.; Bonn-Miller, M.O. A Longitudinal Test of the Bi-Directional Relations between Avoidance Coping and PTSD Severity during and after PTSD Treatment. Behav. Res. Ther. 2012, 50, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Tull, M.T.; Hahn, K.S.; Evans, S.D.; Salters-Pedneault, K.; Gratz, K.L. Examining the Role of Emotional Avoidance in the Relationship Between Posttraumatic Stress Disorder Symptom Severity and Worry. Cogn. Behav. Ther. 2011, 40, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Flynn, A.J.; Navarro, G.Y.; Basehore, H.K. PTSD Avoidance Symptoms Associated with Alcohol Craving in Treatment-Seeking Veteran Population. J. Dual Diagn. 2022, 18, 135–143. [Google Scholar] [CrossRef]
- Davis, M.T.; Hillmer, A.; Holmes, S.E.; Pietrzak, R.H.; DellaGioia, N.; Nabulsi, N.; Matuskey, D.; Angarita, G.A.; Carson, R.E.; Krystal, J.H.; et al. In Vivo Evidence for Dysregulation of mGluR5 as a Biomarker of Suicidal Ideation. Proc. Natl. Acad. Sci. USA 2019, 116, 11490–11495. [Google Scholar] [CrossRef]
- Barzman, D. Review of the Genetic Basis of Emotion Dysregulation in Children and Adolescents. WJP 2015, 5, 112. [Google Scholar] [CrossRef]
- Munafò, M.R.; Brown, S.M.; Hariri, A.R. Serotonin Transporter (5-HTTLPR) Genotype and Amygdala Activation: A Meta-Analysis. Biol. Psychiatry 2008, 63, 852–857. [Google Scholar] [CrossRef]
- Kobiella, A.; Reimold, M.; Ulshöfer, D.E.; Ikonomidou, V.N.; Vollmert, C.; Vollstädt-Klein, S.; Rietschel, M.; Reischl, G.; Heinz, A.; Smolka, M.N. How the Serotonin Transporter 5-HTTLPR Polymorphism Influences Amygdala Function: The Roles of In Vivo Serotonin Transporter Expression and Amygdala Structure. Transl. Psychiatry 2011, 1, e37. [Google Scholar] [CrossRef]
- Lesch, K.-P.; Bengel, D.; Heils, A.; Sabol, S.Z.; Greenberg, B.D.; Petri, S.; Benjamin, J.; Müller, C.R.; Hamer, D.H.; Murphy, D.L. Association of Anxiety-Related Traits with a Polymorphism in the Serotonin Transporter Gene Regulatory Region. Science 1996, 274, 1527–1531. [Google Scholar] [CrossRef]
- Althaus, M.; Groen, Y.; Wijers, A.A.; Mulder, L.J.M.; Minderaa, R.B.; Kema, I.P.; Dijck, J.D.A.; Hartman, C.A.; Hoekstra, P.J. Differential Effects of 5-HTTLPR and DRD2/ANKK1 Polymorphisms on Electrocortical Measures of Error and Feedback Processing in Children. Clin. Neurophysiol. 2009, 120, 93–107. [Google Scholar] [CrossRef]
- Fortier, É.; Noreau, A.; Lepore, F.; Boivin, M.; Pérusse, D.; Rouleau, G.A.; Beauregard, M. Early Influence of the Rs4675690 on the Neural Substrates of Sadness. J. Affect. Disord. 2011, 135, 336–340. [Google Scholar] [CrossRef]
- Pencea, I.; Munoz, A.P.; Maples-Keller, J.L.; Fiorillo, D.; Schultebraucks, K.; Galatzer-Levy, I.; Rothbaum, B.O.; Ressler, K.J.; Stevens, J.S.; Michopoulos, V.; et al. Emotion Dysregulation Is Associated with Increased Prospective Risk for Chronic PTSD Development. J. Psychiatr. Res. 2020, 121, 222–228. [Google Scholar] [CrossRef] [PubMed]
- van der Kolk, B.A.; Brown, P.; van der Hart, O. Pierre Janet on Post-Traumatic Stress. J. Trauma. Stress 1989, 2, 365–378. [Google Scholar] [CrossRef]
- van der Kolk, B.A.; Fisler, R. Dissociation and the Fragmentary Nature of Traumatic Memories: Overview and Exploratory Study. J. Trauma. Stress 1995, 8, 505–525. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, D.; Loewenstein, R.J.; Lewis-Fernández, R.; Sar, V.; Simeon, D.; Vermetten, E.; Cardeña, E.; Dell, P.F. Dissociative Disorders in DSM-5. Depress. Anxiety 2011, 28, 824–852. [Google Scholar] [CrossRef]
- APA Dictionary of Psychology. Available online: https://dictionary.apa.org/ (accessed on 6 April 2025).
