Ageing Trajectories: Exposome-Driven Pathobiological Mechanisms and Implications for Prevention from Blue Zones and Italian Longevity Hotspots Such as Cilento and Sicilian Mountain Villages
Abstract
:1. Introduction: Healthy and Unhealthy Ageing
2. Materials and Methods
2.1. Literature Search Strategy
- General framework: “exposome”, “ageing”, “healthy ageing”, “unhealthy ageing”, “environmental exposures”, “chronic diseases”, “NCDs”.
- Environmental risk factors: “pollution, “climate change”, “extreme heat”, “wildfires”, “air pollution”, endocrine disruptors”, “phthalates”, “bisphenol A”, “persistent organic pollutants”, “microplastics”.
- Biological mechanisms: “oxidative stress”, “inflammation”, “immune-inflammatory responses”, epigenetic dysregulation”, “metabolic regulation”.
- Disease outcomes: “cardiovascular diseases (CVDs)”, “cancer”, “type 2 diabetes (T2D)”, “chronic respiratory diseases”.
- Built environment: “urban design”, “green space”, “walkability”, “housing quality”, “transport infrastructure”, “noise pollution”, “access to healthcare”.
- Positive longevity models: “Blue Zones”, “Cilento”, “Sicani Mountains”, “Madonie Mountains”, “Mediterranean diet”, “healthy lifestyle”, “longevity hotspots”, “socio-environmental resilience”.
2.2. Study Selection Process
- Identification: Titles and abstracts were screened for relevance to exposome-ageing interactions.
- Screening: Duplicates were removed, and non-English or non-peer-reviewed studies were excluded.
- Eligibility Assessment: Full-text articles were assessed based on methodological quality and thematic relevance.
- Inclusion: The selected studies were incorporated into the thematic sections of the review.
2.2.1. Inclusion Criteria
- ▪
- Investigated environmental exposures in relation to healthy/unhealthy ageing or age-related diseases.
- ▪
- Examined biological mechanisms such as oxidative stress, immune-inflammatory responses, metabolic and epigenetic regulation.
- ▪
- Addressed high-impact exposures such as pollutants, endocrine disruptors, climate stressors, and built environment factors.
- ▪
- Provided comparative insights into protective models of longevity (e.g., Blue Zones, Cilento and Sicilian Mountain villages).
2.2.2. Exclusion Criteria
- ▪
- Focused solely on genetics without considering environmental interactions.
- ▪
- Lacked methodological transparency or relevance to age-related outcomes.
- ▪
- Were limited to occupational or early-life exposures without adult or lifespan implications.
3. The Exposome: A Comprehensive Framework
- The General External Environment, which comprises macro-level factors such as urban–rural dichotomy, climatic conditions, socioeconomic status, and educational attainment.
- The Specific External Environment, focusing on individual lifestyle factors including diet, physical activity, smoking (encompassing traditional, electronic, and tobacco-heating systems), occupational exposures, infections, and other personal behaviours.
- The Internal Environment, which pertains to internal biological processes like metabolic activity, gut microbiota composition, inflammatory responses, oxidative stress, and the ageing process itself.
4. Exposome and Ageing: Insights from Research
5. The Exposome and Pollution: A Pervasive Interaction
6. Climate Change as a Component of the Exposome
7. Exposome and Immuno-Inflammatory Responses
8. Exposome and NCDs: The Rising Impact of Environmental Exposures on Ageing
8.1. Exposome-Related Pathways in Chronic Diseases
8.2. Environmental Toxicants as Drivers of Major NCDs
- Cardiovascular Diseases:CVDs, including ischemic heart disease and stroke, remain the leading cause of global mortality. Lifelong exposure to environmental toxicants plays a significant role in the development and progression of CVDs through a network of inter-related biological mechanisms. Among these, PM2.5, NO2, and phthalates have emerged as key contributors to CVD pathogenesis. Chronic exposure to air pollution accelerates atherosclerosis, endothelial dysfunction, and hypertension, primarily via increased oxidative stress and systemic inflammation. These toxicants also induce epigenetic alterations and metabolic dysregulation that impair vascular homeostasis and interact with age-related physiological changes, thereby compounding cardiovascular risk in older adults [133,134]. Furthermore, the identification of metabolomic and proteomic signatures associated with pollutant exposure and subclinical vascular ageing underscores the potential of exposome-informed approaches for early detection and personalised prevention of cardiovascular disease [139]. The role of phthalates in disrupting lipid metabolism and promoting arterial stiffness further underscores the importance of addressing environmental toxicants in CVD prevention [26].
- Cancer:Environmental carcinogens, including heavy metals (e.g., cadmium), metalloids (e.g., arsenic), microplastics, and persistent organic pollutants, play a significant role in cancer incidence and progression. These toxicants trigger DNA damage, disrupt cellular signalling pathways, and promote tumorigenesis. Hormone-dependent cancer, such as breast and prostate cancer, are particularly affected by endocrine disruptors like phthalates. The WHO estimates that environmental factors account for approximately 19% of all cancers [26,138,140]. However, the inflammatory effect of pollutants also plays a role in cancer, as inflammation is considered fuel for cancer [141].
- Diabetes:The global rise in T2D is closely linked to both behavioural and environmental factors. Chronic exposure to EDCs, such as phthalates and BPA, has been associated with insulin resistance, impaired glucose metabolism, and the development of T2D. These compounds disrupt hormonal signalling, alter adipose tissue function, and contribute to systemic inflammation. In older populations, T2D further increases the risk of other NCDs, including cardiovascular and renal complications, amplifying the overall disease burden [142].
- Chronic Respiratory Diseases:Conditions such as chronic obstructive pulmonary disease and asthma are exacerbated by long-term exposure to pollutants, including tobacco smoke, indoor air contaminants, and industrial emissions. These exposures increase the risk of airway inflammation, fibrosis, and decreased lung function, particularly in older adults, whose respiratory resilience is already diminished due to ageing [143].
8.3. The Exposome and Its Implications for Public Health: Strategies for Addressing NCDs in Older Populations
- Primary Prevention: Reducing exposure to environmental toxicants through stronger regulations, improved air and water quality standards, and the promotion of safer consumer products.
- Public Health Campaigns: Raising awareness of modifiable risk factors, such as smoking cessation, healthy diets, and increased physical activity.
- Healthcare Innovation: Investing in early detection technologies, personalised medicine, and interventions that target the cellular mechanisms of ageing, such as mitochondrial therapies and antioxidants.
- Global Equity: Addressing disparities in environmental exposures and access to healthcare, particularly in low- and middle-income countries that are disproportionately affected by pollution-related NCDs.
- 1.
- Roots (Fundamental Ageing Mechanisms):
- 2.
- Trunk (Connection to Systemic Diseases):
- 3.
- Branches (Major Non-Communicable Diseases):
- ○
- CVDs (red label);
- ○
- Cancer (red label);
- ○
- T2D (red label);
- ○
- Chronic respiratory diseases (red label);
- ○
- Other age-related conditions (red label), including
- ○
- Neurodegenerative diseases (turquoise text);
- ○
- Musculoskeletal diseases (dark brown text);
- ○
- Renal diseases (orange test).
- 4.
- Leaves (Specific Pathologies and Clinical Manifestations):The leaves represent organ-specific diseases and clinical outcomes associated with each category:
- ○
- CVDs (blue text);
- ○
- Cancer (fuchsia text);
- ○
- T2D (purple text);
- ○
- Chronic respiratory diseases (brown text).
- 5.
- Environmental Factors and Climate Change (External Drivers):Surrounding the tree, external drivers such as environmental toxicants and climate change are depicted in orange clouds, emphasising their synergistic and amplifying role across all levels of the model. These include fine particulate matter (PM2.5 and PM10), heavy metals, xenobiotics, microplastics, and climate change, which acts as a systematic stressor that exacerbates environmental risk, particularly for ageing populations.
- 6.
- Geroscience Perspective (Integrative Approach):Positioned beneath and around the tree, the geroscience perspective integrates biogerontology, environmental toxicology, and public health to address the complex interplay between environmental exposures and ageing processes. This holistic approach emphasises the following:
- ○
- Prevention strategies;
- ○
- Environmental policies;
- ○
- Personalised interventions.
