SII, SIRI, and MHR as Additional Readings for Personalized Evaluation of Chronic Heart Failure Severity
Abstract
1. Introduction
2. Results
2.1. Readings’ Differences Between the Groups According to SII
2.2. Differences in Laboratory and Echocardiography Readings Between the Groups According to MHR
2.3. Comparison of Laboratory and Echocardiography Readings Between the Groups According to SIRI
3. Discussion
3.1. Systemic Inflammation and Its Relationship with HDL in CHF
3.2. Interfaces Between Systemic Inflammation and Oxidative Stress Readings in CHF
3.3. Eligibility of Grouping by SIRI and SII for Finding Lipid, Oxidative Stress, and Echocardiogram Readings‘ Differences in CHF Patients
4. Materials and Methods
4.1. Study Population
4.2. Investigated Readings and Methods
4.3. Statistical Analysis
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CHF | chronic heart failure |
SII | systemic inflammation index |
SIRI | systemic inflammatory response index |
MHR | monocyte count/high-density lipoprotein cholesterol concentration |
References
- Bozkurt, B.; Ahmad, T.; Alexander, K.M.; Baker, W.L.; Bosak, K.; Breathett, K.; Fonarow, G.C.; Heidenreich, P.; Ho, J.E.; Hsich, E.; et al. Heart Failure Epidemiology and Outcomes Statistics: A Report of the Heart Failure Society of America. J. Card. Fail. 2023, 29, 1412–1451. [Google Scholar] [CrossRef] [PubMed]
- Reina-Couto, M.; Pereira-Terra, P.; Quelhas-Santos, J.; Silva-Pereira, C.; Albino-Teixeira, A.; Sousa, T. Inflammation in Human Heart Failure: Major Mediators and Therapeutic Targets. Front. Physiol. 2021, 12, 746494. [Google Scholar] [CrossRef]
- Boulet, J.; Sridhar, V.S.; Bouabdallaoui, N.; Tardif, J.C.; White, M. Inflammation in heart failure: Pathophysiology and therapeutic strategies. Inflamm. Res. 2024, 73, 709–723. [Google Scholar] [CrossRef]
- Wróbel-Nowicka, K.; Wojciechowska, C.; Jacheć, W.; Zalewska, M.; Romuk, E. The Role of Oxidative Stress and Inflammatory Parameters in Heart Failure. Medicina 2024, 60, 760. [Google Scholar] [CrossRef]
- Cho, J.H.; Cho, H.J.; Lee, H.Y.; Ki, Y.J.; Jeon, E.S.; Hwang, K.K.; Chae, S.C.; Baek, S.H.; Kang, S.-M.; Choi, D.-J.; et al. Neutrophil-lymphocyte ratio in patients with acute heart failure predicts in-hospital and long-term mortality. J. Clin. Med. 2020, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, R.; Xv, Y.; Wang, J.; Chen, J.; Zhou, X. A Novel Nomogram Integrated with Systemic Inflammation Markers and Traditional Prognostic Factors for Adverse Events’ Prediction in Patients with Chronic Heart Failure in the Southwest of China. J. Inflamm. Res. 2022, 15, 6785–6800. [Google Scholar] [CrossRef]
- Jin, Z.; Wu, Q.; Chen, S.; Gao, J.; Li, X.; Zhang, X.; Zhou, Y.; He, D.; Cheng, Z.; Zhu, Y.; et al. The associations of two novel inflammation indexes, SII and SIRI with the risks for cardiovascular diseases and all-cause mortality: A ten-year follow-up study in 85,154 individuals. J. Inflamm. Res. 2021, 14, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xv, Y.; Liu, X.; Zhou, X. Associations of systemic inflammatory markers with the risks of chronic heart failure: A case-control study. Clinics 2022, 77, 100056. [Google Scholar] [CrossRef]