- Beutler, S.; Mertens, Y.L.; Ladner, L.; Schellong, J.; Croy, I.; Daniels, J.K. Trauma-Related Dissociation and the Autonomic Nervous System: A Systematic Literature Review of Psychophysiological Correlates of Dissociative Experiencing in PTSD Patients. Eur. J. Psychotraumatol. 2022, 13, 2132599. [Google Scholar] [CrossRef]
- Lanius, R.A.; Vermetten, E.; Loewenstein, R.J.; Brand, B.; Schmahl, C.; Bremner, J.D.; Spiegel, D. Emotion Modulation in PTSD: Clinical and Neurobiological Evidence for a Dissociative Subtype. Am. J. Psychiatry 2010, 167, 640–647. [Google Scholar] [CrossRef]
- Hansen, M.; Ross, J.; Armour, C. Evidence of the Dissociative PTSD Subtype: A Systematic Literature Review of Latent Class and Profile Analytic Studies of PTSD. J. Affect. Disord. 2017, 213, 59–69. [Google Scholar] [CrossRef]
- Wolf, E.J.; Lunney, C.A.; Miller, M.W.; Resick, P.A.; Friedman, M.J.; Schnurr, P.P. The Dissociative Subtype of PTSD: A Replication and Extension: Research Article: The Dissociative Subtype of PTSD. Depress Anxiety 2012, 29, 679–688. [Google Scholar] [CrossRef]
- Burton, M.S.; Feeny, N.C.; Connell, A.M.; Zoellner, L.A. Exploring Evidence of a Dissociative Subtype in PTSD: Baseline Symptom Structure, Etiology, and Treatment Efficacy for Those Who Dissociate. J. Consult. Clin. Psychol. 2018, 86, 439–451. [Google Scholar] [CrossRef]
- Lanius, R.A.; Brand, B.; Vermetten, E.; Frewen, P.A.; Spiegel, D. The Dissociative Subtype of Posttraumatic Stress Disorder: Rationale, Clinical and Neurobiological Evidence, and Implications: Dissociative Subtype of PTSD. Depress Anxiety 2012, 29, 701–708. [Google Scholar] [CrossRef]
- Hopper, J.W.; Frewen, P.A.; Van Der Kolk, B.A.; Lanius, R.A. Neural Correlates of Reexperiencing, Avoidance, and Dissociation in PTSD: Symptom Dimensions and Emotion Dysregulation in Responses to Script-driven Trauma Imagery. J. Trauma. Stress 2007, 20, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Felmingham, K.; Kemp, A.H.; Williams, L.; Falconer, E.; Olivieri, G.; Peduto, A.; Bryant, R. Dissociative Responses to Conscious and Non-Conscious Fear Impact Underlying Brain Function in Post-Traumatic Stress Disorder. Psychol. Med. 2008, 38, 1771–1780. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, A.A.; Densmore, M.; Frewen, P.A.; Théberge, J.; Neufeld, R.W.; McKinnon, M.C.; Lanius, R.A. The Dissociative Subtype of Posttraumatic Stress Disorder: Unique Resting-State Functional Connectivity of Basolateral and Centromedial Amygdala Complexes. Neuropsychopharmacology 2015, 40, 2317–2326. [Google Scholar] [CrossRef]
- Ozdemir, O.; Boysan, M.; Guzel Ozdemir, P.; Yilmaz, E. Relationships between Posttraumatic Stress Disorder (PTSD), Dissociation, Quality of Life, Hopelessness, and Suicidal Ideation among Earthquake Survivors. Psychiatry Res. 2015, 228, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Polizzi, C.P.; Aksen, D.E.; Lynn, S.J. Quality of Life, Emotion Regulation, and Dissociation: Evaluating Unique Relations in an Undergraduate Sample and Probable PTSD Subsample. Psychol. Trauma Theory Res. Pract. Policy 2022, 14, 107–115. [Google Scholar] [CrossRef]
- Boyer, S.M.; Caplan, J.E.; Edwards, L.K. Trauma-Related Dissociation and the Dissociative Disorders. Del. J. Public Health 2022, 8, 78–84. [Google Scholar] [CrossRef]
- Armour, C.; Karstoft, K.-I.; Richardson, J.D. The Co-Occurrence of PTSD and Dissociation: Differentiating Severe PTSD from Dissociative-PTSD. Soc. Psychiatry Psychiatr. Epidemiol. 2014, 49, 1297–1306. [Google Scholar] [CrossRef]
- Feeny, N.C.; Zoellner, L.A.; Fitzgibbons, L.A.; Foa, E.B. Exploring the Roles of Emotional Numbing, Depression, and Dissociation in PTSD. J. Trauma. Stress 2000, 13, 489–498. [Google Scholar] [CrossRef]