9. Exposome and the Secrets of Longevity: What We Can Learn from Blue Zones and Italian Longevity Hotspots
9.1. Diet, Microbiota, and Metabolic Health
9.2. Epigenetics and Longevity Pathways
9.3. Environmental Purity and Reduced Toxic Exposures
- Lower air pollution reduces oxidative stress and prevents accelerated vascular ageing [157].
- Minimal pesticide use and organic farming enhance the nutrient density of locally sourced foods [158].
- Low exposure to EDCs, such as phthalates and bisphenol A (BPA), supports hormonal balance, reducing the risk of T2D, obesity, and reproductive disorders [132].
9.4. Prioritising Natural Rhythms, Sleep Quality, and Stress Reduction
9.5. Social Cohesion, Purpose, and Cognitive Longevity
- Lower depression rates and better mental health outcomes.
- A sense of purpose (“Ikigai” in Japan, “Plan de Vida” in Costa Rica, and “La Bella Vita” in Cilento), which has been shown to increase lifespan by reducing stress-related inflammation.
- Cognitive resilience, with lower rates of dementia and AD compared to global averages.
The Exposome as a Blueprint for Healthy Ageing
10. Conclusions: Implications for Preventive Medicine
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NCDs | Non-communicable diseases |
CVDs | Cardiovascular diseases |
PM2.5 and PM10 | Particulate matter with diameter of 2.5 μm or less (PM2.5) and 10 μm or less (PM10) |
NOx | Nitrogen oxides |
Sox | Sulphur oxides |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
DNA | Deoxyribonucleic acid |
DBPs | Disinfection by-products |
THMs | Trihalomethanes |
HAAs | Haloacetic acids |
miRNA | Micro ribonucleic acid |
T2D | Type 2 diabetes mellitus |
WHO | World Health Organization |
COPD | Chronic obstructive pulmonary disease |
NF-κB24 | Nuclear factor kappa B |
AMPs | Antimicrobial peptides |
LNs | Lymph nodes |
EDCs | Endocrine-disrupting chemicals |
BPA | Bisphenol and phthalates A |
BZ | Blue Zone |
ROS | Reactive oxygen species |
XME | Xenobiotic-metabolising enzymes |
PAHs | Polycyclic aromatic hydrocarbons |
AD | Alzheimer’s disease |
References
- WHO Data Platform. Available online: https://platform.who.int/data/maternal-newborn-child-adolescent-ageing/indicator-explorer-new/mca/number-of-persons-aged-over-60-years-or-over-(thousands) (accessed on 23 January 2025).
- Wang, H.; Abbas, K.M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; Abolhassani, H.; Abreu, L.G.; Abrigo, M.R.M.; et al. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: A comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1160–1203. [Google Scholar] [CrossRef]
- Beard, J.R.; Officer, A.; de Carvalho, I.A.; Sadana, R.; Pot, A.M.; Michel, J.P.; Lloyd-Sherlock, P.; Epping-Jordan, J.E.; Peeters, G.M.E.E.G.; Mahanani, W.R.; et al. The World report on ageing and health: A policy framework for healthy ageing. Lancet 2016, 387, 2145–2154. [Google Scholar] [CrossRef] [PubMed]
- Avery, P.; Barzilai, N.; Benetos, A.; Bilianou, H.; Capri, M.; Caruso, C.; Franceschi, C.; Katsiki, N.; Mikhailidis, D.P.; Panotopoulos, G.; et al. Ageing, longevity, exceptional longevity and related genetic and non genetics markers: Panel statement. Curr. Vasc. Pharmacol. 2014, 12, 659–661. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Report on Ageing and Health; WHO Press: Geneva, Switzerland, 2015; Available online: https://www.who.int/publications/i/item/9789241565042 (accessed on 23 January 2025).
- Gichu, M.; Harwood, R.H. Measurement of healthy ageing. Age Ageing 2023, 52 (Suppl. S4), iv3–iv5. [Google Scholar] [CrossRef]
- Vetrano, D.L.; Calderon-Larranaga, A.; Marengoni, A.; Onder, G.; Bauer, J.M.; Cesari, M.; Ferrucci, L.; Fratiglioni, L. An international perspective on chronic multimorbidity: Approaching the elephant in the room. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Bektas, A.; Schurman, S.H.; Sen, R.; Ferrucci, L. Aging, inflammation and the environment. Exp. Gerontol. 2018, 105, 10–18. [Google Scholar] [CrossRef]
- Wild, C.P. Complementing the genome with an ‘exposome’: The outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1847–1850. [Google Scholar] [CrossRef]
- Accardi, G.; Aprile, S.; Candore, G.; Caruso, C.; Cusimano, R.; Cristaldi, L.; Di Bona, D.; Duro, G.; Galimberti, D.; Gambino, C.M.; et al. Genotypic and phenotypic aspects of longevity: Results from a Sicilian survey and implication for the prevention and treatment of age-related diseases. Curr. Pharm. Des. 2019, 25, 228–235. [Google Scholar] [CrossRef]
- Aliberti, S.M.; Donato, A.; Funk, R.H.W.; Capunzo, M. A narrative review exploring the similarities between Cilento and the already defined “Blue Zones” in terms of environment, nutrition, and lifestyle: Can Cilento be considered an undefined “Blue Zone”? Nutrients 2024, 16, 729. [Google Scholar] [CrossRef]
- Longevity Blue Zones. A Scientific Research Website by Michel Poulain. Available online: https://longevitybluezone.com/concept-and-history/ (accessed on 13 March 2025).
- Wild, C.P. The exposome: From concept to utility. Int. J. Epidemiol. 2012, 41, 24–32. [Google Scholar] [CrossRef]
- Schulz, A.J.; Israel, B.A.; Mentz, G.B.; Bernal, C.; Caver, D.; DeMajo, R.; Diaz, G.; Gamboa, C.; Gaines, C.; Hoston, B. Effectiveness of a walking group intervention to promote physical activity and cardiovascular health in predominantly non-Hispanic black and Hispanic urban neighborhoods: Findings from the walk your heart to health intervention. Health Educ. Behav. 2015, 42, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Borst, H.C.; Miedema, H.M.E.; de Vries, S.I.; Graham, J.M.A.; van Dongen, J.E.F. Relationships between street characteristics and perceived attractiveness for walking reported by elderly people. J. Environ. Psychol. 2008, 28, 353–361. [Google Scholar] [CrossRef]
- Kim, K.; Joyce, B.T.; Nannini, D.R.; Zheng, Y.; Gordon-Larsen, P.; Shikany, J.M.; Lloyd-Jones, D.M.; Hu, M.; Nieuwenhuijsen, M.J.; Vaughan, D.E.; et al. Inequalities in urban greenness and epigenetic aging: Different associations by race and neighborhood socioeconomic status. Sci. Adv. 2023, 9, eadf8140. [Google Scholar] [CrossRef] [PubMed]
- Berman, M.G.; Jonides, J.; Kaplan, S. The cognitive benefits of interacting with nature. Psychol. Sci. 2008, 19, 1207–1212. [Google Scholar] [CrossRef]
- Miller, G.W.; Jones, D.P. The nature of nurture: Refining the definition of the exposome. Toxicol. Sci. 2014, 137, 1–2. [Google Scholar] [CrossRef]
- Portelli, M.A.; Hodge, E.; Sayers, I. Genetic risk factors for the development of allergic disease identified by genome-wide association. Clin. Exp. Allergy 2015, 45, 21–31. [Google Scholar] [CrossRef]
- Aylward, L.L.; Kirman, C.R.; Schoeny, R.; Portier, C.J.; Hays, S.M. Evaluation of biomonitoring data from the CDC National Exposure Report in a risk assessment context: Perspectives across chemicals. Environ. Health Perspect. 2013, 121, 287–294. [Google Scholar] [CrossRef]
- Mansuy, D. Metabolism of xenobiotics: Beneficial and adverse effects. Biol. Aujourdhui 2013, 207, 33–37. [Google Scholar] [CrossRef]