- Delcea, C.; Buzea, C.A.; Dan, G.A. The neutrophil to lymphocyte ratio in heart failure: A comprehensive review. Rom. J. Intern. Med. = Rev. Roum. Med. Intern. 2019, 57, 296–314. [Google Scholar] [CrossRef]
- Vakhshoori, M.; Nemati, S.; Sabouhi, S.; Tavakol, G.; Yavari, B.; Shakarami, M.; Bondariyan, N.; Emami, S.A.; Shafie, D. Selection of Monocyte-to-Lymphocyte Ratio (MLR) or Lymphocyte-to-Monocyte Ratio (LMR) as Best Prognostic Tool in Heart Failure: A Systematic Review. SN Compr. Clin. Med. 2023, 5, 227. [Google Scholar] [CrossRef]
- Tani, S.; Matsumoto, M.; Anazawa, T.; Kawamata, H.; Furuya, S.; Takahashi, H.; Iida, K.; Washio, T.; Kumabe, N.; Kobori, M.; et al. Development of a model for prediction of coronary atherosclerotic regression: Evaluation of high-density lipoprotein cho esterol level and peripheral blood monocyte count. Heart Vessels 2012, 27, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Wang, C.; Zhou, Y.; Che, H.; Wang, R.; Cheng, L.; Rao, C.; Zhong, Q.; Li, Z.; Duan, Y.; et al. The Associations of Two Novel Inflammation Biomarkers, SIRI and SII, with Mortality Risk in Patients with Chronic Heart Failure. J. Inflamm. Res. 2024, 17, 1255–1264. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, P.; Zhang, Y.; Qiu, M.; Li, J.; Ma, S.; Yan, Y.; Li, Y.; Han, Y. Association of systemic immune inflammatory index with all-cause and cause-specific mortality in hypertensive individuals: Results from NHANES. Front. Immunol. 2023, 14, 1087345. [Google Scholar] [CrossRef]
- Xiao, S.; Liu, N.; Wang, Z.; Zuo, R.; Zhou, Y.; Yang, Y.; Chen, T.; Liu, N. Association of Systemic Immune Inflammation Index with All-Cause, Cardiovascular Disease, and Cancer-Related Mortality in Patients with Cardiovascular Disease: A Cross-Sectional Study. J. Inflamm. Res. 2023, 16, 941–961. [Google Scholar] [CrossRef]
- Mesquita, T.; Lin, Y.N.; Ibrahim, A. Chronic low-grade inflammation in heart failure with preserved ejection fraction. Aging Cell 2021, 20, e13453. [Google Scholar] [CrossRef]
- Schiattarella, G.G.; Rodolico, D.; Hill, J.A. Metabolic inflammation in heart failure with preserved ejection fraction. Cardiovasc. Res. 2020, 117, 423–434. [Google Scholar] [CrossRef]
- Simmonds, S.J.; Cuijpers, I.; Heymans, S.; Jones, E.A.V. Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved Pathological Understanding. Cells 2020, 9, 242. [Google Scholar] [CrossRef]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef]
- Medzhitov, R.; Janeway, C. Innate immune recognition: Mechanisms and pathways. Immunol. Rev. 2000, 173, 89–97. [Google Scholar] [CrossRef]
- Goyal, A.; Wang, Y.; Graham, M.M.; Doseff, A.I.; Bhatt, N.Y.; Marsh, C.B. Monocyte Survival Factors Induce Akt Activation and Suppress Caspase-3. Am. J. Respir. Cell Mol. Biol. 2002, 26, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Austermann, J.; Roth, J.; Barczyk-Kahlert, K. The Good and the Bad: Monocytes’ and Macrophages’ Diverse Functions in Inflammation. Cells 2022, 11, 1979. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.B.; Chen, Y.S.; Ji, H.Y.; Xie, W.M.; Jiang, J.; Ran, L.S.; Zhang, C.T.; Quan, X.Q. Neutrophil to high-density lipoprotein ratio has a superior prognostic value in elderly patients with acute myocardial infarction: A comparison study. Lipids Health Dis. 2020, 19, 59. [Google Scholar] [CrossRef]