- Hoeboer, C.M.; De Kleine, R.A.; Molendijk, M.L.; Schoorl, M.; Oprel, D.A.C.; Mouthaan, J.; der Does, W.V.; Van Minnen, A. Impact of Dissociation on the Effectiveness of Psychotherapy for Post-Traumatic Stress Disorder: Meta-Analysis. BJPsych Open 2020, 6, e53. [Google Scholar] [CrossRef]
- Halvorsen, J.Ø.; Stenmark, H.; Neuner, F.; Nordahl, H.M. Does Dissociation Moderate Treatment Outcomes of Narrative Exposure Therapy for PTSD? A Secondary Analysis from a Randomized Controlled Clinical Trial. Behav. Res. Ther. 2014, 57, 21–28. [Google Scholar] [CrossRef]
- Wolf, E.J.; Rasmusson, A.M.; Mitchell, K.S.; Logue, M.W.; Baldwin, C.T.; Miller, M.W. A Genome-Wide Association Study of Clinical Symptoms of Dissociation in a Trauma-Exposed Sample: Research Article: Genetics of Dissociation. Depress Anxiety 2014, 31, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Ressler, K.J.; Mercer, K.B.; Bradley, B.; Jovanovic, T.; Mahan, A.; Kerley, K.; Norrholm, S.D.; Kilaru, V.; Smith, A.K.; Myers, A.J.; et al. Post-Traumatic Stress Disorder Is Associated with PACAP and the PAC1 Receptor. Nature 2011, 470, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Lee, D. Global and Local Missions of cAMP Signaling in Neural Plasticity, Learning, and Memory. Front. Pharmacol. 2015, 6. [Google Scholar] [CrossRef]
- Wieczorek, L.; Majumdar, D.; Wills, T.A.; Hu, L.; Winder, D.G.; Webb, D.J.; Muglia, L.J. Absence of Ca2+-Stimulated Adenylyl Cyclases Leads to Reduced Synaptic Plasticity and Impaired Experience-Dependent Fear Memory. Transl. Psychiatry 2012, 2, e126. [Google Scholar] [CrossRef]
- Guillozet-Bongaarts, A.L.; Hyde, T.M.; Dalley, R.A.; Hawrylycz, M.J.; Henry, A.; Hof, P.R.; Hohmann, J.; Jones, A.R.; Kuan, C.L.; Royall, J.; et al. Altered Gene Expression in the Dorsolateral Prefrontal Cortex of Individuals with Schizophrenia. Mol. Psychiatry 2014, 19, 478–485. [Google Scholar] [CrossRef]
- Powers, A.; Cross, D.; Fani, N.; Bradley, B. PTSD, Emotion Dysregulation, and Dissociative Symptoms in a Highly Traumatized Sample. J. Psychiatr. Res. 2015, 61, 174–179. [Google Scholar] [CrossRef]
- van der Kolk, B.A.; Pelcovitz, D.; Roth, S.; Mandel, F.S.; McFarlane, A.; Herman, J.L. Dissociation, Somatization, and Affect Dysregulation: The Complexity of Adaptation of Trauma. Am. J. Psychiatry 1996, 153, 83–93. [Google Scholar] [CrossRef]
- Brewin, C.R. Re-Experiencing Traumatic Events in PTSD: New Avenues in Research on Intrusive Memories and Flashbacks. Eur. J. Psychotraumatology 2015, 6, 27180. [Google Scholar] [CrossRef]
- Blanke, O.; Metzinger, T. Full-Body Illusions and Minimal Phenomenal Selfhood. Trends Cogn. Sci. 2009, 13, 7–13. [Google Scholar] [CrossRef]
- Dahlgren, M.K.; Laifer, L.M.; VanElzakker, M.B.; Offringa, R.; Hughes, K.C.; Staples-Bradley, L.K.; Dubois, S.J.; Lasko, N.B.; Hinojosa, C.A.; Orr, S.P.; et al. Diminished Medial Prefrontal Cortex Activation during the Recollection of Stressful Events Is an Acquired Characteristic of PTSD. Psychol. Med. 2018, 48, 1128–1138. [Google Scholar] [CrossRef]
- Werner, N.S.; Meindl, T.; Engel, R.R.; Rosner, R.; Riedel, M.; Reiser, M.; Fast, K. Hippocampal Function during Associative Learning in Patients with Posttraumatic Stress Disorder. J. Psychiatr. Res. 2009, 43, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Acheson, D.T.; Gresack, J.E.; Risbrough, V.B. Hippocampal Dysfunction Effects on Context Memory: Possible Etiology for Posttraumatic Stress Disorder. Neuropharmacology 2012, 62, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Hori, H.; Fukushima, H.; Nagayoshi, T.; Ishikawa, R.; Zhuo, M.; Yoshida, F.; Kunugi, H.; Okamoto, K.; Kim, Y.; Kida, S. Fear Memory Regulation by the cAMP Signaling Pathway as an Index of Reexperiencing Symptoms in Posttraumatic Stress Disorder. Mol. Psychiatry 2024, 29, 2105–2116. [Google Scholar] [CrossRef]