- Patterson, A.D.; Gonzalez, F.J.; Idle, J.R. Xenobiotic metabolism: A view through the metabolometer. Chem. Res. Toxicol. 2010, 23, 851–860. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Accardi, G.; Aiello, A. Ways to become old: Role of lifestyle in modulation of the hallmarks of aging. In Human Aging: From Cellular Mechanisms to Therapeutic Strategies; Caruso, C., Candore, G., Eds.; Academic Press Inc.: Cambridge, MA, USA, 2021; pp. 273–293. [Google Scholar] [CrossRef]
- Johnson, S.C.; Dong, X.; Vijg, J.; Suh, Y. Genetic evidence for common pathways in human age-related diseases. Aging Cell 2015, 14, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Pandics, T.; Major, D.; Fazekas-Pongor, V.; Szarvas, Z.; Peterfi, A.; Mukli, P.; Gulej, R.; Ungvari, A.; Fekete, M.; Tompa, A.; et al. Exposome and unhealthy aging: Environmental drivers from air pollution to occupational exposures. Geroscience 2023, 45, 3381–3408. [Google Scholar] [CrossRef] [PubMed]
- Caruso, C.; Ligotti, M.E.; Accardi, G.; Aiello, A.; Candore, G. An immunologist’s guide to immunosenescence and its treatment. Expert Rev. Clin. Immunol. 2022, 18, 961–981. [Google Scholar] [CrossRef]
- Reddam, A.; McLarnan, S.; Kupsco, A. Environmental Chemical Exposures and Mitochondrial Dysfunction: A Review of Recent Literature. Curr. Environ. Health Rep. 2022, 9, 631–649. [Google Scholar] [CrossRef]
- Di Daniele, N.; Noce, A.; Vidiri, M.; Moriconi, E.; Marrone, G.; Annicchiarico-Petruzzelli, M.; D’Urso, G.; Tesauro, M.; Rovella, V.; De Lorenzo, A. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget 2017, 8, 8947–8979. [Google Scholar] [CrossRef] [PubMed]
- Noto, D.; Cefalù, A.B.; Barbagallo, C.M.; Ganci, A.; Cavera, G.; Fayer, F.; Palesano, O.; Spina, R.; Valenti, V.; Altieri, G.I.; et al. Ventimiglia Heart Study Group. Baseline metabolic disturbances and the twenty-five years risk of incident cancer in a Mediterranean population. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Sales, N.M.R.; Pelegrini, P.B.; Goersch, M.C. Nutrigenomics: Definitions and Advances of This New Science. J. Nutr. Metab. 2014, 2014, 202759. [Google Scholar] [CrossRef]
- Saavedra, D.; Añé-Kourí, A.L.; Barzilai, N.; Caruso, C.; Cho, K.H.; Fontana, L.; Franceschi, C.; Frasca, D.; Ledón, N.; Niedernhofer, L.J.; et al. Aging and chronic inflammation: Highlights from a multidisciplinary workshop. Immun. Ageing 2023, 20, 25. [Google Scholar] [CrossRef]
- Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. Ser. A 2014, 69 (Suppl. S1), S4–S9. [Google Scholar] [CrossRef]
- Cohen, G.; Gerber, Y. Air Pollution and Successful Aging: Recent Evidence and New Perspectives. Curr. Environ. Health Rep. 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Sacks, J.D.; Stanek, L.W.; Luben, T.; Johns, D.O.; Buckley, B.J.; Brown, J.S.; Ross, M. Particulate matter-induced health effects: Who is susceptible? Environ. Health Perspect. 2011, 119, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Syrek-Gerstenkorn, Z.; Syrek-Gerstenkorn, B.; Paul, S. A Comparative Study of SOx, NOx, PM2.5 and PM10 in the UK and Poland from 1970 to 2020. Appl. Sci. 2024, 14, 3292. [Google Scholar] [CrossRef]
- Baccarelli, A.A.; Hales, N.; Burnett, R.T.; Jerrett, M.; Mix, C.; Dockery, D.W.; Pope, C.A. Particulate Air Pollution, Exceptional Aging, and Rates of Centenarians: A Nationwide Analysis of the United States, 1980–2010. Environ. Health Perspect. 2016, 124, 1744–1750. [Google Scholar] [CrossRef]
- Moon, K.; Guallar, E.; Navas-Acien, A. Arsenic exposure and cardiovascular disease: An updated systematic review. Curr. Atheroscler. Rep. 2012, 14, 542–555. [Google Scholar] [CrossRef]
- Xu, L.; Mondal, D.; Polya, D.A. Positive association of cardiovascular disease (CVD) with chronic exposure to drinking water arsenic (As) at concentrations below the WHO provisional guideline value: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2020, 17, 2536. [Google Scholar] [CrossRef]
- Basha, D.C.; Basha, S.S.; Reddy, G.R. Lead-induced cardiac and hematological alterations in aging Wistar male rats: Alleviating effects of nutrient metal mixture. Biogerontology 2012, 13, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, G.; Dadar, M.; Chirumbolo, S.; Aaseth, J. High content of lead is associated with the softness of drinking water and raised cardiovascular morbidity: A review. Biol. Trace Elem. Res. 2018, 186, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.R.; Meredith, P.A.; Goldberg, A.; Carr, K.E.; Toner, P.G.; Lawrie, T.D. Cardiac effects of lead in drinking water of rats. Clin. Sci. Mol. Med. 1975, 49, 337–341. [Google Scholar] [CrossRef]
- Revis, N.W.; Zinsmeister, A.R.; Bull, R. Atherosclerosis and hypertension induction by lead and cadmium ions: An effect prevented by calcium ion. Proc. Natl. Acad. Sci. USA 1981, 78, 6494–6498. [Google Scholar] [CrossRef]
- Roncal, C.; Mu, W.; Reungjui, S.; Kim, K.M.; Henderson, G.N.; Ouyang, X.; Nakagawa, T.; Johnson, R.J. Lead, at low levels, accelerates arteriolopathy and tubulointerstitial injury in chronic kidney disease. Am. J. Physiol. Renal Physiol. 2007, 293, F1391–F1396. [Google Scholar] [CrossRef]
- Ryan, P.B.; Huet, N.; MacIntosh, D.L. Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water. Environ. Health Perspect. 2000, 108, 731–735. [Google Scholar] [CrossRef]
- Shen, X.F.; Huang, P.; Fox, D.A.; Lin, Y.; Zhao, Z.H.; Wang, W.; Wang, J.Y.; Liu, X.Q.; Chen, J.Y.; Luo, W.J. Adult lead exposure increases blood-retinal permeability: A risk factor for retinal vascular disease. Neurotoxicology 2016, 57, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.A.; de Oliveira, T.F.; Almenara, C.C.; Broseghini-Filho, G.B.; Vassallo, D.V.; Padilha, A.S.; Silveira, E.A. Exposure to a low lead concentration impairs contractile machinery in rat cardiac muscle. Biol. Trace Elem. Res. 2015, 167, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Liu, H.; Zhao, H.; Wang, X.; Chen, J.; Xia, D.; Xiao, C.; Cheng, J.; Zhao, Z.; He, Y. Environmental lead exposure aggravates the progression of Alzheimer’s disease in mice by targeting on blood brain barrier. Toxicol. Lett. 2020, 319, 138–147. [Google Scholar] [CrossRef]
- Brake, J.; Thaxton, P.; Hester, P.Y. Mercury induced cardiovascular abnormalities in the chicken. Arch. Environ. Contam. Toxicol. 1977, 6, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Wildemann, T.M.; Siciliano, S.D.; Weber, L.P. The mechanisms associated with the development of hypertension after exposure to lead, mercury species or their mixtures differs with the metal and the mixture ratio. Toxicology 2016, 339, 1–8. [Google Scholar] [CrossRef]
- Wildemann, T.M.; Weber, L.P.; Siciliano, S.D. Combined exposure to lead, inorganic mercury and methylmercury shows deviation from additivity for cardiovascular toxicity in rats. J. Appl. Toxicol. 2015, 35, 918–926. [Google Scholar] [CrossRef]
- Downer, M.K.; Martinez-Gonzalez, M.A.; Gea, A.; Stampfer, M.; Warnberg, J.; Ruiz-Canela, M.; Salas-Salvado, J.; Corella, D.; Ros, E.; Fito, M.; et al. Mercury exposure and risk of cardiovascular disease: A nested case-control study in the PREDIMED (PREvention with MEDiterranean Diet) study. BMC Cardiovasc. Disord. 2017, 17, 9. [Google Scholar] [CrossRef]
- Houston, M.C. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. J. Clin. Hypertens. 2011, 13, 621–627. [Google Scholar] [CrossRef]
