Uptake and Toxicity of Polystyrene NPs in Three Human Cell Lines
Abstract
1. Introduction
2. Results
2.1. Nanoparticle Characterization
2.2. Toxicity of PS NPs
2.3. Uptake of PS NPs of Different Size by HT-29, Caco-2, and Hep G2 Cells
2.3.1. Effect of Size on PS NP Uptake
2.3.2. Uptake of Small and Large PS NPs in Mixture Is Lower than Their Uptake Alone
2.4. Effect of Internalization Inhibitors on Uptake of PS NPs by HT-29, Caco-2, and Hep G2 Cells
2.4.1. Effect of Endocytosis Inhibitors on PS NP Uptake
2.4.2. Effect of Scavenger Receptor Inhibitors on PS NP Uptake
3. Discussion
4. Materials and Methods
4.1. Nanoparticle Characterization
4.2. Cell Culture
4.3. Toxicity Testing
4.4. Flow Cytometry Evaluation of Cellular Uptake of Nanoparticles by Cells
4.5. Treatment of Cells by Inhibitors
4.6. Statistical Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MNPlastics | Micro- and nanoplastic particles |
PS | Polystyrene |
NPs | Nanoparticles |
DLS | Dynamic light scattering |
NTA | Nanoparticle Tracking Analysis |
NRU | Neutral Red Assay |
CMDE | Clathrin-mediated endocytosis |
FEME | Clathrin-independent, dynamin-dependent endocytosis |
CAV | Caveolin/lipid rafts-mediated endocytosis, clathrin independent |
AGER | Advanced glycosylation end product-specific receptor (RAGE) |
SCARF2 | Scavenger receptor class F member 2 |
SCARB1 | Scavenger receptor class B member 1 (CD36L1) |
MSR1 | macrophage receptor 1 (SCARA1, CD204) |
CD68 | CD68 molecule (SCARD1) |
CD36 | CD36 molecule (SCARB3) |
BLT-1 | 2-(2-hexylcyclopentylidene)-hydrazinecarbothioamide |
Pitstop2 | N-[5-[(4-bromophenyl)methylene]-4,5-dihydro-4-oxo-2-thiazolyl]-1-naphthalenesulfonamide |
PIA | Polyinosinic acid |
References
- Domenech, J.; Marcos, R. Pathways of human exposure to microplastics, and estimation of the total burden. Curr. Opin. Food Sci. 2021, 39, 144–151. [Google Scholar] [CrossRef]
- Augustine, R.; Hasan, A.; Primavera, R.; Wilson, R.J.; Thakor, A.S.; Kevadiya, B.D. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 2020, 25, 101692. [Google Scholar] [CrossRef]
- Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017, 46, 4218–4244. [Google Scholar] [CrossRef] [PubMed]
- Kopac, T. Protein corona, understanding the nanoparticle–protein interactions and future perspectives: A critical review. Int. J. Biol. Macromol. 2021, 169, 290–301. [Google Scholar] [CrossRef]
- Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front. Mol. Biosci. 2020, 7, 587012. [Google Scholar] [CrossRef]
- Hillaireau, H.; Couvreur, P. Nanocarriers’ entry into the cell: Relevance to drug delivery. Cell Mol. Life Sci. 2009, 66, 2873–2896. [Google Scholar] [CrossRef]
- McAbee, D.D.; Grinnell, F. Fibronectin-mediated binding and phagocytosis of polystyrene latex beads by baby hamster kidney cells. J. Cell Biol. 1983, 97, 1515–1523. [Google Scholar] [CrossRef]
- Souza de Almeida, M.; Susnik, E.; Drasler, B.; Taladriz-Blanco, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem. Soc. Rev. 2021, 50, 5397–5434. [Google Scholar] [CrossRef]
- Griffiths, G.; Gruenberg, J.; Marsh, M.; Wohlmann, J.; Jones, A.T.; Parton, R.G. Nanoparticle entry into cells; the cell biology weak link. Adv. Drug Deliv. Rev. 2022, 188, 114403. [Google Scholar] [CrossRef]
- Aldossari, A.A.; Shannahan, J.H.; Podila, R.; Brown, J.M. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation. J. Nanopart. Res. 2015, 17, 313. [Google Scholar] [CrossRef]
