Chronic Chemogenetic Activation of Astrocytes in the Murine Mesopontine Region Leads to Disturbances in Circadian Activity and Movement
Abstract
:1. Introduction
2. Results
2.1. Two-Bottle Preference Test
2.2. Acoustic Startle
2.3. Circadian Activity
2.4. Gait Alterations
2.5. Spatial Memory
2.6. Evaluation of the Injection Sites
2.7. Histological Analysis
3. Discussion
4. Materials and Methods
4.1. Experimental Animals
4.2. Surgery
4.3. Behavioral Tests
4.4. Two-Bottle Preference Test
4.5. Activity Wheel Test
4.6. Barnes Maze Test
4.7. Acoustic Startle Reflex
4.8. Footprint Test
4.9. Immunohistochemistry and Post Hoc Analysis
4.10. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ryczko, D.; Dubuc, R. The multifunctional mesencephalic locomotor region. Curr. Pharm. Des. 2013, 19, 4448–4470. [Google Scholar] [CrossRef] [PubMed]
- Ryczko, D.; Dubuc, R. Dopamine and the brainstem locomotor networks: From lamprey to human. Front. Neurosci. 2017, 11, 295. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Kungel, M.; Herbert, H. Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp. Brain Res. 1993, 97, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; Schwabe, K.; Krauss, J.K. The pedunculopontine nucleus area: Critical evaluation of interspecies differences relevant for its use as a target for deep brain stimulation. Brain 2011, 134, 11–23. [Google Scholar] [CrossRef]
- Noga, B.; Sanchez, F.; Villamil, L.; O’Toole, C.; Kasicki, S.; Olszewski, M.; Cabaj, A.M.; Majczyński, H.; Sławińska, U.; Jordan, L.M. LFP oscillations in the mesencephalic locomotor region during voluntary locomotion. Front. Neural Circuit 2017, 11, 34. [Google Scholar] [CrossRef]
- Dautan, D.; Kovács, A.; Bayasgalan, T.; Diaz-Acevedo, M.A.; Pal, B.; Mena-Segovia, J. Modulation of motor behavior by the mesencephalic locomotor region. Cell Rep. 2021, 36, 109594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Takakusaki, K.; Chiba, R.; Nozu, T.; Okumura, T. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J. Neural Transm. 2016, 123, 695–729. [Google Scholar] [CrossRef]
- Vitale, F.; Capozzo, A.; Mazzone, P.; Scarnati, E. Neurophysiology of the pedunculopontine tegmental nucleus. Neurobiol. Dis. 2019, 128, 19–30. [Google Scholar] [CrossRef]
- Fendt, M.; Koch, M. Cholinergic modulation of the acoustic startle response in the caudal pontine reticular nucleus of the rat. Eur. J. Pharmacol. 1999, 370, 101–107. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, S.; Wang, Q.; Zheng, C.; Yang, F.; Wei, L.; Zhou, X.; Wang, Z. Glutamatergic circuits in the pedunculopontine nucleus modulate multiple motor functions. Neurosci. Bull. 2024, 40, 1713–1731. [Google Scholar] [CrossRef]
- Fougère, M.; van der Zouwen, C.I.; Boutin, J.; Neszvecsko, K.; Sarret, P.; Ryczko, D. Optogenetic stimulation of glutamatergic neurons in the cuneiform nucleus controls locomotion in a mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2021, 118, e2110934118. [Google Scholar] [CrossRef]
- Datta, S.; Siwek, D.F. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induce wakefulness and REM sleep. J. Neurophysiol. 1997, 77, 2975–2988. [Google Scholar] [CrossRef] [PubMed]
- Mena-Segovia, J.; Bolam, J.P. Rethinking the pedunculopontine nucleus: From cellular organization to function. Neuron 2017, 94, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.I.; MacLaren, D.A.; Winn, P. Bar pressing for food: Differential consequences of lesions to the anterior versus posterior pedunculopontine. Eur. J. Neurosci. 2009, 30, 504–513. [Google Scholar] [CrossRef]