- Hu, X.F.; Lowe, M.; Chan, H.M. Mercury exposure, cardiovascular disease, and mortality: A systematic review and dose-response meta-analysis. Environ. Res. 2021, 193, 110538. [Google Scholar] [CrossRef]
- Larsen, T.J.; Jorgensen, M.E.; Larsen, C.V.L.; Dahl-Petersen, I.K.; Ronn, P.F.; Bjerregaard, P.; Byberg, S. Whole blood mercury and the risk of cardiovascular disease among the Greenlandic population. Environ. Res. 2018, 164, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Mozafarian, D.; Shi, P.; Morris, J.S.; Spiegelman, D.; Grandjean, P.; Siscovick, D.S.; Willett, W.C.; Rimm, E.B. Mercury exposure and risk of cardiovascular disease in two U.S. cohorts. N. Engl. J. Med. 2011, 364, 1116–1125. [Google Scholar] [CrossRef]
- Alhamdow, A.; Lindh, C.; Albin, M.; Gustavsson, P.; Tinnerberg, H.; Broberg, K. Early markers of cardiovascular disease are associated with occupational exposure to polycyclic aromatic hydrocarbons. Sci. Rep. 2017, 7, 9426. [Google Scholar] [CrossRef]
- Clark, J.D., 3rd; Serdar, B.; Lee, D.J.; Arheart, K.; Wilkinson, J.D.; Fleming, L.E. Exposure to polycyclic aromatic hydrocarbons and serum inflammatory markers of cardiovascular disease. Environ. Res. 2012, 117, 132–137. [Google Scholar] [CrossRef]
- Rojas, G.A.; Saavedra, N.; Saavedra, K.; Hevia, M.; Morales, C.; Lanas, F.; Salazar, L.A. Polycyclic aromatic hydrocarbons (PAHs) exposure triggers inflammation and endothelial dysfunction in BALB/c mice: A pilot study. Toxics 2022, 10, 497. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Kensler, T.W.; Motohashi, H. The KEAP1-NRF2 System: A Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Physiol. Rev. 2018, 98, 1169–1203. [Google Scholar] [CrossRef] [PubMed]
- Chaves, R.S.; Guerreiro, C.S.; Cardoso, V.V.; Benoliel, M.J.; Santos, M.M. Hazard and mode of action of disinfection by-products (DBPs) in water for human consumption: Evidence and research priorities. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 223, 53–61. [Google Scholar] [CrossRef]
- Ungvari, Z.; Bailey-Downs, L.; Gautam, T.; Sosnowska, D.; Wang, M.; Monticone, R.E.; Telljohann, R.; Pinto, J.T.; de Cabo, R.; Sonntag, W.E.; et al. Age-associated vascular oxidative stress, Nrf2 dysfunction and NF-kB activation in the non-human primate Macaca mulatta. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 866–875. [Google Scholar] [CrossRef]
- Ungvari, Z.; Bailey-Downs, L.; Sosnowska, D.; Gautam, T.; Koncz, P.; Losonczy, G.; Ballabh, P.; de Cabo, R.; Sonntag, W.E.; Csiszar, A. Vascular oxidative stress in aging: A homeostatic failure due to dysregulation of Nrf2-mediated antioxidant response. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H363–H372. [Google Scholar] [CrossRef]
- Ungvari, Z.; Tarantini, S.; Nyul-Toth, A.; Kiss, T.; Yabluchanskiy, A.; Csipo, T.; Balasubramanian, P.; Lipecz, A.; Benyo, Z.; Csiszar, A. Nrf2 dysfunction and impaired cellular resilience to oxidative stressors in the aged vasculature: From increased cellular senescence to the pathogenesis of age-related vascular diseases. Geroscience 2019, 41, 727–738. [Google Scholar] [CrossRef]
- Buttari, B.; Tramutola, A.; Rojo, A.I.; Chondrogianni, N.; Saha, S.; Berry, A.; Giona, L.; Miranda, J.P.; Profumo, E.; Davinelli, S.; et al. Proteostasis Decline and Redox Imbalance in Age-Related Diseases: The Therapeutic Potential of NRF2. Biomolecules 2025, 15, 113. [Google Scholar] [CrossRef]
- Ungvari, Z.; Tarantini, S.; Sorond, F.; Merkely, B.; Csiszar, A. Mechanisms of vascular aging, a geroscience perspective: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 75, 931–941. [Google Scholar] [CrossRef]
- Ungvari, Z.; Tarantini, S.; Donato, A.J.; Galvan, V.; Csiszar, A. Mechanisms of vascular aging. Circ. Res. 2018, 123, 849–867. [Google Scholar] [CrossRef]
- Ungvari, Z.; Buffenstein, R.; Austad, S.N.; Podlutsky, A.; Kaley, G.; Csiszar, A. Oxidative stress in vascular senescence: Lessons from successfully aging species. Front. Biosci. 2008, 13, 5056–5070. [Google Scholar] [CrossRef]
- Fulop, G.A.; Kiss, T.; Tarantini, S.; Balasubramanian, P.; Yabluchanskiy, A.; Farkas, E.; Bari, F.; Ungvari, Z.; Csiszar, A. Nrf2 deficiency in aged mice exacerbates cellular senescence promoting cerebrovascular inflammation. Geroscience 2018, 40, 513–521. [Google Scholar] [CrossRef]
- Winiarska, E.; Jutel, M.; Zemelka-Wiacek, M. The potential impact of nano- and microplastics on human health: Understanding human health risks. Environ. Res. 2024, 251 Pt 2, 118535. [Google Scholar] [CrossRef]
- Li, Y.; Tao, L.; Wang, Q.; Wang, F.; Li, G.; Song, M. Potential Health Impact of Microplastics: A Review of Environmental Distribution, Human Exposure, and Toxic Effects. Environ. Health 2023, 1, 249–257. [Google Scholar] [CrossRef]
- Deng, X.; Gui, Y.; Zhao, L. The micro(nano)plastics perspective: Exploring cancer development and therapy. Mol. Cancer 2025, 24, 30. [Google Scholar] [CrossRef]
- Soucek, P. Xenobiotics. In Encyclopedia of Cancer; Schwab, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Nogacka, A.M.; Gómez-Martín, M.; Suárez, A.; González-Bernardo, O.; de Los Reyes-Gavilán, C.G.; González, S. Xenobiotics Formed during Food Processing: Their Relation with the Intestinal Microbiota and Colorectal Cancer. Int. J. Mol. Sci. 2019, 20, 2051. [Google Scholar] [CrossRef] [PubMed]
- Beszterda, M.; Frański, R. Endocrine disruptor compounds in environment: As a danger for children health. Pediatr. Endocrinol. Diabetes Metab. 2018, 24, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Crocco, P.; Montesanto, A.; Dato, S.; Geracitano, S.; Iannone, F.; Passarino, G.; Rose, G. Inter-Individual Variability in Xenobiotic-Metabolizing Enzymes: Implications for Human Aging and Longevity. Genes 2019, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef]
- Truc, T.T. Unleashing Nature’s Epigenetic Warriors: Bioactive Compounds and the Nrf2/Keap1 System. Chem. Eng. Trans. 2024, 113, 349–354. [Google Scholar] [CrossRef]
- Vanduchova, A.; Anzenbacher, P.; Anzenbacherova, E. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J. Med. Food 2019, 22, 121–126. [Google Scholar] [CrossRef]
- Nwanaji-Enwerem, J.C.; Colicino, E.; Trevisi, L.; Kloog, I.; Just, A.C.; Shen, J.; Brennan, K.; Dereix, A.; Hou, L.; Vokonas, P.; et al. Long-term ambient particle exposures and blood DNA methylation age: Findings from the VA normative aging study. Environ. Epigenet. 2016, 2, dvw006. [Google Scholar] [CrossRef]
- Koenigsberg, S.H.; Chang, C.J.; Ish, J.; Xu, Z.; Kresovich, J.K.; Lawrence, K.G.; Kaufman, J.D.; Sandler, D.P.; Taylor, J.A.; White, A.J. Air pollution and epigenetic aging among Black and White women in the US. Environ. Int. 2023, 181, 108270. [Google Scholar] [CrossRef]
- Caruso, C.; Candore, G. Climate Change, Socio-Economic Status, and Life Expectancy. Ageing Longev. Res. 2025, 1, 2. [Google Scholar]
- World Meteorological Organization. WHO Confirms 2024 as Warmest Year on Record at About 1.55 °C Above Pre-Industrial Level. Available online: https://wmo.int/news/media-centre/wmo-confirms-2024-warmest-year-record-about-155degc-above-pre-industrial-level (accessed on 14 March 2025).