- Kahraman, S.; Agus, H.Z.; Avci, Y.; Serbest, N.G.; Guner, A.; Erturk, M. The Neutrophil to Lymphocyte Ratio (NLR) Is Associated With Residual Syntax Score in Patients With ST-Segment Elevation Myocardial Infarction. Angiology 2021, 72, 166–173. [Google Scholar] [CrossRef]
- Jiang, M.; Yang, J.; Zou, H.; Li, M.; Sun, W.; Kong, X. Monocyte-to-high-density lipoprotein-cholesterol ratio (MHR) and the risk of all-cause and cardiovascular mortality: A nationwide cohort study in the United States. Lipids Health Dis. 2022, 21, 30. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Ma, L. Inflammation in coronary artery disease-clinical implications of novel HDL-cholesterol-related inflammatory parameters as predictors. Coron. Artery Dis. 2022, 34, 66–77. [Google Scholar] [CrossRef]
- Misirlioglu, N.F.; Bicakhan, B.; Aydin, S.N.; Ozen, G.D.; Uzun, H. Association of hematological inflammatory indices and monocyte/HDL ratio with plaque formation in patients with atherosclerotic heart disease. Int. J. Med. Biochem. 2025, 8, 130–138. [Google Scholar] [CrossRef]
- Mehra, M.R.; Uber, P.A.; Lavie, C.J.; Milani, R.V.; Park, M.H.; Ventura, H.O. High-density Lipoprotein Cholesterol Levels and Prognosis in Advanced Heart Failure. J. Heart Lung Transplant. 2009, 28, 876–880. [Google Scholar] [CrossRef]
- Emmens, J.E.; Jia, C.; Ng, L.L.; van Veldhuisen, D.J.; Dickstein, K.; Anker, S.D.; Lang, C.C.; Filippatos, G.; Cleland, J.G.F.; Metra, M.; et al. Impaired high-density lipoprotein function in patients with heart failure. J. Am. Heart Assoc. 2021, 10, e019123. [Google Scholar] [CrossRef]
- Barker, G.; Winer, J.R.; Guirgis, F.W.; Reddy, S. HDL and persistent inflammation immunosuppression and catabolism syndrome. Curr. Opin. Lipidol. 2021, 32, 315–322. [Google Scholar] [CrossRef]
- Açıkgöz, S.K.; Açıkgöz, E.; Şensoy, B.; Topal, S.; Aydoğdu, S. Monocyte to high-density lipoprotein cholesterol ratio is predictive of in-hospital and five-year mortality in ST-segment elevation myocardial infarction. Cardiol. J. 2016, 23, 505–512. [Google Scholar] [CrossRef]
- Zawada, A.M.; Rogacev, K.S.; Schirmer, S.H.; Sester, M.; Böhm, M.; Fliser, D.; Heine, G.H. Monocyte heterogeneity in human cardiovascular disease. Immunobiology 2012, 217, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.O.; Meng, J.; Tang, H.; Yin, K. High-density lipoprotein-mediated cardioprotection in heart failure. Heart Fail. Rev. 2020, 26, 767–780. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Howard, C.P.; Walter, V.; Everett, B.; Libby, P.; Hensen, J.; Thuren, T. Effects of Interleukin-1 Inhibition with Canakinumab on Hemoglobin A1c, Lipids, C-Reactive Protein, Interleukin-6, and Fibrinogen A Phase IIb Randomized, Placebo-Controlled Trial. Circulation 2012, 126, 2739–2748. [Google Scholar] [CrossRef]
- Wojciechowska, C.; Jacheć, W.; Romuk, E.; Ciszek, A.; Bodnar, P.; Chwalba, T.; Waliczek, M.; Gąsior, M.; Rozentryt, P. Serum Sulfhydryl Groups, Malondialdehyde, Uric Acid, and Bilirubin as Predictors of Adverse Outcome in Heart Failure Patients due to Ischemic or Nonischemic Cardiomyopathy. Oxid. Med. Cell. Longev. 2021, 2021, 6693405. [Google Scholar] [CrossRef]