- Gelernter, J.; Sun, N.; Polimanti, R.; Pietrzak, R.; Levey, D.F.; Bryois, J.; Lu, Q.; Hu, Y.; Li, B.; Radhakrishnan, K.; et al. Genome-Wide Association Study of Post-Traumatic Stress Disorder Reexperiencing Symptoms in >165,000 US Veterans. Nat. Neurosci. 2019, 22, 1394–1401. [Google Scholar] [CrossRef]
- Stefansson, H.; Ophoff, R.A.; Steinberg, S.; Andreassen, O.A.; Cichon, S.; Rujescu, D.; Werge, T.; Pietiläinen, O.P.H.; Mors, O.; Mortensen, P.B.; et al. Common Variants Conferring Risk of Schizophrenia. Nature 2009, 460, 744–747. [Google Scholar] [CrossRef]
- Ruderfer, D.M.; Fanous, A.H.; Ripke, S.; McQuillin, A.; Amdur, R.L.; Gejman, P.V.; O’Donovan, M.C.; Andreassen, O.A.; Djurovic, S.; Hultman, C.M.; et al. Polygenic Dissection of Diagnosis and Clinical Dimensions of Bipolar Disorder and Schizophrenia. Mol. Psychiatry 2014, 19, 1017–1024. [Google Scholar] [CrossRef]
- Krystal, J.H.; Rosenheck, R.A.; Cramer, J.A.; Vessicchio, J.C.; Jones, K.M.; Vertrees, J.E.; Horney, R.A.; Huang, G.D.; Stock, C.; Veterans Affairs Cooperative Study No. 504 Group. Adjunctive Risperidone Treatment for Antidepressant-Resistant Symptoms of Chronic Military Service-Related PTSD: A Randomized Trial. JAMA 2011, 306, 493–502. [Google Scholar] [CrossRef]
- Tomalski, R.; Pietkiewicz, I.J. Phenomenology and Epidemiology of Verbal Auditory Hallucinations and Theories Explaining Their Formation. Psychiatr. Psychol. Klin. 2019, 19, 328–337. [Google Scholar] [CrossRef]
- Pietkiewicz, I.J.; Tomalski, R.; Hełka, A.M. Developing a Codebook for Assessing Auditory Hallucination Complexity Using Mixed Methods. Front. Psychiatry 2024, 15, 1441919. [Google Scholar] [CrossRef]
- Kremen, W.S.; Koenen, K.C.; Afari, N.; Lyons, M.J. Twin Studies of Posttraumatic Stress Disorder: Differentiating Vulnerability Factors from Sequelae. Neuropharmacology 2012, 62, 647–653. [Google Scholar] [CrossRef]
- Stein, M.B.; Jang, K.L.; Taylor, S.; Vernon, P.A.; Livesley, W.J. Genetic and Environmental Influences on Trauma Exposure and Posttraumatic Stress Disorder Symptoms: A Twin Study. Am. J. Psychiatry 2002, 159, 1675–1681. [Google Scholar] [CrossRef] [PubMed]
- Payne, E.A.; Berle, D. Posttraumatic Stress Disorder Symptoms among Offspring of Holocaust Survivors: A Systematic Review and Meta-Analysis. Traumatology 2021, 27, 254–264. [Google Scholar] [CrossRef]
- Yehuda, R.; Bierer, L.M.; Schmeidler, J.; Aferiat, D.H.; Breslau, I.; Dolan, S. Low Cortisol and Risk for PTSD in Adult Offspring of Holocaust Survivors. Am. J. Psychiatry 2000, 157, 1252–1259. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R. Biological Factors Associated with Susceptibility to Posttraumatic Stress Disorder. Can. J. Psychiatry 1999, 44, 34–39. [Google Scholar] [CrossRef]
- Yehuda, R.; Halligan, S.L.; Bierer, L.M. Relationship of Parental Trauma Exposure and PTSD to PTSD, Depressive and Anxiety Disorders in Offspring. J. Psychiatr. Res. 2001, 35, 261–270. [Google Scholar] [CrossRef]
- Stein, M.B.; Walker, J.R.; Forde, D.R. Gender Differences in Susceptibility to Posttraumatic Stress Disorder. Behav. Res. Ther. 2000, 38, 619–628. [Google Scholar] [CrossRef]
- Breslau, N.; Peterson, E.L. Assaultive Violence and the Risk of Posttraumatic Stress Disorder Following a Subsequent Trauma. Behav. Res. Ther. 2010, 48, 1063–1066. [Google Scholar] [CrossRef]
- Bender, A.K.; Bucholz, K.K.; Edenberg, H.J.; Kramer, J.R.; Anokhin, A.P.; Meyers, J.L.; Kuperman, S.; Hesselbrock, V.; Hesselbrock, M.; McCutcheon, V.V. Trauma Exposure and Post-Traumatic Stress Disorder Among Youth in a High-Risk Family Study: Associations with Maternal and Paternal Alcohol Use Disorder. J. Fam. Trauma Child Custody Child Dev. 2020, 17, 116–134. [Google Scholar] [CrossRef]