- Esper, J.; Torbenson, M.; Büntgen, U. 2023 summer warmth unparalleled over the past 2000 years. Nature 2024, 631, 94–97. [Google Scholar] [CrossRef]
- Bell, M.L.; Gasparrini, A.; Benjamin, G.C. Climate Change, Extreme Heat, and Health. N. Engl. J. Med. 2024, 390, 1793–1801. [Google Scholar] [CrossRef]
- Ebi, K.L.; Åström, C.; Boyer, C.J.; Harrington, L.J.; Hess, J.; Honda, Y.; Kazura, E.; Stuart-Smith, R.F.; Otto, F.E.L. Using Detection and Attribution to Quantify How Climate Change Is Affecting Health. Health Aff. 2020, 39, 2168–2174. [Google Scholar] [CrossRef]
- Sorensen, C.; Hess, J. Treatment and Prevention of Heat-Related Illness. N. Engl. J. Med. 2022, 387, 1404–1413. [Google Scholar] [CrossRef]
- Leon, L.R.; Helwig, B.G. Heat stroke: Role of the systemic inflammatory response. J. Appl. Physiol. 2010, 109, 1980–1988. [Google Scholar] [CrossRef]
- Cottle, R.M.; Fisher, K.G.; Wolf, S.T.; Kenney, W.L. Onset of cardiovascular drift during progressive heat stress in young adults (PSU HEAT project). J. Appl. Physiol. 1985 2023, 135, 292–299. [Google Scholar] [CrossRef]
- Henderson, M.E.T.; Brayson, D.; Halsey, L.G. The cardio-respiratory effects of passive heating and the human thermoneutral zone. Physiol. Rep. 2021, 9, e14973. [Google Scholar] [CrossRef]
- Takamata, A.; Ito, T.; Yaegashi, K.; Takamiya, H.; Maegawa, Y.; Itoh, T.; Greenleaf, J.E.; Morimoto, T. Effect of exercise-heat acclimatation program on body fluid regulatory responses to dehydration in older man. Am. J. Physiol. 1999, 277, R1041–R1050. [Google Scholar] [CrossRef] [PubMed]
- Périard, J.D.; Eijsvogels, T.M.H.; Daanen, H.A.M. Exercise under heat stress: Thermoregulation, hydration, performance implications, and mitigation strategies. Physiol. Rev. 2021, 101, 1873–1979. [Google Scholar] [CrossRef]
- Choi, E.Y.; Ailshire, J.A. Ambient outdoor heat and accelerated epigenetic aging among older adults in the US. Sci. Adv. 2025, 11, eadr0616. [Google Scholar] [CrossRef]
- Witze, A. Racism is magnifying the deadly impact of rising city heat. Nature 2021, 595, 349–351. [Google Scholar] [CrossRef]
- Hsu, A.; Sheriff, G.; Chakraborty, T.; Manya, D. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 2021, 12, 2721. [Google Scholar] [CrossRef] [PubMed]
- Gibb, K.; Beckman, S.; Vergara, X.P.; Heinzerling, A.; Harrison, R. Extreme Heat and Occupational Health Risks. Annu. Rev. Public Health 2024, 45, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). Climate Change and Food Security: Risks and Responses. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/a4fd8ac5-4582-4a66-91b0-55abf642a400/content (accessed on 26 January 2025).
- Kojo Abanyie, S.; Amuah, E.E.Y.; Nang, D.B. Water scarsity and its implications on sanitation: A perspective study in an emerging city in Northern Ghana. Green Technol. Sustain. 2025, 3, 100138. [Google Scholar] [CrossRef]
- Chang, J.H.; Lee, Y.L.; Chang, L.T.; Chang, T.Y.; Hsiao, T.C.; Chung, K.F.; Ho, K.F.; Kuo, H.P.; Lee, K.Y.; Chuang, K.J.; et al. Climate change, air quality, and respiratory health: A focus on particle deposition in the lungs. Ann. Med. 2023, 55, 2264881. [Google Scholar] [CrossRef]
- Barrett, B.; Charles, J.W.; Temte, J.L. Climate change, human health, and epidemiological transition. Prev. Med. 2015, 70, 69–75. [Google Scholar] [CrossRef]
- Hauer, M.E.; Santos-Lozada, A.R. Inaction on climate change projected to reduce European life expectancy. Popul. Res. Policy Rev. 2021, 40, 629–638. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Krawczyk, M.; Filipiak, K.J.; Geier, A.; Bonfrate, L.; Portincasa, P. Noncommunicable diseases, climate change and iniquities: What COVID-19 has taught us about syndemic. Eur. J. Clin. Investig. 2021, 51, e13682. [Google Scholar] [CrossRef] [PubMed]
- WHO. Climate Change and Noncommunicable Diseases: Connections. Available online: https://www.who.int/news/item/02-11-2023-climate-change-and-noncommunicable-diseases-connections (accessed on 5 February 2025).
- Smith, K.R.; Woodward, A.; Campbell-Lendrum, D.; Chadee, D.D.; Honda, Y.; Liu, Q.; Olwoch, C.M.; Revich, B.; Sauerborn, R. Human health: Impacts, adaptation, and co-benefits climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; pp. 709–754. [Google Scholar]
- Breitner-Busch, S.; Mücke, H.G.; Schneider, A.; Hertig, E. Impact of climate change on non-communicable diseases due to increased ambient air pollution. J. Health Monit. 2023, 8 (Suppl. S4), 103–121, Erratum in J. Health Monit. 2023, 8 (Suppl. S4), 121. [Google Scholar] [CrossRef]
- McMichael, A.J.; Woodruff, R.E.; Hales, S. Climate change and human health: Present and future risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
- Haines, A.; Kovats, R.S.; Campbell-Lendrum, D.; Corvalán, C. Climate change and human health: Impacts, vulnerability and public health. Public Health 2006, 120, 585–596. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.-D.; Wei, K.; Shan, Y.; Mi, Z.; Costello, M.J.; Grunwald, S.; Feng, Z.; Wang, F.; Guo, Y.; et al. Climate change: Strategies for mitigation and adaptation. Innov. Geosci. 2023, 1, 100015. [Google Scholar] [CrossRef]
- López-Granero, C.; Polyanskaya, L.; Ruiz-Sobremazas, D.; Barrasa, A.; Aschner, M.; Alique, M. Particulate Matter in Human Elderly: Higher Susceptibility to Cognitive Decline and Age-Related Diseases. Biomolecules 2023, 14, 35. [Google Scholar] [CrossRef]
- Kivimäki, M.; Pentti, J.; Frank, P.; Liu, F.; Blake, A.; Nyberg, S.T.; Vahtera, J.; Singh-Manoux, A.; Wyss-Coray, T.; Walker, K.A.; et al. Social disadvantage accelerates aging. Nat. Med. 2025. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Nazmi, A.; Victora, C.G. Socioeconomic and racial/ethnic differentials of C-reactive protein levels: A systematic review of population-based studies. BMC Public Health 2007, 7, 212. [Google Scholar] [CrossRef] [PubMed]
- Gruenewald, T.L.; Cohen, S.; Matthews, K.A.; Tracy, R.; Seeman, T.E. Association of socioeconomic status with inflammation markers in black and white men and women in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Soc. Sci. Med. 2009, 69, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.S.; Aiello, A.E.; Mensah, F.K.; Gasser, C.E.; Rueb, K.; Cordell, B.; Juonala, M.; Wake, M.; Burgner, D.P. Socioeconomic status in childhood and C reactive protein in adulthood: A systematic review and meta-analysis. J. Epidemiol. Community Health 2017, 71, 817–826. [Google Scholar] [CrossRef]
- Gares, V.; Panico, L.; Castagne, R.; Delpierre, C.; Kelly-Irving, M. The role of the early social environment on Epstein Barr virus infection: A prospective observational design using the Millennium Cohort Study. Epidemiol. Infect. 2017, 145, 3405–3412. [Google Scholar] [CrossRef]
- Petrovic, D.; de Mestral, C.; Bochud, M.; Bartley, M.; Kivimäki, M.; Vineis, P.; Mackenbach, J.; Stringhini, S. The contribution of health behaviors to socioeconomic inequalities in health: A systematic review. Prev. Med. 2018, 113, 15–31. [Google Scholar] [CrossRef]
- Berger, E.; Castagné, R.; Chadeau-Hyam, M.; Bochud, M.; d’Errico, A.; Gandini, M.; Karimi, M.; Kivimäki, M.; Krogh, V.; Marmot, M.; et al. Multi-cohort study identifies social determinants of systemic inflammation over the life course. Nat. Commun. 2019, 10, 773. [Google Scholar] [CrossRef]
- Marín-Palma, D.; Fernandez, G.J.; Ruiz-Saenz, J.; Taborda, N.A.; Rugeles, M.T.; Hernandez, J.C. Particulate matter impairs immune system function by up-regulating inflammatory pathways and decreasing pathogen response gene expression. Sci. Rep. 2023, 13, 12773. [Google Scholar] [CrossRef]
- Aiello, A.; Farzaneh, F.; Candore, G.; Caruso, C.; Davinelli, S.; Gambino, C.M.; Ligotti, M.E.; Zareian, N.; Accardi, G. Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? A Review of Potential Options for Therapeutic Intervention. Front. Immunol. 2019, 10, 2247. [Google Scholar] [CrossRef]
- Glencross, D.A.; Ho, T.R.; Camiña, N.; Hawrylowicz, C.M.; Pfeffer, P.E. Air pollution and its effects on the immune system. Free Radic. Biol. Med. 2020, 151, 56–68. [Google Scholar] [CrossRef]
- Guarnieri, G.; Olivieri, B.; Senna, G.; Vianello, A. Relative Humidity and Its Impact on the Immune System and Infections. Int. J. Mol. Sci. 2023, 24, 9456. [Google Scholar] [CrossRef] [PubMed]
- Ural, B.B.; Caron, D.P.; Dogra, P.; Wells, S.B.; Szabo, P.A.; Granot, T.; Senda, T.; Poon, M.M.L.; Lam, N.; Thapa, P.; et al. Inhaled particulate accumulation with age impairs immune function and architecture in human lung lymph nodes. Nat. Med. 2022, 28, 2622–2632. [Google Scholar] [CrossRef] [PubMed]
- National Council on Aging. Chronic Inequities: Measuring Disease Cost Burden Among Older Adults in the U.S. A Health and Retirement Study Analysis. Available online: https://ncoa.org/article/get-the-facts-on-healthy-aging. (accessed on 29 January 2025).