- Momot, K.; Krauz, K.; Czarzasta, K.; Zarębiński, M.; Puchalska, L.; Wojciechowska, M. Evaluation of Nitrosative/Oxidative Stress and Inflammation in Heart Failure with Preserved and Reduced Ejection Fraction. Int. J. Mol. Sci. 2023, 24, 15944. [Google Scholar] [CrossRef]
- Shrivastava, A.; Haase, T.; Zeller, T.; Schulte, C. Biomarkers for Heart Failure Prognosis: Proteins, Genetic Scores and Non-coding RNAs. Front. Cardiovasc. Med. 2020, 7, 601364. [Google Scholar] [CrossRef] [PubMed]
- Romuk, E.; Wojciechowska, C.; Jacheć, W.; Nowak, J.; Niedziela, J.; Malinowska-Borowska, J.; Głogowska-Gruszka, A.; Birkner, E.; Rozentryt, P. Comparison of Oxidative Stress Parameters in Heart Failure Patients Depending on Ischaemic or Nonischaemic Aetiology. Oxid. Med. Cell. Longev. 2019, 2019, 7156038. [Google Scholar] [CrossRef]
- Ferlazzo, N.; Currò, M.; Isola, G.; Maggio, S.; Bertuccio, M.P.; Trovato-Salinaro, A.; Matarese, G.; Alibrandi, A.; Caccamo, D.; Ientile, R. Changes in the biomarkers of oxidative/nitrosative stress and endothelial dysfunction are associated with cardiovascular risk in periodontitis patients. Curr. Issues Mol. Biol. 2021, 43, 704–715. [Google Scholar] [CrossRef]
- Yan, Q.; Liu, S.; Sun, Y.; Chen, C.; Yang, S.; Lin, M.; Long, J.; Yao, J.; Lin, Y.; Yi, F.; et al. Targeting oxidative stress as a preventive and therapeutic approach for cardiovascular disease. J. Transl. Med. 2023, 21, 519. [Google Scholar] [CrossRef]
- Tromp, J.; Khan, M.A.F.; Klip, I.T.; Meyer, S.; de Boer, R.A.; Jaarsma, T.; Hillege, H.; van Veldhuisen, D.J.; van der Meer, P.; Voors, A.A. Biomarker profiles in heart failure patients with preserved and reduced ejection fraction. J. Am. Heart Assoc. 2017, 6, e003989. [Google Scholar] [CrossRef] [PubMed]
- Hage, C.; Michaëlsson, E.; Kull, B.; Miliotis, T.; Svedlund, S.; Linde, C.; Donal, E.; Daubert, J.; Gan, L.; Lund, L.H. Myeloperoxidase and related biomarkers are suggestive footprints of endothelial microvascular inflammation in HFpEF patients. ESC Heart Fail. 2020, 7, 1534–1546. [Google Scholar] [CrossRef] [PubMed]
- Glezeva, N.; Horgan, S.; Baugh, J.A. Monocyte and macrophage subsets along the continuum to heart failure: Misguided heroes or targetable villains? J. Mol. Cell. Cardiol. 2015, 89, 136–145. [Google Scholar] [CrossRef]
- Balci, K.; Erbay, İ.; Demirkan, B.; Balci, M.M.; Temizhan, A. The association of hemodynamic markers of right ventricular dysfunction with SII index and clinical outcomes in reduced ejection fraction heart failure. Medicine 2023, 102, e34809. [Google Scholar] [CrossRef]
- Wojciechowska, C.; Romuk, E.; Tomasik, A.; Skrzep-Poloczek, B.; Nowalany-Kozielska, E.; Birkner, E.; Jacheć, W. Oxidative Stress markers and C-reactive protein are related to severity of heart failure in patients with dilated cardiomyopathy. Mediat. Inflamm. 2014, 2014, 147040. [Google Scholar] [CrossRef]
- Shi, J.; Shao, M.J.; Yu, M.; Tang, B.P. The Inflammation-Fibrosis Combined Index: A Novel Marker for Predicting Left Ventricular Reverse Remodeling and Prognosis in Patients with HFrEF. J. Inflamm. Res. 2024, 17, 3967–3982. [Google Scholar] [CrossRef]