- Afifi, T.O.; Asmundson, G.J.G.; Taylor, S.; Jang, K.L. The Role of Genes and Environment on Trauma Exposure and Posttraumatic Stress Disorder Symptoms: A Review of Twin Studies. Clin. Psychol. Rev. 2010, 30, 101–112. [Google Scholar] [CrossRef]
- Pervanidou, P.; Agorastos, A.; Kolaitis, G.; Chrousos, G.P. Neuroendocrine Responses to Early Life Stress and Trauma and Susceptibility to Disease. Eur. J. Psychotraumatology 2017, 8, 1351218. [Google Scholar] [CrossRef]
- Rosmond, R.; Björntorp, P. The Hypothalamic–Pituitary–Adrenal Axis Activity as a Predictor of Cardiovascular Disease, Type 2 Diabetes and Stroke. J. Intern. Med. 2000, 247, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Dunn, A.J. The HPA Axis and the Immune System: A Perspective. In NeuroImmune Biology; The Hypothalamus-Pituitary-Adrenal Axis; Elsevier: Amsterdam, The Netherlands, 2007; Volume 7, pp. 3–15. [Google Scholar]
- Wingenfeld, K.; Wolf, O.T. HPA Axis Alterations in Mental Disorders: Impact on Memory and Its Relevance for Therapeutic Interventions. CNS Neurosci. Ther. 2011, 17, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.; Mackin, P. HPA Axis Function in Mood Disorders. Psychiatry 2006, 5, 166–170. [Google Scholar] [CrossRef]
- Baumeister, D.; Lightman, S.L.; Pariante, C.M. The Interface of Stress and the HPA Axis in Behavioural Phenotypes of Mental Illness. In Behavioral Neurobiology of Stress-Related Disorders; Pariante, C.M., Lapiz-Bluhm, M.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 18, pp. 13–24. ISBN 9783662451250. [Google Scholar]
- Caspi, A.; Sugden, K.; Moffitt, T.E.; Taylor, A.; Craig, I.W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; et al. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene. Science 2003, 301, 386–389. [Google Scholar] [CrossRef]
- Caspi, A.; Hariri, A.R.; Holmes, A.; Uher, R.; Moffitt, T.E. Genetic Sensitivity to the Environment: The Case of the Serotonin Transporter Gene and Its Implications for Studying Complex Diseases and Traits. Am. J. Psychiatry 2010, 167, 509–527. [Google Scholar] [CrossRef]
- Iurescia, S.; Seripa, D.; Rinaldi, M. Looking Beyond the 5-HTTLPR Polymorphism: Genetic and Epigenetic Layers of Regulation Affecting the Serotonin Transporter Gene Expression. Mol. Neurobiol. 2017, 54, 8386–8403. [Google Scholar] [CrossRef]
- Alexander, N.; Wankerl, M.; Hennig, J.; Miller, R.; Zänkert, S.; Steudte-Schmiedgen, S.; Stalder, T.; Kirschbaum, C. DNA Methylation Profiles within the Serotonin Transporter Gene Moderate the Association of 5-HTTLPR and Cortisol Stress Reactivity. Transl. Psychiatry 2014, 4, e443. [Google Scholar] [CrossRef]
- Wankerl, M.; Miller, R.; Kirschbaum, C.; Hennig, J.; Stalder, T.; Alexander, N. Effects of Genetic and Early Environmental Risk Factors for Depression on Serotonin Transporter Expression and Methylation Profiles. Transl. Psychiatry 2014, 4, e402. [Google Scholar] [CrossRef]
- Lee, H.-J.; Lee, M.-S.; Kang, R.-H.; Kim, H.; Kim, S.-D.; Kee, B.-S.; Kim, Y.H.; Kim, Y.-K.; Kim, J.B.; Yeon, B.K.; et al. Influence of the Serotonin Transporter Promoter Gene Polymorphism on Susceptibility to Posttraumatic Stress Disorder. Depress Anxiety 2005, 21, 135–139. [Google Scholar] [CrossRef]
- Xie, P.; Kranzler, H.R.; Poling, J.; Stein, M.B.; Anton, R.F.; Brady, K.; Weiss, R.D.; Farrer, L.; Gelernter, J. Interactive Effect of Stressful Life Events and the Serotonin Transporter 5-HTTLPR Genotype on Posttraumatic Stress Disorder Diagnosis in 2 Independent Populations. Arch. Gen. Psychiatry 2009, 66, 1201–1209. [Google Scholar] [CrossRef]
