Rapid Specific PCR Detection Based on THCAS and CBDAS for the Prediction of Cannabis sativa Chemotypes: Drug, Fiber, and Intermediate
Abstract
1. Introduction
2. Results
2.1. HPTLC Chemical Profile, UPLC Content Analysis and Heatmap Clustering Analysis
2.2. A Phylogenetic Study by DNA and Amino Acid Sequence Analysis
2.3. Development of DNA Markers Based on THCAS and CBDAS
2.4. The Relationship Between Chemotype and Genotype
3. Discussion
4. Materials and Methods
4.1. Cannabis Samples Collection
4.2. Chemical Component Analysis by HPTLC
4.2.1. Chemicals and Reagents
4.2.2. Cannabinoid Standards
4.2.3. HPTLC Profiling
4.2.4. UPLC Quantitative Analysis of THC and CBD
4.3. Development of DNA Markers Based on THCAS and CBDAS
4.3.1. DNA Extraction
4.3.2. Primer Design
4.3.3. PCR Amplification
4.4. Data Analysis
4.4.1. Heat Map Analysis of Chemical Profile
4.4.2. Phylogenetic Tree
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sytsma, K.J.; Morawetz, J.; Pires, J.C.; Nepokroeff, M.; Conti, E.; Zjhra, M.; Hall, J.C.; Chase, M.W. Urticalean rosids: Circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-F, and ndhF sequences. Am. J. Bot. 2002, 89, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Faeti, V.; Mandolino, G.; Ranalli, P. Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breed. 1996, 115, 367–370. [Google Scholar] [CrossRef]
- de Meijer, E.P.M.; van der Kamp, H.J.; van Eeuwijk, F.A. Characterisation of Cannabis accessions with regard to cannabinoid content in relation to other plant characters. Euphytica 1992, 62, 187–200. [Google Scholar] [CrossRef]
- Bains, S.; Mukhdomi, T. Medicinal Cannabis for Treatment of Chronic Pain; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Lucas, P.; Boyd, S.; Milloy, M.J.; Walsh, Z. Reductions in alcohol use following medical cannabis initiation: Results from a large cross-sectional survey of medical cannabis patients in Canada. Int. J. Drug Policy 2020, 86, 102963. [Google Scholar] [CrossRef] [PubMed]
- Feingold, D.; Weinstein, A. Cannabis and Depression. Adv. Exp. Med. Biol. 2021, 1264, 67–80. [Google Scholar]
- Devinsky, O.; Cross, J.H.; Laux, L.; Marsh, E.; Miller, I.; Nabbout, R.; Scheffer, I.E.; Thiele, E.A.; Wright, S. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N. Engl. J. Med. 2017, 376, 2011–2020. [Google Scholar] [CrossRef]
- Ravindra, B.M.; Kiran, P.K.; Raju, K.C.; Himansu, B. Cannabis sativa: Difference between Medical Cannabis (Maijuana or drug type) and Industrial hemp. GSC Biol. Pharm. Sci. 2023, 24, 377–381. [Google Scholar] [CrossRef]
- Sousa, A.; DiFrancisco-Donoghue, J. Cannabidiol and Tetrahydrocannabinol Use in Parkinson’s Disease: An Observational Pilot Study. Cureus 2023, 15, e42391. [Google Scholar] [CrossRef]
- Haddad, F.; Dokmak, G.; Karaman, R. The Efficacy of Cannabis on Multiple Sclerosis-Related Symptoms. Life 2022, 12, 682. [Google Scholar] [CrossRef]
- Matthäus, B.; Brühl, L. Virgin hemp seed oil: An interesting niche product. Eur. J. Lipid Sci. Technol. 2008, 110, 655–661. [Google Scholar] [CrossRef]