- Dickstein, K.; Cohen-Solal, A.; Filippatos, G.; McMurray, J.J.V.; Ponikowski, P.; Poole-Wilson, P.A.; Strömberg, A.; van Veldhuisen, D.J.; Atar, D.; Hoes, A.W.; et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008. The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur. J. Heart Fail. 2008, 10, 933–989. [Google Scholar] [PubMed]
- Sadauskiene, I.; Liekis, A.; Bernotiene, R.; Sulinskiene, J.; Kasauskas, A.; Zekonis, G. The effects of buckwheat leaf and flower extracts on antioxidant status in mouse organs. Oxid. Med. Cell. Longev. 2018, 2018, 6712407. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
SII ≤ 684.757 (n = 115) | SII > 684.757 (n = 62) | p Value | |
---|---|---|---|
PLT, 109/L | 192 (155–222) | 226 (–252) | <0.001 |
MPV, Fl | 10.5 (9.6–11.2) | 10.5 (9.6–11.3) | 0.622 |
LEU, 109/L | 6.28 (5.30–7.59) | 7.30 (6.46–9.01) | <0.001 |
NEUTR, 109/L | 3.582 (2.932–4.527) | 4.973 (4.236–6.296) | <0.001 |
LYMPH, 109/L | 1.714 (1.409–2.376) | 1.264 (1.045–1.587) | <0.001 |
MONO, 109/L | 0.632 (0.494–0.829) | 0.676 (0.584–0.900) | 0.087 |
SII ≤ 684.757 (n = 115) | SII > 684.757 (n = 62) | p Value | |
---|---|---|---|
NLR, Total | 1.970 (1.565–2.609) 115 | 3.680 (3.438–4.775) 62 | <0.001 |
Log NLR, Total | 0.47 (0.41–0.56) 115 | 0.67 (0.65–0.76) 62 | <0.001 |
SIRI, Total | 12.49 (9.40–18.0) 115 | 27.35 (21.45–37.38) 62 | <0.001 |
Log SIRI, Total | 0.35 (0.29–0.45) 115 | 0.57 (0.50–0.68) 62 | <0.001 |
MHR Total | 0.62 (0.46–0.79) 69 | 0.62 (0.44–0.88) 49 | 0.546 |
Log MHR Total | 0.21 (0.17–0.25) 69 | 0.21 (0.16–0.28) 49 | 0.562 |
MHR_average ≤ 0.5854 (n = 54) | MHR_average > 0.5854 (n = 64) | p Value | |
---|---|---|---|
PLT, 109/L | 204.5 (167.0–236.0) | 205.0 (169.5–235.3) | 0.768 |
MPV, Fl | 10.5 (9.9–11.5) | 10.7 (9.7–11.4) | 0.918 |
LEU, 109/L | 6.690 (5.375–7.540) | 6.885 (5.800–8.605) | 0.110 |
NEUTR, 109/L | 4.096 (3.104–4.969) | 4.470 (3.391–5.437) | 0.226 |
LYMPH 109/L | 1.435 (1.182–2.140) | 1.550 (1.285–2.013) | 0.292 |
MONO 109/L | 0.559 (0.461–0.641) | 0.763 (0.629–0.933) | <0.001 |
NLR 109/L | 2.82 (1.80–3.71) | 2.66 (1.90–3.56) | 0.966 |
* Log NLR | 0.585 (0.168) | 0.579 (0.143) | 0.856 |
SIRI | 1.47 (0.96–2.25) | 2.11 (1.38–3.22) | 0.002 |
Log SIRI | 0.395 (0.290–0.510) | 0.490 (0.375–0.623) | 0.001 |
SII | 580.67 (354.43–794.26) | 522.20 (362.43–803.54) | 0.837 |
Log SII | 0.395 (0.290–0.510) | 0.49 (0.375–0.623) | 0.001 |
MHR_average ≤ 0.5854 | MHR_average > 0.5854 | p Value | |
---|---|---|---|
Cholesterol, g/L Total | 5.27 (4.11–6.05) 53 | 4.02 (3.41–4.85) 64 | <0.001 |
LDLch, Total | 3.36 (2.52–3.98) 54 | 2.66 (2.12–3.31) 64 | 0.008 |
HDLch, Total | 1.27 (1.10–1.59) 54 | 0.91 (0.77–1.05) 64 | <0.001 |
TAG, Total | 1.26 (0.74–1.69) 54 | 1.21 (0.83–1.65) 64 | 0.746 |
Atherogenicity coeff., Total | 2.44 (2.18–3.57) 49 | 3.53 (2.90–4.60) 61 | <0.001 |
MHR_average ≤ 0.5854 (n = 29) | MHR_average > 0.5854 (n = 30) | p Value | |
---|---|---|---|
oxDTL, pg/mL | 3.109 (2.229–8.532) | 3.069 (2.176–4.583) | 0.596 |
Nitrotyrosine, nM | 3.517 (2.640–4.407) | 4.523 (3.199–6.301) | 0.022 |
Dityrosine, RUF | 7.62 (6.57–8.77) | 8.08 (7.25–9.40) | 0.197 |
TAC, U/mL | 0.63 (0.31–0.92) | 0.57 (0.21–1.84) | 0.549 |
Protein carbonyl, U/mL | 244.90 (196.00–285.76) | 291.47 (288.79–379.73) | 0.051 |
Catalase, U/mg | 2.00 (1.65–3.01) | 2.02 (1.52–2.72) | 0.733 |
Catalase, U/mL | 132.97 (103.42–182.47) | 132.99 (103.42–177.30) | 0.767 |