- Stein, M.B.; Schork, N.J.; Gelernter, J. Gene-by-Environment (Serotonin Transporter and Childhood Maltreatment) Interaction for Anxiety Sensitivity, an Intermediate Phenotype for Anxiety Disorders. Neuropsychopharmacology 2008, 33, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Fox, N.A.; Nichols, K.E.; Henderson, H.A.; Rubin, K.; Schmidt, L.; Hamer, D.; Ernst, M.; Pine, D.S. Evidence for a Gene-Environment Interaction in Predicting Behavioral Inhibition in Middle Childhood. Psychol. Sci. 2005, 16, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Barry, R.A.; Kochanska, G.; Philibert, R.A. G × E Interaction in the Organization of Attachment: Mothers’ Responsiveness as a Moderator of Children’s Genotypes. J. Child Psychol. Psychiatry 2008, 49, 1313–1320. [Google Scholar] [CrossRef]
- Amstadter, A.B.; Daughters, S.B.; MacPherson, L.; Reynolds, E.K.; Danielson, C.K.; Wang, F.; Potenza, M.N.; Gelernter, J.; Lejuez, C.W. Genetic Associations with Performance on a Behavioral Measure of Distress Intolerance. J. Psychiatr. Res. 2012, 46, 87–94. [Google Scholar] [CrossRef]
- Alexander, N.; Klucken, T.; Koppe, G.; Osinsky, R.; Walter, B.; Vaitl, D.; Sammer, G.; Stark, R.; Hennig, J. Interaction of the Serotonin Transporter-Linked Polymorphic Region and Environmental Adversity: Increased Amygdala-Hypothalamus Connectivity as a Potential Mechanism Linking Neural and Endocrine Hyperreactivity. Biol. Psychiatry 2012, 72, 49–56. [Google Scholar] [CrossRef]
- Stein, M.B.; Norman, S. Posttraumatic Stress Disorder in Adults: Psychotherapy and Psychosocial Interventions. UpToDate. Available online: https://www.uptodate.com/contents/posttraumatic-stress-disorder-in-adults-psychotherapy-and-psychosocial-interventions (accessed on 9 April 2025).
- Bisson, J.; Andrew, M. Psychological Treatment of Post-Traumatic Stress Disorder (PTSD). In Cochrane Database of Systematic Reviews; The Cochrane Collaboration, Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2007; p. CD003388.pub3. [Google Scholar]
- Coventry, P.A.; Meader, N.; Melton, H.; Temple, M.; Dale, H.; Wright, K.; Cloitre, M.; Karatzias, T.; Bisson, J.; Roberts, N.P.; et al. Psychological and Pharmacological Interventions for Posttraumatic Stress Disorder and Comorbid Mental Health Problems Following Complex Traumatic Events: Systematic Review and Component Network Meta-Analysis. PLoS Med. 2020, 17, e1003262. [Google Scholar] [CrossRef]
- Pierce, Z.P.; Black, J.M. The Neurophysiology Behind Trauma-Focused Therapy Modalities Used to Treat Post-Traumatic Stress Disorder Across the Life Course: A Systematic Review. Trauma Violence Abus. 2023, 24, 1106–1123. [Google Scholar] [CrossRef]
- González, A.; Del Río-Casanova, L.; Justo-Alonso, A. Integrating Neurobiology of Emotion Regulation and Trauma Therapy: Reflections on EMDR Therapy. Rev. Neurosci. 2017, 28, 431–440. [Google Scholar] [CrossRef]
- Pagani, M.; Di Lorenzo, G.; Verardo, A.R.; Nicolais, G.; Monaco, L.; Lauretti, G.; Russo, R.; Niolu, C.; Ammaniti, M.; Fernandez, I.; et al. Neurobiological Correlates of EMDR Monitoring—An EEG Study. PLoS ONE 2012, 7, e45753. [Google Scholar] [CrossRef]
- Ravindran, L.N.; Stein, M.B. Pharmacotherapy of PTSD: Premises, Principles, and Priorities. Brain Res. 2009, 1293, 24–39. [Google Scholar] [CrossRef]
- Akiki, T.J.; Abdallah, C.G. Are There Effective Psychopharmacologic Treatments for PTSD? J. Clin. Psychiatry 2018, 80. [Google Scholar] [CrossRef] [PubMed]
- Ipser, J.C.; Stein, D.J. Evidence-Based Pharmacotherapy of Post-Traumatic Stress Disorder (PTSD). Int. J. Neuropsychopharm. 2012, 15, 825–840. [Google Scholar] [CrossRef] [PubMed]
- Department of Veterans Affairs and Department of Defense. VA/DoD Clinical Practice Guideline for the Management of Posttraumatic Stress Disorder and Acute Stress Disorder. Available online: https://www.healthquality.va.gov/guidelines/MH/ptsd/ (accessed on 8 April 2025).