- Jin, D.; Henry, P.; Shan, J.; Chen, J. Identification of Chemotypic Markers in Three Chemotype Categories of Cannabis Using Secondary Metabolites Profiled in Inflorescences, Leaves, Stem Bark, and Roots. Front. Plant Sci. 2021, 12, 699530. [Google Scholar] [CrossRef] [PubMed]
- de Meijer, E.P.; Bagatta, M.; Carboni, A.; Crucitti, P.; Moliterni, V.M.; Ranalli, P.; Mandolino, G. The inheritance of chemical phenotype in Cannabis sativa L. Genetics 2003, 163, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Hillig, K.W.; Mahlberg, P.G. A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am. J. Bot. 2004, 91, 966–975. [Google Scholar] [CrossRef]
- Welling, M.T.; Liu, L.; Shapter, T.; Raymond, C.A.; King, G.J. Characterisation of cannabinoid composition in a diverse Cannabis sativa L. germplasm collection. Euphytica 2015, 208, 463–475. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Slade, D. Chemical constituents of marijuana: The complex mixture of natural cannabinoids. Life Sci. 2005, 78, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The plant of the thousand and one molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Berthold, E.C.; McCurdy, C.R.; da Silva Benevenute, S.; Brym, Z.T.; Freeman, J.H. Development of Cannabinoids in Flowers of Industrial Hemp (Cannabis sativa L.): A Pilot Study. J. Agric. Food Chem. 2020, 68, 6058–6064. [Google Scholar] [CrossRef]
- Hebert, P.D.; Cywinska, A.; Ball, S.L.; deWaard, J.R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef]
- Spooner, D.M. DNA Barcoding Will Frequently Fail in Complicated Groups: An Example in Wild Potatoes. Am. J. Bot. 2009, 96, 1177–1189. [Google Scholar] [CrossRef]
- Henning, J.A.; Coggins, J.; Peterson, M. Simple SNP-based minimal marker genotyping for Humulus lupulus L. identification and variety validation. BMC Res. Notes 2015, 8, 542. [Google Scholar] [CrossRef]
- Kojoma, M.; Seki, H.; Yoshida, S.; Muranaka, T. DNA polymorphisms in the tetrahydrocannabinolic acid (THCA) synthase gene in “drug-type” and “fiber-type” Cannabis sativa L. Forensic Sci. Int. 2006, 159, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Thichak, S.; Natakankitkul, S.; Chansakaow, S.; Chutipongvivate, S. Identification of drug-type and fiber-type of hemp (Cannabis sativa L.) by multiplex PCR. Chiang Mai J. Sci. 2011, 38, 608–618. [Google Scholar]
- Yamamuro, T.; Segawa, H.; Kuwayama, K.; Tsujikawa, K.; Kanamori, T.; Iwata, Y.T. Rapid identification of drug-type and fiber-type cannabis by allele specific duplex PCR. Forensic Sci. Int. 2021, 318, 110634. [Google Scholar] [CrossRef]
- Park, H.-S.; Oh, H.H.; Park, J.Y.; Kim, J.; Shim, H.; Yang, T.-J. Cannabinol synthase gene based molecular markers for identification of drug and fiber type cannabis sativa. Korean J. Pharmacogn. 2021, 52, 69–76. [Google Scholar]