- Chen, S.; Kuhn, M.; Prettner, K.; Bloom, D.E. The macro-economic burden of noncommunicable diseases in the United States: Estimates and projections. PLoS ONE 2018, 13, e0206702. [Google Scholar] [CrossRef]
- WHO’s Work on the UN Decade of Healthy Ageing (2021–2030). Available online: https://www.who.int/initiatives/decade-of-healthy-ageing (accessed on 28 January 2025).
- World Health Organization. Decade of Healthy Ageing: Baseline Report. Summary; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Zhang, Y.; Tang, D.; Zhang, N.; Xiang, Y.; Hu, Y.; Qian, W.; Baima, Y.; Ding, X.; Wang, Z.; Yin, J.; et al. Lifestyles and their relative contribution to biological aging across multiple-organ systems: Change analysis from the China Multi-Ethnic Cohort study. eLife 2025, 13, RP99924. [Google Scholar] [CrossRef]
- Antonini, F.M. Elogio della vecchiaia: Centenari 1990. LR Med. Prat 1990, 326, 1–3. (In Italian) [Google Scholar]
- World Health Organization (WHO). Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 29 January 2025).
- Kivimäki, M.; Frank, P.; Pentti, J.; Jokela, M.; Nyberg, S.T.; Blake, A.; Lindbohm, J.V.; Oh, H.S.; Singh-Manoux, A.; Wyss-Coray, T.; et al. Proteomic organ-specific ageing signatures and 20-year risk of age-related diseases: The Whitehall II observational cohort study. Lancet Digit. Health 2025, 7, e195–e204. [Google Scholar] [CrossRef]
- Nielsen, L.; Marsland, A.L.; Hamlat, E.J.; Epel, E.S. New Directions in Geroscience: Integrating Social and Behavioral Drivers of Biological Aging. Psychosom. Med. 2024, 86, 360–365. [Google Scholar] [CrossRef]
- Sarigiannis, D.; Karakitsios, S.; Anesti, O.; Stem, A.; Valvi, D.; Sumner, S.C.J.; Chatzi, L.; Snyder, M.P.; Thompson, D.C.; Vasiliou, V. Advancing translational exposomics: Bridging genome, exposome and personalized medicine. Hum. Genom. 2025, 19, 48. [Google Scholar] [CrossRef]
- Dalamaga, M.; Kounatidis, D.; Tsilingiris, D.; Vallianou, N.G.; Karampela, I.; Psallida, S.; Papavassiliou, A.G. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int. J. Mol. Sci. 2024, 25, 675. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Kim, S.; Kang, S.H.; Kim, H.J.; Kim, H.; Heo, J.; Yi, S.M.; Kim, K.; Youn, T.J.; et al. Cardiovascular Effects of Long-Term Exposure to Air Pollution: A Population-Based Study with 900,845 Person-Years of Follow-up. J. Am. Heart Assoc. 2017, 6, e007170. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, B.; Ran, S.; Qian, A.M.; Zhang, J.; Tabet, M.; Howard, S.W.; Zhang, Z.; Tian, F.; Lin, H. Air Pollution Metabolomic Signatures and Chronic Respiratory Diseases Risk: A Longitudinal Study. Chest 2024, 166, 975–986. [Google Scholar] [CrossRef]
- Steptoe, A.; Kivimäki, M. Stress and cardiovascular disease. Nat. Rev. Cardiol. 2012, 9, 360–370. [Google Scholar] [CrossRef]
- Lundin, K.K.; Qadeer, Y.K.; Wang, Z.; Virani, S.; Leischik, R.; Lavie, C.J.; Strauss, M.; Krittanawong, C. Contaminant Metals and Cardiovascular Health. J. Cardiovasc. Dev. Dis. 2023, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Dzierżyński, E.; Gawlik, P.J.; Puźniak, D.; Flieger, W.; Jóźwik, K.; Teresiński, G.; Forma, A.; Wdowiak, P.; Baj, J.; Flieger, J. Microplastics in the Human Body: Exposure, Detection, and Risk of Carcinogenesis: A State-of-the-Art Review. Cancers 2024, 16, 3703. [Google Scholar] [CrossRef]
- Montone, R.A.; Camilli, M.; Calvieri, C.; Magnani, G.; Bonanni, A.; Bhatt, D.L.; Rajagopalan, S.; Crea, F.; Niccoli, G. Exposome in ischaemic heart disease: Beyond traditional risk factors. Eur. Heart J. 2024, 45, 419–438. [Google Scholar] [CrossRef] [PubMed]
- WHO. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 14 March 2025).