- Alderson, H.L.; Latimer, M.P.; Winn, P. A functional dissociation of the anterior and posterior pedunculopontine tegmental nucleus: Excitotoxic lesions have differential effects on locomotion and the response to nicotine. Brain Struct. Funct. 2008, 213, 247–253. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, D.A.; Browne, R.W.; Shaw, J.K.; Krishnan Radhakrishnan, S.; Khare, P.; España, R.A.; Clark, S.D. Clozapine N-oxide administration produces behavioral effects in Long-Evans rats: Implications for designing DREADD experiments. eNeuro 2016, 3, ENEURO.0219-16.2016. [Google Scholar] [CrossRef]
- MacLaren, D.A.A.; Ljungberg, T.L.; Griffin, M.E.; Clark, S.D. Pedunculopontine tegmentum cholinergic loss leads to a progressive decline in motor abilities and neuropathological changes resembling progressive supranuclear palsy. Eur. J. Neurosci. 2018, 48, 3477–3497. [Google Scholar] [CrossRef]
- Kőszeghy, Á.; Kovács, A.; Bíró, T.; Szücs, P.; Vincze, J.; Hegyi, Z.; Antal, M.; Pál, B. Endocannabinoid signaling modulates neurons of the pedunculopontine nucleus (PPN) via astrocytes. Brain Struct. Funct. 2015, 220, 3023–3041. [Google Scholar] [CrossRef]
- Kovács, A.; Bordás, C.; Pál, B. Cholinergic and endocannabinoid neuromodulatory effects overlap on neurons of the pedunculopontine nucleus of mice. Neuroreport 2015, 26, 273–278. [Google Scholar] [CrossRef]
- Kovács, A.; Bordás, C.; Bíró, T.; Hegyi, Z.; Antal, M.; Szücs, P.; Pál, B. Direct presynaptic and indirect astrocyte-mediated mechanisms both contribute to endocannabinoid signaling in the pedunculopontine nucleus of mice. Brain Struct. Funct. 2017, 222, 247–266. [Google Scholar] [CrossRef]
- Kovács, A.; Pál, B. Astrocyte-dependent slow inward currents (SICs) participate in neuromodulatory mechanisms in the pedunculopontine nucleus (PPN). Front. Cell Neurosci. 2017, 11, 16. [Google Scholar] [CrossRef]
- King, G.; Veros, K.M.; MacLaren, D.A.A.; Leigh, M.P.K.; Spernyak, J.A.; Clark, S.D. Human wildtype tau expression in cholinergic pedunculopontine tegmental neurons is sufficient to produce PSP-like behavioural deficits and neuropathology. Eur. J. Neurosci. 2021, 54, 7688–7709. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Komal, R.; Keenan, W.T.; Hattar, S.; Fernandez, D.C. Non-invasive strategies for chronic manipulation of DREADD-controlled neuronal activity. J. Vis. Exp. 2019, 150, 10-3791. [Google Scholar] [CrossRef]
- Franklin, K.B.J.; Paxinos, G. The Mouse Brain in Stereotaxic Coordinates, 4th ed.; Elsevier: San Diego, CA, USA, 2013. [Google Scholar]
- Wang, X.; Li, Y.; Zhao, J.; Yu, J.; Zhang, Q.; Xu, F.; Zhang, Y.; Zhou, Q.; Yin, C.; Hou, Z.; et al. Activation of astrocyte Gq pathway in hippocampal CA1 region attenuates anesthesia/surgery induced cognitive dysfunction in aged mice. Front. Aging Neurosci. 2022, 14, 1040569. [Google Scholar] [CrossRef]
- Delcourte, S.; Bouloufa, A.; Rovera, R.; Bétry, C.; Abrial, E.; Dkhissi-Benyahya, O.; Heinrich, C.; Marcy, G.; Raineteau, O.; Haddjeri, N.; et al. Chemogenetic activation of prefrontal astroglia enhances recognition memory performance in rat. Biomed. Pharmacother. 2023, 166, 115384. [Google Scholar] [CrossRef] [PubMed]