- van Bakel, H.; Stout, J.M.; Cote, A.G.; Tallon, C.M.; Sharpe, A.G.; Hughes, T.R.; Page, J.E. The draft genome and transcriptome of Cannabis sativa. Genome Biol. 2011, 12, R102. [Google Scholar] [CrossRef] [PubMed]
- Small, E. Evolution and Classification of Cannabis sativa (Marijuana, Hemp) in Relation to Human Utilization. Bot. Rev. 2015, 81, 189–294. [Google Scholar] [CrossRef]
- Singh, A.; Bilichak, A.; Kovalchuk, I. The genetics of Cannabis-genomic variations of key synthases and their effect on cannabinoid content. Genome 2021, 64, 490–501. [Google Scholar] [CrossRef] [PubMed]
- van Velzen, R.; Schranz, M.E. Origin and Evolution of the Cannabinoid Oxidocyclase Gene Family. Genome Biol. Evol. 2021, 13, evab130. [Google Scholar] [CrossRef]
- Allen, K.D.; Torres, A.; De Cesare, K.; Gaudino, R. Evolution, expansion and characterization of cannabinoid synthase gene family in Cannabis sativa. bioRxiv 2022, 2022-11. [Google Scholar]
- Reason, D.A.; Grainger, M.N.C.; Lane, J.R. Optimization of the Decarboxylation of Cannabis for Commercial Applications. Ind. Eng. Chem. Res. 2022, 61, 7823–7832. [Google Scholar] [CrossRef]
- Pacifico, D.; Miselli, F.; Carboni, A.; Moschella, A.; Mandolino, G. Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica 2008, 160, 231–240. [Google Scholar] [CrossRef]
- Tipparat, P.; Natakankitkul, S.; Chamnivikaipong, P.; Chutiwat, S. Characteristics of cannabinoids composition of Cannabis plants grown in Northern Thailand and its forensic application. Forensic Sci. Int. 2012, 215, 164–170. [Google Scholar] [CrossRef]
- Park, S.H.; Pauli, C.S.; Gostin, E.L.; Staples, S.K.; Seifried, D.; Kinney, C.; Vanden Heuvel, B.D. Effects of short-term environmental stresses on the onset of cannabinoid production in young immature flowers of industrial hemp (Cannabis sativa L.). J. Cannabis Res. 2022, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Onofri, C.; de Meijer, E.P.M.; Mandolino, G. Sequence heterogeneity of cannabidiolic- and tetrahydrocannabinolic acid-synthase in Cannabis sativa L. and its relationship with chemical phenotype. Phytochemistry 2015, 116, 57–68. [Google Scholar] [CrossRef]
- Raveendar, S.; Lee, J.-R.; Park, J.-W.; Lee, G.-A.; Jeon, Y.-A.; Lee, Y.J.; Cho, G.-T.; Ma, K.-H.; Lee, S.-Y.; Chung, J.-W. Potential use of ITS2 and matK as a Two-Locus DNA Barcode for Identification of Vicia Species. Plant Breed. Biotechnol. 2015, 3, 58–66. [Google Scholar] [CrossRef]
- Govindarajan, R.K.; Mishra, A.K.; Cho, K.-H.; Kim, K.-H.; Yoon, K.M.; Baek, K.-H. Biosynthesis of Phytocannabinoids and Structural Insights: A Review. Metabolites 2023, 13, 442. [Google Scholar] [CrossRef]
- Cascini, F.; Farcomeni, A.; Migliorini, D.; Baldassarri, L.; Boschi, I.; Martello, S.; Amaducci, S.; Lucini, L.; Bernardi, J. Highly Predictive Genetic Markers Distinguish Drug-Type from Fiber-Type Cannabis sativa L. Plants 2019, 8, 496. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Z.; Zeng, Y.; Hu, H.; Hao, Y.; Huang, S.; Li, B. Common methods for phylogenetic tree construction and their implementation in R. Bioengineering 2024, 11, 480. [Google Scholar] [CrossRef] [PubMed]