- Vasto, S.; Carruba, G.; Lio, D.; Colonna-Romano, G.; Di Bona, D.; Candore, G.; Caruso, C. Inflammation, ageing and cancer. Mech. Ageing Dev. 2009, 130, 40–45. [Google Scholar] [CrossRef]
- Lin, J.Y.; Yin, R.X. Exposure to Endocrine-Disrupting Chemicals and Type 2 Diabetes Mellitus in Later Life. Expo. Health 2023, 15, 199–229. [Google Scholar] [CrossRef]
- Jiang, X.Q.; Mei, X.D.; Feng, D. Air pollution and chronic airway diseases: What should people know and do? J. Thorac. Dis. 2016, 8, E31–E40. [Google Scholar] [CrossRef]
- Poulain, M. Individual longevity versus population longevity. In Centenarians an Example of Positive Biology; Caruso, C., Ed.; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Aliberti, S.M.; Capunzo, M. The Power of Environment: A Comprehensive Review of the Exposome’s Role in Healthy Aging, Longevity, and Preventive Medicine—Lessons from Blue Zones and Cilento. Nutrients 2025, 17, 722. [Google Scholar] [CrossRef]
- Aliberti, S.M.; De Caro, F.; Funk, R.H.W.; Schiavo, L.; Gonnella, J.; Boccia, G.; Capunzo, M. Extreme Longevity: Analysis of the Direct or Indirect Influence of Environmental Factors on Old, Nonagenarians, and Centenarians in Cilento, Italy. Int. J. Environ. Res. Public Health 2022, 19, 1589. [Google Scholar] [CrossRef] [PubMed]
- Aliberti, S.M.; Funk, R.H.W.; Ciaglia, E.; Gonnella, J.; Giudice, A.; Vecchione, C.; Puca, A.A.; Capunzo, M. Old, Nonagenarians, and Centenarians in Cilento, Italy and the Association of Lifespan with the Level of Some Physicochemical Elements in Tap Drinking Water. Nutrients 2023, 15, 218. [Google Scholar] [CrossRef] [PubMed]
- Vasto, S.; Rizzo, C.; Caruso, C. Centenarians and diet: What they eat in the Western part of Sicily. Immun. Ageing 2012, 9, 10. [Google Scholar] [CrossRef]
- Vasto, S.; Barera, A.; Rizzo, C.; Di Carlo, M.; Caruso, C.; Panotopoulos, G. Mediterranean diet and longevity: An example of nutraceuticals? Curr. Vasc. Pharmacol. 2014, 12, 735–738. [Google Scholar] [CrossRef]
- Vasto, S.; Scapagnini, G.; Rizzo, C.; Monastero, R.; Marchese, A.; Caruso, C. Mediterranean diet and longevity in Sicily: Survey in a Sicani Mountains population. Rejuvenation Res. 2012, 15, 184–188. [Google Scholar] [CrossRef]
- Aiello, A.; Accardi, G.; Aprile, S.; Caldarella, R.; Carru, C.; Ciaccio, M.; De Vivo, I.; Gambino, C.M.; Ligotti, M.E.; Vasto, S.; et al. Age and Gender-related Variations of Molecular and Phenotypic Parameters in A Cohort of Sicilian Population: From Young to Centenarians. Aging Dis. 2021, 12, 1773–1793. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.B.; Antonini, P.; Marino, R.; Rizzo, M.; Navarin, S.; Lucibello, S.G.; Maisel, A.S.; Pizza, V.; Brenner, D.A.; Jeste, D.V.; et al. Cardiovascular health of nonagenarians in southern Italy: A cross-sectional, home-based pilot study of longevity. J. Cardiovasc. Med. 2020, 21, 89–98. [Google Scholar] [CrossRef]
- Vasto, S.; Buscemi, S.; Barera, A.; Di Carlo, M.; Accardi, G.; Caruso, C. Mediterranean diet and healthy ageing: A Sicilian perspective. Gerontology 2014, 60, 508–518. [Google Scholar] [CrossRef]
- Ditano-Vázquez, P.; Torres-Peña, J.D.; Galeano-Valle, F.; Pérez-Caballero, A.I.; Demelo-Rodríguez, P.; Lopez-Miranda, J.; Katsiki, N.; Delgado-Lista, J.; Alvarez-Sala-Walther, L.A. The Fluid Aspect of the Mediterranean Diet in the Prevention and Management of Cardiovascular Disease and Diabetes: The Role of Polyphenol Content in Moderate Consumption of Wine and Olive Oil. Nutrients 2019, 11, 2833. [Google Scholar] [CrossRef]
- Badal, V.D.; Vaccariello, E.D.; Murray, E.R.; Yu, K.E.; Knight, R.; Jeste, D.V.; Nguyen, T.T. The Gut Microbiome, Aging, and Longevity: A Systematic Review. Nutrients 2020, 12, 3759. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, Y. Genetics and Epigenetics in Aging and Longevity: Myths and Truths. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 1715–1717. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R. Oxidative stress and the cardiovascular effects of air pollution. Free Radic. Biol. Med. 2020, 151, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Vigar, V.; Myers, S.; Oliver, C.; Arellano, J.; Robinson, S.; Leifert, C. A Systematic Review of Organic Versus Conventional Food Consumption: Is There a Measurable Benefit on Human Health? Nutrients 2019, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Buettner, D.; Skemp, S. Blue Zones: Lessons from the World’s Longest Lived. Am. J. Lifestyle Med. 2016, 10, 318–321. [Google Scholar] [CrossRef]
- Blume, C.; Garbazza, C.; Spitschan, M. Effects of light on human circadian rhythms, sleep and mood. Somnologie 2019, 23, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Foscolou, A.; D’Cunha, N.M.; Naumovski, N.; Tyrovolas, S.; Rallidis, L.; Matalas, A.L.; Polychronopoulos, E.; Sidossis, L.S.; Panagiotakos, D. Midday Napping and Successful Aging in Older People Living in the Mediterranean Region: The Epidemiological Mediterranean Islands Study (MEDIS). Brain Sci. 2019, 10, 14. [Google Scholar] [CrossRef]
- Meléndez-Fernández, O.H.; Liu, J.A.; Nelson, R.J. Circadian Rhythms Disrupted by Light at Night and Mistimed Food Intake Alter Hormonal Rhythms and Metabolism. Int. J. Mol. Sci. 2023, 24, 3392. [Google Scholar] [CrossRef]
- Aliberti, S.M.; Funk, R.H.W.; Schiavo, L.; Giudice, A.; Ciaglia, E.; Puca, A.A.; Gonnella, J.; Capunzo, M. Clinical Status, Nutritional Behavior, and Lifestyle, and Determinants of Community Well-Being of Patients from the Perspective of Physicians: A Cross-Sectional Study of Young Older Adults, Nonagenarians, and Centenarians in Salerno and Province, Italy. Nutrients 2022, 14, 3665. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Melander, O.; Antonini, P.; Ottosson, F.; Brunkwall, L.; Gallo, W.; Nilsson, P.M.; Orho-Melander, M.; Pacente, G.; D’Arena, G.; Di Somma, S. Comparison of cardiovascular disease and cancer prevalence between Mediterranean and north European middle-aged populations (The Cilento on Ageing Outcomes Study and The Malmö Offspring Study). Intern. Emerg. Med. 2021, 16, 1567–1572. [Google Scholar] [CrossRef]
- Legrand, R.; Nuemi, G.; Poulain, M.; Manckoundia, P. Description of Lifestyle, Including Social Life, Diet and Physical Activity of People ≥ 90 years Living in Ikaria, a Longevity Blue Zone. Int. J. Environ. Res. Public Health 2021, 18, 6602. [Google Scholar] [CrossRef] [PubMed]
- Pes, G.M.; Errigo, A.; Tedde, P.; Dore, M.P. Sociodemographic, clinical and functional profile of nonagenarians from two areas of Sardinia characterized by distinct longevity levels. Rejuvenation Res. 2020, 23, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Aliberti, S.M.; Sacco, A.M.; Belviso, I.; Romano, V.; Di Martino, A.; Russo, E.; Collet, S.; Ciancaleoni Bartoli, I.; Tuzi, M.; Capunzo, M.; et al. Potential Impact of Physical Activity on Measures of Well-Being and Quality of Life in People with Rare Diseases: A Nationwide Cross-Sectional Study in Italy. Healthcare 2024, 12, 1822. [Google Scholar] [CrossRef] [PubMed]
- Aliberti, S.M.; Donato, A.; Funk, R.H.W.; Capunzo, M. Longevity Blue Zones. Encyclopedia. Available online: https://encyclopedia.pub/entry/55867 (accessed on 14 April 2025).