- Adamsky, A.; Kol, A.; Kreisel, T.; Doron, A.; Ozeri-Engelhard, N.; Melcer, T.; Refaeli, R.; Horn, H.; Regev, L.; Groysman, M.; et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell. 2018, 174, 59–71.e14. [Google Scholar] [CrossRef] [PubMed]
- Scofield, M.D.; Boger, H.A.; Smith, R.J.; Li, H.; Haydon, P.G.; Kalivas, P.W. Gq-DREADD selectively initiates glial glutamate release and inhibits cue-induced cocaine seeking. Biol. Psychiatry 2015, 78, 441–451. [Google Scholar] [CrossRef]
- Kang, S.; Hong, S.I.; Lee, J.; Peyton, L.; Baker, M.; Choi, S.; Kim, H.; Chang, S.Y.; Choi, D.S. Activation of astrocytes in the dorsomedial striatum facilitates transition from habitual to goal-directed reward-seeking Behavior. Biol. Psychiatry 2020, 88, 797–808. [Google Scholar] [CrossRef]
- Martin-Fernandez, M.; Jamison, S.; Robin, L.M.; Zhao, Z.; Martin, E.D.; Aguilar, J.; Benneyworth, M.A.; Marsicano, G.; Araque, A. Synapse-specific astrocyte gating of amygdala-related behavior. Nat. Neurosci. 2017, 20, 1540–1548. [Google Scholar] [CrossRef]
- Kurogi, Y.; Sanagi, T.; Ono, D.; Tsunematsu, T. Chemogenetic activation of astrocytes modulates sleep-wakefulness states in a brain region-dependent manner. Sleep Adv. 2024, 5, zpae091. [Google Scholar] [CrossRef]
- Suthard, R.L.; Jellinger, A.L.; Surets, M.; Shpokayte, M.; Pyo, A.Y.; Buzharsky, M.D.; Senne, R.A.; Dorst, K.; Leblanc, H.; Ramirez, S. Chronic Gq activation of ventral hippocampal neurons and astrocytes differentially affects memory and behavior. Neurobiol. Aging 2023, 125, 9–31. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Michiko, N.; Choi, I.S.; Kim, Y.; Jeong, J.Y.; Lee, M.G.; Jang, I.S.; Suk, K. Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice. PLoS Biol. 2024, 22, e3002687. [Google Scholar] [CrossRef]
- Hernández-Martín, N.; Martínez, M.G.; Bascuñana, P.; Fernández de la Rosa, R.; García-García, L.; Gómez, F.; Solas, M.; Martín, E.D.; Pozo, M.A. Astrocytic Ca2+ activation by chemogenetics mitigates the effect of kainic acid-induced excitotoxicity on the hippocampus. Glia 2024, 72, 2217–2230. [Google Scholar] [CrossRef]
- Jellinger, K.A. Pathomechanisms of neuropsychiatric disturbances in atypical parkinsonian disorders: A current view. J. Neural. Transm. 2025, 132, 495–518. [Google Scholar] [CrossRef] [PubMed]
- Gironell, A.; Kulisevsky, J.; Roig, C.; Pascual-Sedano, B.; Rodríguez-Fornells, A.; Otermin, P. Diagnostic potential of acoustic startle reflex, acoustic blink reflex, and electro-oculography in progressive supranuclear palsy: A prospective study. Mov. Disord. 2003, 18, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.G.; Lukic, M.J.; Irwin, D.J.; Arzberger, T.; Respondek, G.; Lee, E.B.; Coughlin, D.; Giese, A.; Grossman, M.; Kurz, C.; et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol. 2020, 140, 99–119. [Google Scholar] [CrossRef]
- Matejuk, A.; Ransohoff, R.M. Crosstalk between astrocytes and microglia: An overview. Front. Immunol. 2020, 11, 1416. [Google Scholar] [CrossRef]
- Pascual, O.; Ben Achour, S.; Rostaing, P.; Triller, A.; Bessis, A. Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl. Acad. Sci. USA 2012, 109, E197–E205. [Google Scholar] [CrossRef]
- Wu, Y.; Eisel, U.L.M. Microglia-astrocyte communication in Alzheimer’s disease. J. Alzheimer’s Dis. 2023, 95, 785–803. [Google Scholar] [CrossRef]