- Gontcharov, A.A.; Marin, B.; Melkonian, M. Are combined analyses better than single gene phylogenies? A case study using SSU rDNA and rbc L sequence comparisons in the Zygnematophyceae (Streptophyta). Mol. Biol. Evol. 2004, 21, 612–624. [Google Scholar] [CrossRef]
- Foster, P.G.; Bergo, E.S.; Bourke, B.P.; Oliveira, T.M.; Nagaki, S.S.; Sant’Ana, D.C.; Sallum, M.A.M. Phylogenetic analysis and DNA-based species confirmation in Anopheles (Nyssorhynchus). PLoS ONE 2013, 8, e54063. [Google Scholar] [CrossRef]
- Pacifico, D.; Miselli, F.; Micheler, M.; Carboni, A.; Ranalli, P.; Mandolino, G. Genetics and Marker-assisted Selection of the Chemotype in Cannabis sativa L. Mol. Breed. 2006, 17, 257–268. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.-i.; Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Weiblen, G.D.; Wenger, J.P.; Craft, K.J.; ElSohly, M.A.; Mehmedic, Z.; Treiber, E.L.; Marks, M.D. Gene duplication and divergence affecting drug content in Cannabis sativa. New Phytol. 2015, 208, 1241–1250. [Google Scholar] [CrossRef]
- Taura, F.; Sirikantaramas, S.; Shoyama, Y.; Yoshikai, K.; Shoyama, Y.; Morimoto, S. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett. 2007, 581, 2929–2934. [Google Scholar] [CrossRef]
- Fulvio, F.; Paris, R.; Montanari, M.; Citti, C.; Cilento, V.; Bassolino, L.; Moschella, A.; Alberti, I.; Pecchioni, N.; Cannazza, G.; et al. Analysis of sequence variability and transcriptional profile of cannabinoid synthase genes in Cannabis sativa L. chemotypes with a focus on cannabichromenic acid synthase. Plants 2021, 10, 1857. [Google Scholar] [CrossRef]
- Braich, S.; Baillie, R.C.; Jewell, L.S.; Spangenberg, G.C.; Cogan, N.O. Generation of a comprehensive transcriptome atlas and transcriptome dynamics in medicinal cannabis. Sci. Rep. 2019, 9, 16583. [Google Scholar] [CrossRef]
Sample | Chemotype | Matching Between Genotype & Chemotype | Genotype | |||||
---|---|---|---|---|---|---|---|---|
%THC | %CBD | Log %THC /%CBD | Results | Results | THCAS | CBDAS | ||
1349 G/T | 645 C/G | |||||||
TK1 | 0.744 | 2.823 | −0.579 | Chemotype II | Y | TD | T | D |
TK2 | 0.928 | 0.062 | 1.175 | Chemotype I | Y | Td | T | d |
TK3 | 1.657 | 0.155 | 1.029 | Chemotype I | Y | Td | T | d |
TK4 | 2.084 | 0.144 | 1.159 | Chemotype I | Y | Td | T | d |
TK6 | 0.831 | 0.03 | 1.437 | Chemotype I | Y | Td | T | d |
TK7 | 1.8 | 0.138 | 1.114 | Chemotype I | Y | Td | T | d |
TK8 | 0.953 | 0.077 | 1.092 | Chemotype I | Y | Td | T | d |
TK9 | 1.968 | 0.077 | 1.405 | Chemotype I | Y | Td | T | d |
TK11 | 1.045 | 0.141 | 0.869 | Chemotype I | Y | Td | T | d |
TK12 | 0.503 | 0.034 | 1.172 | Chemotype I | Y | Td | T | d |
TK13 | 1.547 | 0.12 | 1.111 | Chemotype I | Y | Td | T | d |
TK14 | 1.339 | 3.053 | −0.358 | Chemotype II | Y | TD | T | D |
TK17 | 0.614 | 0.035 | 1.249 | Chemotype I | Y | Td | T | d |
TK18 | 1.472 | 0.14 | 1.023 | Chemotype I | Y | Td | T | d |