- Subramanian, M.; Wojtusciszyn, A.; Favre, L.; Boughorbel, S.; Shan, J.; Letaief, K.B.; Pitteloud, N.; Chouchane, L. Precision medicine in the era of artificial intelligence: Implications in chronic disease management. J. Transl. Med. 2020, 18, 472. [Google Scholar] [CrossRef]
- Molla, G.; Bitew, M. Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives. Biomedicines 2024, 12, 2750. [Google Scholar] [CrossRef]
Environmental Exposure | Health Impact | Potential Mitigation Strategies |
---|---|---|
Air Pollution (Particulate matter, NOx, SOx) | Chronic exposure linked to NCDs, cognitive decline, frailty, and mortality, especially in older adults. | Transition to renewable energy sources (solar, wind, geothermal). |
Increased all-cause mortality at PM2.5 levels below regulatory thresholds. | Implement stricter air quality standards and expand air monitoring networks. | |
Vulnerability heightened by socioeconomic factors such as poverty, smoking, and obesity. | Address social determinants of health alongside pollution mitigation. | |
Enhanced oxidative stress and systemic inflammation (inflamm-ageing). | Promote dietary antioxidants (e.g., sulforaphane, curcumin) to mitigate oxidative damage. | |
Impaired cardiovascular health, including endothelial dysfunction and atherosclerosis [32,35,37,38]. | Enforce vehicle emission regulations and encourage zero-emissions technologies. | |
Water Pollution (Heavy Metals, DBPs) | Toxicants like arsenic, lead, and cadmium inducing oxidative stress and mitochondrial dysfunction. | Improve water treatment infrastructure and remove persistent contaminants. |
Disruption of antioxidant pathways (e.g., Nrf2), leading to vascular inflammation and senescence. | Increase public awareness of water contaminants and encourage the use of water filtration systems. | |
DBPs (e.g., THMs and HAAs) compounding oxidative stress and increasing cardiovascular risks [38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,61,62,63,64,65,66,67,68]. | Invest in cleaner water disinfection technologies to reduce by-product formation. | |
Microplastics | Inhalation and ingestion contribute to oxidative stress, inflammation, and cytotoxicity. | Regulate plastic waste and develop advanced filtration technologies. |
Can penetrate biological barriers, accumulating in vital organs and exacerbating systemic inflammation. | Improve monitoring of microplastic contamination in air and water. | |
Linked to respiratory diseases such as lung cancer, asthma, and hypersensitivity pneumonitis. | Conduct further research on long-term health effects of microplastic exposure. | |
Disrupts redox homeostasis by interfering with the Nrf2 pathway, increasing susceptibility to oxidative damage. | Encourage policies that limit microplastic release from industrial sources, synthetic textiles, and consumer products. | |
Amplify the impact of other pollutants, thereby compounding health risks [70,71,72]. | Develop mitigation strategies to counteract oxidative damage, such as antioxidant-based interventions. | |
Xenobiotics (Industrial Chemicals, Pharmaceuticals) | Endocrine disruption causing hormonal imbalances, developmental abnormalities, and increased cancer risk. | Strengthen regulations on industrial waste and pharmaceutical disposal, while restricting harmful industrial chemicals and promoting safer alternatives. |
Reduced detoxification capacity in ageing populations, increasing xenobiotic burden [73,74,75]. | Promote genetic screening for vulnerabilities in xenobiotic-metabolising enzymes (XMEs). | |
Epigenetic alterations (e.g., DNA methylation, miRNA dysregulation) exacerbating pollutant and heat-induced cellular damage [80,81,93]. | Encourage research into epigenetic therapies and personalised medicine approaches. | |
Climate Change | Heat stress causing cardiovascular strain, oxidative stress, systemic inflammation. | Adaptive strategies (cooling centres, green infrastructure). |
Increased dehydration risk in older adults due to reduced thirst response and impaired renal function. | Promote hydration and implement public health campaigns. | |
Amplified heatwaves due to heat domes, intensifying health risks for vulnerable populations. | Urban planning to mitigate heat island effects, such as increased vegetation and reflective building materials. | |
Polonged exposure to high temperatures accelerates biological ageing, increasing the risk of disease and early mortality. | Implement cooling measures for vulnerable populations and strengthen monitoring of heat-related health effects. | |
Crop yield reduction leading to malnutrition and micronutrient deficiencies. Climate change also facilitates the spread of infectious diseases by altering ecosystems and expanding the habitats of disease-carrying vectors [84,86,90,91,92,93,94,95,96,97,100,101]. | Transition to climate-resilient agriculture and improve food security programmes. |
Factor | Blue Zones | Cilento | Mountain Villages of Sicily | Biological Mechanisms and Health Benefits |
---|---|---|---|---|
Diet | Mediterranean-style diet rich in polyphenols, legumes, nuts, and olive oil (only in Ikaria and Sardinia); low in red meat and processed foods [11,145,165,166]. | Traditional Mediterranean diet, rich in extra virgin olive oil, vegetables, whole grains; low in red meat and refined sugars [11,145,165]. | Mediterranean diet with rural traditions, high consumption of legumes, wild herbs, seasonal vegetables, extra virgin olive oil; low in processed foods [10,148,150,151,153,165]. | Antioxidant and anti-inflammatory effects, protects against CVD, T2D, neurodegenerative disorders [154,165]. |
Environmental Quality | Low pollution, clean air, pure water sources [12,147]. | Low pollution, minimal industrial exposure, high environmental purity [145,146,147]. | Low pollution, mountains climate with clean air, and natural water sources [10,151]. | Reduces oxidative stress, supports mitochondrial function, prevents vascular ageing [159]. |
Natural Rhythms and Sleep | Exposure to natural light, daily naps (siestas), low artificial light at night [12,159]. | Strong alignment with natural rhythmsand a culture of frequent napping [11,145]. | Balanced natural rhythms due to rural lifestyle, frequent afternoon rest, low exposure to artificial light [10]. | Improves sleep quality, lowers cortisol, enhances cognitive function [12,145,160]. |
Physical Activity | Daily natural movement (walking, farming, household activities) [11,12,145,166]. | Active lifestyle with regular walking, gardening, and outdoor activities [11,145]. | High physical activity through farming, walking, walking on hilly terrain, manual labour, and traditional crafts [10]. | Reduces obesity risk, maintains cardiovascular health, enhances mitochondrial biogenesis [10,11,12,166]. |
Social Cohesion and Purpose | Strong community ties, family-centred lifestyle, “Ikigai” (sense of purpose), Plan de Vida [11,12,166,167]. | Multigenerational living, strong social bonds, “La Bella Vita” philosophy [11,145,163]. | Strong community ties, high family involvement, spiritual traditions, and social cohesion in small villages [10]. | Lowers stress, improves mental resilience, enhances longevity [12,13,145,167]. |
Stress and Inflammation | Low chronic stress due to relaxed lifestyle and strong social support [11,12]. | Low stress, strong community engagement [11,145]. | Low stress due to rural environment, close-knit communities, and traditional spiritual practices [10]. | Decreases systemic inflammation, lowers risk of age-related diseases [27,164]. |
Age-Related Diseases | Low incidence of CVD, T2D, and AD [11,12]. | Low incidence of CVD, cognitive decline, and metabolic disorders [11,145,154]. | Lower prevalence of CVD, metabolic syndrome, and cognitive disorders due to taditional diet and lifestyle [149,154]. | Prolonged healthspan, lower morbidity, better quality of life [12,159]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliberti, S.M.; Capunzo, M.; Galimberti, D.; Accardi, G.; Aiello, A.; Calabrò, A.; Caruso, C.; Candore, G. Ageing Trajectories: Exposome-Driven Pathobiological Mechanisms and Implications for Prevention from Blue Zones and Italian Longevity Hotspots Such as Cilento and Sicilian Mountain Villages. Int. J. Mol. Sci. 2025, 26, 4796. https://doi.org/10.3390/ijms26104796
Aliberti SM, Capunzo M, Galimberti D, Accardi G, Aiello A, Calabrò A, Caruso C, Candore G. Ageing Trajectories: Exposome-Driven Pathobiological Mechanisms and Implications for Prevention from Blue Zones and Italian Longevity Hotspots Such as Cilento and Sicilian Mountain Villages. International Journal of Molecular Sciences. 2025; 26(10):4796. https://doi.org/10.3390/ijms26104796
Chicago/Turabian StyleAliberti, Silvana Mirella, Mario Capunzo, Damiano Galimberti, Giulia Accardi, Anna Aiello, Anna Calabrò, Calogero Caruso, and Giuseppina Candore. 2025. "Ageing Trajectories: Exposome-Driven Pathobiological Mechanisms and Implications for Prevention from Blue Zones and Italian Longevity Hotspots Such as Cilento and Sicilian Mountain Villages" International Journal of Molecular Sciences 26, no. 10: 4796. https://doi.org/10.3390/ijms26104796
APA StyleAliberti, S. M., Capunzo, M., Galimberti, D., Accardi, G., Aiello, A., Calabrò, A., Caruso, C., & Candore, G. (2025). Ageing Trajectories: Exposome-Driven Pathobiological Mechanisms and Implications for Prevention from Blue Zones and Italian Longevity Hotspots Such as Cilento and Sicilian Mountain Villages. International Journal of Molecular Sciences, 26(10), 4796. https://doi.org/10.3390/ijms26104796