- Friedman, M.J.; Bernardy, N.C. Considering Future Pharmacotherapy for PTSD. Neurosci. Lett. 2017, 649, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Feder, A.; Parides, M.K.; Murrough, J.W.; Perez, A.M.; Morgan, J.E.; Saxena, S.; Kirkwood, K.; Aan Het Rot, M.; Lapidus, K.A.B.; Wan, L.-B.; et al. Efficacy of Intravenous Ketamine for Treatment of Chronic Posttraumatic Stress Disorder: A Randomized Clinical Trial. JAMA Psychiatry 2014, 71, 681. [Google Scholar] [CrossRef]
- Albott, C.S.; Lim, K.O.; Erbes, C.; Thuras, P.; Wels, J.; Tye, S.J.; Shiroma, P.R. Neurocognitive Effects of Repeated Ketamine Infusions in Comorbid Posttraumatic Stress Disorder and Major Depressive Disorder. J. Affect. Disord. 2022, 308, 289–297. [Google Scholar] [CrossRef]
- Davis, M.T.; DellaGiogia, N.; Maruff, P.; Pietrzak, R.H.; Esterlis, I. Acute Cognitive Effects of Single-Dose Intravenous Ketamine in Major Depressive and Posttraumatic Stress Disorder. Transl. Psychiatry 2021, 11, 205. [Google Scholar] [CrossRef]
- Jumaili, W.A.; Trivedi, C.; Chao, T.; Kubosumi, A.; Jain, S. The Safety and Efficacy of Ketamine NMDA Receptor Blocker as a Therapeutic Intervention for PTSD Review of a Randomized Clinical Trial. Behav. Brain Res. 2022, 424, 113804. [Google Scholar] [CrossRef]
- Albuquerque, T.R.D.; Macedo, L.F.R.; Delmondes, G.D.A.; Rolim Neto, M.L.; Almeida, T.M.; Uchida, R.R.; Cordeiro, Q.; Lisboa, K.W.D.S.C.; Menezes, I.R.A.D. Evidence for the Beneficial Effect of Ketamine in the Treatment of Patients with Post-Traumatic Stress Disorder: A Systematic Review and Meta-Analysis. J. Cereb. Blood Flow Metab. 2022, 42, 2175–2187. [Google Scholar] [CrossRef]
- Duek, O.; Korem, N.; Li, Y.; Kelmendi, B.; Amen, S.; Gordon, C.; Milne, M.; Krystal, J.H.; Levy, I.; Harpaz-Rotem, I. Long Term Structural and Functional Neural Changes Following a Single Infusion of Ketamine in PTSD. Neuropsychopharmacology 2023, 48, 1648–1658. [Google Scholar] [CrossRef]
- Ragnhildstveit, A.; Roscoe, J.; Bass, L.C.; Averill, C.L.; Abdallah, C.G.; Averill, L.A. The Potential of Ketamine for Posttraumatic Stress Disorder: A Review of Clinical Evidence. Ther. Adv. Psychopharmacol. 2023, 13, 20451253231154125. [Google Scholar] [CrossRef]
- Borgogna, N.C.; Owen, T.; Vaughn, J.; Johnson, D.A.L.; Aita, S.L.; Hill, B.D. So How Special Is Special K? A Systematic Review and Meta-Analysis of Ketamine for PTSD RCTs. Eur. J. Psychotraumatology 2024, 15, 2299124. [Google Scholar] [CrossRef] [PubMed]
- Liriano, F.; Hatten, C.; Schwartz, T.L. Ketamine as Treatment for Post-Traumatic Stress Disorder: A Review. Drugs Context 2019, 8, 212305. [Google Scholar] [CrossRef] [PubMed]
- Hertzberg, M.A.; Butterfield, M.I.; Feldman, M.E.; Beckham, J.C.; Sutherland, S.M.; Connor, K.M.; Davidson, J.R.T. A Preliminary Study of Lamotrigine for the Treatment of Posttraumatic Stress Disorder. Biol. Psychiatry 1999, 45, 1226–1229. [Google Scholar] [CrossRef]
- Nair, J.; Ajit, S.S. The Role of the Glutamatergic System in Posttraumatic Stress Disorder. CNS Spectr. 2008, 13, 585–591. [Google Scholar] [CrossRef]
- Kozarić-Kovačić, D.; Eterović, M. Lamotrigine Abolished Aggression in a Patient with Treatment-Resistant Posttraumatic Stress Disorder. Clin. Neuropharmacol. 2013, 36, 94–95. [Google Scholar] [CrossRef]
- Thompson, S.I.; El-Saden, S.M. Lamotrigine for Treating Anger in Veterans with Posttraumatic Stress Disorder. Clin. Neuropharm. 2021, 44, 184–185. [Google Scholar] [CrossRef]
- Rajabi, F.; Fozveh, F.; Maracy, M.R. The Effect of Add-on Memantine in New Onset Combat-Related Posttraumatic Stress Disorder Core Symptoms: A Pilot Study. Iran. J. Psychiatry 2023, 18, 266–274. [Google Scholar] [CrossRef]
- Khorvash, F.; Bani, E.; Soltani, R.; Rezvani, M.; Saadatnia, M.; Maktoobian, N.; Kheradmand, M. Therapeutic Effect of Memantine on Patients with Posttraumatic Headache: A Randomized Double-Blinded Clinical Trial. J. Res. Med. Sci. 2025, 30. [Google Scholar] [CrossRef]
- Cunningham, M.O.; Jones, R.S.G. The Anticonvulsant, Lamotrigine Decreases Spontaneous Glutamate Release but Increases Spontaneous GABA Release in the Rat Entorhinal Cortex in Vitro. Neuropharmacology 2000, 39, 2139–2146. [Google Scholar] [CrossRef]