TK19 | 1.212 | 0.024 | 1.709 | Chemotype I | Y | Td | T | d |
TK20 | 2.174 | 0.12 | 1.26 | Chemotype I | Y | Td | T | d |
TK25 | 2.052 | 0.116 | 1.249 | Chemotype I | Y | Td | T | d |
TK28 | 1.21 | 0.097 | 1.095 | Chemotype I | Y | Td | T | d |
TK29 | 1.656 | 0.08 | 1.313 | Chemotype I | Y | Td | T | d |
TK33 | 1.144 | 0.03 | 1.574 | Chemotype I | Y | Td | T | d |
TK34 | 1.317 | 0.043 | 1.489 | Chemotype I | Y | Td | T | d |
TK36 | 2.183 | 0.053 | 1.615 | Chemotype I | Y | Td | T | d |
TK37 | 1.688 | 0.106 | 1.203 | Chemotype I | Y | Td | T | d |
TK40 | 0.85 | 0.048 | 1.249 | Chemotype I | Y | Td | T | d |
TK41 | 1.195 | 0.023 | 1.722 | Chemotype I | Y | Td | T | d |
TK42 | 1.015 | 0.014 | 1.855 | Chemotype I | Y | Td | T | d |
TK43 | 1.72 | 0.048 | 1.55 | Chemotype I | Y | Td | T | d |
TK44 | 1.885 | 0.044 | 1.635 | Chemotype I | Y | Td | T | d |
TK45 | 0.538 | 1.341 | −0.397 | Chemotype II | Y | TD | T | D |
TK46 | 1.884 | 0.062 | 1.482 | Chemotype I | Y | Td | T | d |
TK47 | 0.445 | 0.008 | 1.723 | Chemotype I | Y | Td | T | d |
TK48 | 0.374 | 0.011 | 1.547 | Chemotype I | Y | Td | T | d |
TK51 | 1.907 | 0.051 | 1.572 | Chemotype I | Y | Td | T | d |
TK52 | 0.488 | 0.002 | 2.301 | Chemotype I | Y | Td | T | d |
TK55 | 1.638 | 0.037 | 1.65 | Chemotype I | Y | Td | T | d |
TK56 | 2.475 | 0.056 | 1.649 | Chemotype I | Y | Td | T | d |
TK57 | 1.518 | 0.034 | 1.646 | Chemotype I | Y | Td | T | d |
TK58 | 0.782 | 0.018 | 1.632 | Chemotype I | Y | Td | T | d |
TK59 | 0.913 | 0.035 | 1.415 | Chemotype I | Y | Td | T | d |
TK60 | 0.065 | 2.382 | −1.561 | Chemotype III | Y | tD | t | D |
TK61 | 0.072 | 2.96 | −1.613 | Chemotype III | Y | tD | t | D |
TK62 | 0.784 | 0.039 | 1.306 | Chemotype I | Y | Td | T | d |
TK63 | 0.852 | 0.01 | 1.921 | Chemotype I | Y | Td | T | d |
TK64 | 0.838 | 0.041 | 1.308 | Chemotype I | Y | Td | T | d |
TK65 | 1.394 | 0.001 | 3.144 | Chemotype I | Y | Td | T | d |
TK69 | 0.892 | 0.001 | 2.95 | Chemotype I | Y | Td | T | d |
TK70 | 0.48 | 0.001 | 2.682 | Chemotype I | Y | Td | T | d |
TK73 | 1.251 | 0.029 | 1.641 | Chemotype I | Y | Td | T | d |
TK74 | 0.468 | 0.001 | 2.67 | Chemotype I | Y | Td | T | d |
TK76 | 1.66 | 0.038 | 1.637 | Chemotype I | Y | Td | T | d |
TK77 | 2.036 | 0.052 | 1.591 | Chemotype I | Y | Td | T | d |
TK78 | 0.931 | 0.001 | 2.969 | Chemotype I | Y | Td | T | d |
TK86 | 0.817 | 0.042 | 1.289 | Chemotype I | Y | Td | T | d |
TK88 | 0.209 | 0.001 | 2.32 | Chemotype I | Y | Td | T | d |
TK89 | 0.611 | 0.001 | 2.786 | Chemotype I | Y | Td | T | d |
TK90 | 0.977 | 0.033 | 1.468 | Chemotype I | Y | Td | T | d |
TK92 | 2.86 | 0.069 | 1.616 | Chemotype I | Y | Td | T | d |
TK94 | 0.712 | 0.001 | 2.853 | Chemotype I | Y | Td | T | d |
TK96 | 0.874 | 0.032 | 1.441 | Chemotype I | Y | Td | T | d |
TK97 | 0.542 | 1.309 | −0.383 | Chemotype II | Y | TD | T | D |
TK98 | 0.536 | 1.332 | −0.396 | Chemotype II | Y | TD | T | D |
TK101 | 0.306 | 0.015 | 1.322 | Chemotype I | Y | Td | T | d |
TK102 | 0.906 | 0.056 | 1.212 | Chemotype I | Y | Td | T | d |