MDA, µg/L | 119.62 (110.93–134.13) | 107.10 (89.20–126.33) | 0.026 |
MHR_average ≤ 0.5854 | MHR_average > 0.5854 | p Value | |
---|---|---|---|
LVEF, % Total | 40.0 (25.0–46.0) 54 | 28.5 (20.0–40.0) 64 | <0.001 |
* L VEDD, mm Total | 51.53 (10.34) 51 | 58.12 (10.03) 62 | <0.001 |
SSI_R_WT_cm, Total | 0.44 (0.39–0.51) 29 | 0.38 (0.32–0.48) 30 | 0.051 |
* L_VMM_g, Total | 233.07 (74.835) 51 | 274.92 (92.239) 62 | 0.010 |
LVM_I_g/m2, Total | 112.74 (91.83–124.74) 29 | 130.15 (103.14–162.79) 30 | 0.022 |
KPP_m2, Total | 1.85 (1.75–2.03) 29 | 1.98 (1.82–2.18) 30 | 0.068 |
LVMI, g/m2 Total | 112.74 (91.83–124.74) 29 | 130.15 (103.24–162.79) 30 | 0.058 |
SIRI average ≤ 2.098 (n = 110) | SIRI average > 2.098 (n = 67) | p Value | |
---|---|---|---|
PLT, ×109/L | 197.0 (158.5–233.3) | 203.0 (190.0–247.0) | 0.034 |
MPV, Fl | 10.6 (9.6–11.2) | 10.4 (9.3–11.4) | 0.905 |
LEU, ×109/L | 6.10 (5.21–7.33) | 7.60 (6.50–8.91) | <0.001 |
NEUTR, ×109/L | 3.48 (2.90–4.38) | 4.98 (4.26–6.09) | <0.001 |
LYMPH, ×109/L | 1.71 (1.38–2.38) | 1.35 (1.05–1.70) | <0.001 |
* MONO, ×109/L | 0.61 (0.200) | 0.85 (0.265) | <0.001 |
NLR | 1.93 (1.56–2.58) | 3.63 (3.25–4.75) | <0.001 |
Log NLR | 0.47 (0.41–0.55) | 0.67 (0.63–0.76) | <0.001 |
SII | 369.73 (286.33–508.87) | 790.00 (681.52–962.43) | <0.001 |
Log SII | 0.34 (0.28–0.42) | 0.59 (0.53–0.69) | <0.001 |
MHR_average ≤ 0.5854 | MHR_average > 0.5854 | p Value | |
---|---|---|---|
* Age, years Total | 67.69 (13.368) 54 | 62.34 (14.947) 64 | 0.045 |
Gender, n (%) | 0.009 | ||
Male | 29 (53.7) | 49 (76.6) | |
Female, | 25 (46.3) | 15 (23.4) | |
Total | 54 | 64 | |
BMI, kg/m2 | 26.23 (24.02–29.28) | 30.42 (25.31–34.16) | 0.029 |
Total | 41 | 53 | |
Systolic BP, mmHG | 136.0 (123.5–141.0) | 130.0 (118.0–141.5) | 0.278 |
Total | 54 | 64 | |
Diastolic BP, mmHg | 80.5 (73.0–90.0) | 80.0 (70.0–89.8) | 0.470 |
Total | 54 | 64 | |
Ischaemic heart disease, n (%) | 0.099 | ||
0 | 31 (57.4) | 27 (42.2) | |
1 | 23 (42.6) | 37 (57.8) | |
Total | 54 | 64 | |
PV_PP, n (%) | 0.525 | ||
1 | 23 (42.6) | 31 (48.4) | |
2 | 31 (57.4) | 33 (51.6) | |
Total | 54 | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baubonis, E.; Laukaitienė, J.; Grabauskytė, I.; Mongirdienė, A. SII, SIRI, and MHR as Additional Readings for Personalized Evaluation of Chronic Heart Failure Severity. Int. J. Mol. Sci. 2025, 26, 5190. https://doi.org/10.3390/ijms26115190
Baubonis E, Laukaitienė J, Grabauskytė I, Mongirdienė A. SII, SIRI, and MHR as Additional Readings for Personalized Evaluation of Chronic Heart Failure Severity. International Journal of Molecular Sciences. 2025; 26(11):5190. https://doi.org/10.3390/ijms26115190
Chicago/Turabian StyleBaubonis, Edis, Jolanta Laukaitienė, Ingrida Grabauskytė, and Aušra Mongirdienė. 2025. "SII, SIRI, and MHR as Additional Readings for Personalized Evaluation of Chronic Heart Failure Severity" International Journal of Molecular Sciences 26, no. 11: 5190. https://doi.org/10.3390/ijms26115190
APA StyleBaubonis, E., Laukaitienė, J., Grabauskytė, I., & Mongirdienė, A. (2025). SII, SIRI, and MHR as Additional Readings for Personalized Evaluation of Chronic Heart Failure Severity. International Journal of Molecular Sciences, 26(11), 5190. https://doi.org/10.3390/ijms26115190