- Tang, B.; Wang, Y.; Ren, J. Basic Information about Memantine and Its Treatment of Alzheimer’s Disease and Other Clinical Applications. Ibrain 2023, 9, 340–348. [Google Scholar] [CrossRef]
Mechanisms | Consequences |
---|---|
‘Innate alarm system’ hyperactivation ↑ activation of cerebellar–limbic–thalamo–cortical network | ↑ visual scanning ↓ attention regulation ↓ response inhibition |
Left-to-right mPFC shift ↓ left mPFC activity ↑ right mPFC activity ↓ corpus callosum volume | ↑ stress reactivity ↑ emotional analysis ↓ cognitive analysis ↓ inhibition of HPA axis |
HPA axis hypoactivity ↑ number of GR receptors in pituitary gland pituitary hypersensitivity to cortisol ↓ cortisol | prolonged and ↑ arousal to threat |
FKBP5 polymorphisms ↓ sensitivity of GR to cortisol | |
GABA/Glu imbalance ↑ Glu, ↓ GABA hippocampal damage pathological neuroplasticity in amygdala and PFC | ↑ neuronal excitation neurotoxicity hyperactivation of amygdala |
Adrenergic hypersensitivity ↓ alpha-2 autoreceptors ↑ noradrenaline secretion | ↑ physiological stress response |
COMT polymorphism (Val158Met) ↓ COMT activity ↓ hippocampal activation | ↓ resilience to stress problems in extinguishing fear memory impairment |
Mechanisms | Consequences |
---|---|
↑ amygdala activity | negative emotionality excessive response to negative stimuli |
↑ hippocampal activity | inaccurate recollection of memories over-generalization of response to negative stimuli |
↑ insular response to negative stimuli | inability to separate oneself from traumatic memories |
↓ ACC activity | altered emotional judgement (vACC) problems with emotional conflict resolution (dACC) |
↓ mPFC activity | impaired emotional self-regulation impaired information integration |
↑ mGluR5 availability and stability | fear generalization ↑ avoidance impulsive behaviours |
5-HTTLPR polymorphism ↓ 5-HTT mRNA transcription ↓ 5-HT reuptake in lymphoblasts | problems with extinguishing stress reactions ↓ affect regulation ↑ risk of disorganized attachment style |
DRD2 polymorphisms ↑ dorsal cingulate gyrus activity ↑ right putamen activity ↑ right caudate nucleus activity ↑ left anterior temporal pole activity | ↑ sensitivity to negative stimuli underestimating one’s achievements |
Mechanisms | Consequences |
---|---|
↑ left mPFC activity ↓ right insular cortex activity | detachment from emotional processing |
↑ amygdalae activity in unconscious fear | ↑ arousal |
↑ left vPFC activity in conscious fear | emotional detachment |
ACDCY8 polymorphism AC8 deficiency | impairment of memory consolidation HPA axis dysregulation |
Mechanisms | Consequences |
---|---|
↑ right insular cortex activity | ↑ somatic symptoms of emotional stress |
↓ left rACC activity | emotional dysregulation ↓ inhibition of amygdala |
↑ Glu/NAA in right hippocampus | inaccurate recollection of memories over-generalization of responses to negative stimuli |
↑ insular response to negative stimuli | inability to separate from traumatic memories |
↓ PDE4B expression ↑ cAMP signalling transduction | ↑ retrieval of traumatic memories |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzozowska, A.; Grabowski, J. Hyperarousal, Dissociation, Emotion Dysregulation and Re-Experiencing—Towards Understanding Molecular Aspects of PTSD Symptoms. Int. J. Mol. Sci. 2025, 26, 5216. https://doi.org/10.3390/ijms26115216
Brzozowska A, Grabowski J. Hyperarousal, Dissociation, Emotion Dysregulation and Re-Experiencing—Towards Understanding Molecular Aspects of PTSD Symptoms. International Journal of Molecular Sciences. 2025; 26(11):5216. https://doi.org/10.3390/ijms26115216
Chicago/Turabian StyleBrzozowska, Aleksandra, and Jakub Grabowski. 2025. "Hyperarousal, Dissociation, Emotion Dysregulation and Re-Experiencing—Towards Understanding Molecular Aspects of PTSD Symptoms" International Journal of Molecular Sciences 26, no. 11: 5216. https://doi.org/10.3390/ijms26115216
APA StyleBrzozowska, A., & Grabowski, J. (2025). Hyperarousal, Dissociation, Emotion Dysregulation and Re-Experiencing—Towards Understanding Molecular Aspects of PTSD Symptoms. International Journal of Molecular Sciences, 26(11), 5216. https://doi.org/10.3390/ijms26115216