TK103 | 0.071 | 0.861 | −1.085 | Chemotype III | Y | tD | t | D |
TK105 | 0.847 | 0.023 | 1.564 | Chemotype I | Y | Td | T | d |
TK106 | 0.878 | 0.017 | 1.717 | Chemotype I | Y | Td | T | d |
TK108 | 0.499 | 0.002 | 2.311 | Chemotype I | Y | Td | T | d |
TK111 | 2.144 | 0.132 | 1.21 | Chemotype I | Y | Td | T | d |
TK115 | 0.881 | 0.025 | 1.554 | Chemotype I | Y | Td | T | d |
TK117 | 0.107 | 0.018 | 0.762 | Chemotype I | Y | Td | T | d |
TK118 | 0.92 | 0.015 | 1.795 | Chemotype I | Y | Td | T | d |
TK121 | 1.107 | 0.016 | 1.828 | Chemotype I | Y | Td | T | d |
TK122 | 1.178 | 0.055 | 1.33 | Chemotype I | Y | Td | T | d |
TK126 | 1.517 | 3.371 | −0.347 | Chemotype II | Y | TD | T | D |
TK127 | 1.695 | 3.039 | −0.254 | Chemotype II | Y | TD | T | D |
TK132 | 3.678 | 4.598 | −0.097 | Chemotype II | Y | TD | T | D |
TK133 | 2.244 | 0.068 | 1.518 | Chemotype I | Y | Td | T | d |
TK134 | 3.122 | 0.1 | 1.494 | Chemotype I | Y | Td | T | d |
TK136 | 1.179 | 0.043 | 1.435 | Chemotype I | Y | Td | T | d |
TK137 | 2.028 | 0.078 | 1.413 | Chemotype I | Y | Td | T | d |
TK138 | 2.796 | 0.143 | 1.292 | Chemotype I | Y | Td | T | d |
TK139 | 0.141 | 2.776 | −1.294 | Chemotype III | Y | tD | t | D |
TK140 | 2.676 | 6.495 | −0.385 | Chemotype II | Y | TD | T | D |
TK61F1-C0-2G | 1.381 | 3.388 | −0.39 | Chemotype II | Y | TD | T | D |
TK61F1-C0-5P | 0.507 | 1.658 | −0.515 | Chemotype II | Y | TD | T | D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boonjing, P.; Wiwatcharakornkul, W.; Tungphatthong, C.; Chuanasa, T.; Keawwangchai, S.; Yang, T.-J.; De-Eknamkul, W.; Sukrong, S. Rapid Specific PCR Detection Based on THCAS and CBDAS for the Prediction of Cannabis sativa Chemotypes: Drug, Fiber, and Intermediate. Int. J. Mol. Sci. 2025, 26, 5077. https://doi.org/10.3390/ijms26115077
Boonjing P, Wiwatcharakornkul W, Tungphatthong C, Chuanasa T, Keawwangchai S, Yang T-J, De-Eknamkul W, Sukrong S. Rapid Specific PCR Detection Based on THCAS and CBDAS for the Prediction of Cannabis sativa Chemotypes: Drug, Fiber, and Intermediate. International Journal of Molecular Sciences. 2025; 26(11):5077. https://doi.org/10.3390/ijms26115077
Chicago/Turabian StyleBoonjing, Patwira, Worakorn Wiwatcharakornkul, Chayapol Tungphatthong, Taksina Chuanasa, Somchai Keawwangchai, Tae-Jin Yang, Wanchai De-Eknamkul, and Suchada Sukrong. 2025. "Rapid Specific PCR Detection Based on THCAS and CBDAS for the Prediction of Cannabis sativa Chemotypes: Drug, Fiber, and Intermediate" International Journal of Molecular Sciences 26, no. 11: 5077. https://doi.org/10.3390/ijms26115077
APA StyleBoonjing, P., Wiwatcharakornkul, W., Tungphatthong, C., Chuanasa, T., Keawwangchai, S., Yang, T.-J., De-Eknamkul, W., & Sukrong, S. (2025). Rapid Specific PCR Detection Based on THCAS and CBDAS for the Prediction of Cannabis sativa Chemotypes: Drug, Fiber, and Intermediate. International Journal of Molecular Sciences, 26(11), 5077. https://doi.org/10.3390/ijms26115077