- Sun, M.; You, H.; Hu, X.; Luo, Y.; Zhang, Z.; Song, Y.; An, J.; Lu, H. Microglia-astrocyte interaction in neural development and neural pathogenesis. Cells 2023, 12, 1942. [Google Scholar] [CrossRef]
- Azzopardi, E.; Louttit, A.G.; DeOliveira, C.; Laviolette, S.R.; Schmid, S. The role of cholinergic midbrain neurons in startle and prepulse inhibition. J. Neurosci. 2018, 38, 8798–8808. [Google Scholar] [CrossRef]
- Xiong, B.; Alkharabsheh, A.; Manohar, S.; Chen, G.D.; Yu, N.; Zhao, X.; Salvi, R.; Sun, W. Hyperexcitability of inferior colliculus and acoustic startle reflex with age-related hearing loss. Hear. Res. 2017, 350, 32–42. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, D.; Sun, W.; Hu, B.H.; Manohar, S.; Salvi, R. Time- and frequency-dependent changes in acoustic startle reflex amplitude following cyclodextrin-induced outer and inner cell loss. Hear. Res. 2022, 415, 108441. [Google Scholar] [CrossRef]
- Maamrah, B.; Pocsai, K.; Bayasgalan, T.; Csemer, A.; Pál, B. KCNQ4 potassium channel subunit deletion leads to exaggerated acoustic startle reflex in mice. Neuroreport 2023, 34, 232–237. [Google Scholar] [CrossRef]
- Evans, W.R.; Baskar, S.S.; Vellore, A.; Costa, A.R.C.E.; Jacob, C.; Ravoori, S.; Arigbe, A.; Huda, R. Chemogenetic control of striatal astrocytes improves parkinsonian motor deficits in mice. Glia 2025, 73, 1188–1202. [Google Scholar] [CrossRef] [PubMed]
- Urban, D.J.; Zhu, H.; Marcinkiewcz, C.A.; Michaelides, M.; Oshibuchi, H.; Rhea, D.; Aryal, D.K.; Farrell, M.S.; Lowery-Gionta, E.; Olsen, R.H.; et al. Elucidation of the behavioral program and neuronal network encoded by dorsal raphe serotonergic neurons. Neuropsychopharmacology 2016, 41, 1404–1415. [Google Scholar] [CrossRef] [PubMed]
- Hirzel, K.; Müller, U.; Latal, A.T.; Hülsmann, S.; Grudzinska, J.; Seeliger, M.W.; Betz, H.; Laube, B. Hyperekplexia phenotype of glycine receptor alpha1 subunit mutant mice identifies Zn(2+) as an essential endogenous modulator of glycinergic neurotransmission. Neuron 2006, 52, 679–690. [Google Scholar] [CrossRef]
- Nyul-Toth, A.; DelFavero, J.; Mukli, P.; Tarantini, A.; Ungvari, A.; Yabluchanskiy, A.; Csiszar, A.; Ungvari, Z.; Tarantini, S. Early manifestation of gait alterations in the Tg2576 mouse model of Alzheimer’s disease. Geroscience 2021, 43, 1947–1957. [Google Scholar] [CrossRef] [PubMed]
- Egerton, T.; Williams, D.R.; Iansek, R. Comparison of gait in progressive supranuclear palsy, Parkinson’s disease and healthy older adults. BMC Neurol. 2012, 12, 116. [Google Scholar] [CrossRef]
- Herbin, M.; Gasc, J.P.; Renous, S. Symmetrical and asymmetrical gaits in the mouse: Patterns to increase velocity. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2004, 190, 895–906. [Google Scholar] [CrossRef]
- Cyr, M.; Parent, M.J.; Mechawar, N.; Rosa-Neto, P.; Soucy, J.P.; Clark, S.D.; Aghourian, M.; Bedard, M.A. Deficit in sustained attention following selective cholinergic lesion of the pedunculopontine tegmental nucleus in rat, as measured with both post-mortem immunocytochemistry and in vivo PET imaging with [¹⁸F]fluoroethoxybenzovesamicol. Behav. Brain Res. 2015, 278, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Palagini, L.; Geoffroy, P.A.; Miniati, M.; Perugi, G.; Biggio, G.; Marazziti, D.; Riemann, D. Insomnia, sleep loss, and circadian sleep disturbances in mood disorders: A pathway toward neurodegeneration and neuroprogression? A theoretical review. CNS Spectr. 2022, 27, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Traut, J.; Mengual, J.P.; Meijer, E.J.; McKillop, L.E.; Alfonsa, H.; Hoerder-Suabedissen, A.; Song, S.H.; Fehér, K.D.; Riemann, D.; Molnar, Z.; et al. Effects of clozapine-N-oxide and compound 21 on sleep in laboratory mice. Elife 2023, 12, e84740. [Google Scholar] [CrossRef]
- Gomez, J.L.; Bonaventura, J.; Lesniak, W.; Mathews, W.B.; Sysa-Shah, P.; Rodriguez, L.A.; Ellis, R.J.; Richie, C.T.; Harvey, B.K.; Dannals, R.F.; et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 2017, 357, 503–507. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bayasgalan, T.; Stupniki, S.; Kovács, A.; Csemer, A.; Szentesi, P.; Pocsai, K.; Dionisio, L.; Spitzmaul, G.; Pál, B. Alteration of mesopontine cholinergic function by the lack of KCNQ4 subunit. Front. Cell Neurosci. 2021, 15, 707789. [Google Scholar] [CrossRef]
- Rosenfeld, C.S.; Ferguson, S.A. Barnes maze testing strategies with small and large rodent models. J. Vis. Exp. (JoVE) 2014, 84, e51194. [Google Scholar] [CrossRef]
- Geyer, M.A.; Swerdlow, N.R. Measurement of startle response, prepulse inhibition, and habituation. Curr. Protoc. Neurosci. 2001, 8, 8.7.1–8.7.15. [Google Scholar] [CrossRef]
- Girirajan, S.; Patel, N.; Slager, R.E.; Tokarz, M.E.; Bucan, M.; Wiley, J.L.; Elsea, S.H. How much is too much? Phenotypic consequences of Rai1 overexpression in mice. Eur. J. Hum. Genet. 2008, 16, 941–954. [Google Scholar] [CrossRef]
Groups | Acoustic Startle Test | Activity Wheel Test | Barnes Maze Test | Footprint Test | Drug Preference Test |
---|---|---|---|---|---|
DREADD (hM3D(Gq) and mCherry expression in astrocytes) | 8 (C57BL/6) | 6 (C57BL/6) | 7 (C57BL/6) | 9 (C57BL/6) | 4 (ChAT-tdTomato) |
Operated control (mCherry expression in astrocytes) | 7 (C57BL/6) | 6 (C57BL/6) | 7 (C57BL/6) | 6 (C57BL/6) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maamrah, B.; Pocsai, K.; Hoang, B.M.; Abdelhadi, A.; Al-Khafaji, M.Q.; Csemer, A.; Sokvári, C.; Szentesi, P.; Pál, B. Chronic Chemogenetic Activation of Astrocytes in the Murine Mesopontine Region Leads to Disturbances in Circadian Activity and Movement. Int. J. Mol. Sci. 2025, 26, 4793. https://doi.org/10.3390/ijms26104793
Maamrah B, Pocsai K, Hoang BM, Abdelhadi A, Al-Khafaji MQ, Csemer A, Sokvári C, Szentesi P, Pál B. Chronic Chemogenetic Activation of Astrocytes in the Murine Mesopontine Region Leads to Disturbances in Circadian Activity and Movement. International Journal of Molecular Sciences. 2025; 26(10):4793. https://doi.org/10.3390/ijms26104793
Chicago/Turabian StyleMaamrah, Baneen, Krisztina Pocsai, Bui Minh Hoang, Ali Abdelhadi, Mustafa Qais Al-Khafaji, Andrea Csemer, Cintia Sokvári, Péter Szentesi, and Balázs Pál. 2025. "Chronic Chemogenetic Activation of Astrocytes in the Murine Mesopontine Region Leads to Disturbances in Circadian Activity and Movement" International Journal of Molecular Sciences 26, no. 10: 4793. https://doi.org/10.3390/ijms26104793
APA StyleMaamrah, B., Pocsai, K., Hoang, B. M., Abdelhadi, A., Al-Khafaji, M. Q., Csemer, A., Sokvári, C., Szentesi, P., & Pál, B. (2025). Chronic Chemogenetic Activation of Astrocytes in the Murine Mesopontine Region Leads to Disturbances in Circadian Activity and Movement. International Journal of Molecular Sciences, 26(10), 4793. https://doi.org/10.3390/ijms26104793