- Wang, H.; Wu, L.; Reinhard, B.M. Scavenger receptor Mediated Endocytosis of Silver Nanoparticles into J774A.1 Macrophages Is Heterogeneous. ACS Nano 2012, 6, 7122–7132. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, K.; Grądzka, I.; Wasyk, I.; Brzóska, K.; Stępkowski, T.M.; Czerwińska, M.; Kruszewski, M.K. The Impact of Ag Nanoparticles and CdTe Quantum Dots on Expression and Function of Receptors Involved in Amyloid-β Uptake by BV-2 Microglial Cells. Materials 2020, 13, 3227. [Google Scholar] [CrossRef]
- Hoffmann, P.; Burmester, M.; Langeheine, M.; Brehm, R.; Empl, M.T.; Seeger, B.; Breves, G. Caco-2/HT29-MTX co-cultured cells as a model for studying physiological properties and toxin-induced effects on intestinal cells. PLoS ONE 2021, 16, e0257824. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Poon, W.; Tavares, A.J.; McGilvray, I.D.; Chan, W.C.W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332–348. [Google Scholar] [CrossRef]
- He, B.; Lin, P.; Jia, Z.; Du, W.; Qu, W.; Yuan, L.; Dai, W.; Zhang, H.; Wang, X.; Wang, J.; et al. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials 2013, 34, 6082–6098. [Google Scholar] [CrossRef]
- Herrscher, C.; Pastor, F.; Burlaud-Gaillard, J.; Dumans, A.; Seigneuret, F.; Moreau, A.; Patient, R.; Eymieux, S.; de Rocquigny, H.; Hourioux, C.; et al. Hepatitis B virus entry into HepG2-NTCP cells requires clathrin-mediated endocytosis. Cell Microbiol. 2020, 22, e13205. [Google Scholar] [CrossRef]
- Rennick, J.J.; Johnston, A.P.R.; Parton, R.G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 2021, 16, 266–276. [Google Scholar] [CrossRef]
- Sigaeva, A.; Li, R.; van Laar, J.J.; Wierenga, L.; Schirhagl, R. Timing and mechanisms of nanodiamond uptake in colon cancer cells. Nanotechnol. Sci. Appl. 2024, 17, 147–166. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, F.; Yang, H.; Zhou, P. Endocytosis mechanism of a novel proteoglycan, extracted from Ganoderma lucidum, in HepG2 cells. RSC Adv. 2017, 7, 41779–41786. [Google Scholar] [CrossRef]
- Sato, K.; Nagai, J.; Mitsui, N.; Yumoto, R.; Takano, M. Effects of endocytosis inhibitors on internalization of human IgG by Caco-2 human intestinal epithelial cells. Life Sci. 2009, 85, 800–807. [Google Scholar] [CrossRef]
- Chang, C.C.; Wu, M.; Yuan, F. Role of specific endocytic pathways in electrotransfection of cells. Mol. Ther. Methods Clin. Dev. 2014, 1, 14058. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.V.; Laux, P.; Luch, A.; Sudrik, C.; Wiehr, S.; Wild, A.-M.; Santomauro, G.; Bill, J.; Sitti, M. Review of emerging concepts in nanotoxicology: Opportunities and challenges for safer nanomaterial design. Toxicol. Mech. Methods 2019, 29, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Kruszewski, M.; Grzelak, A. Nanoparticle toxicity and reactive species: An overview. In Toxicology: Oxidative Stress and Dietary Antioxidants; Patel, V.B., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 11–21. [Google Scholar] [CrossRef]
- Foroozandeh, P.; Aziz, A.A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018, 13, 339. [Google Scholar] [CrossRef]
- Shen, F.; Li, D.; Guo, J.; Chen, J. Mechanistic toxicity assessment of differently sized and charged polystyrene nanoparticles based on human placental cells. Water Res. 2022, 223, 118960. [Google Scholar] [CrossRef]
- Schirinzi, G.F.; Perez-Pomeda, I.; Sanchis, J.; Rossini, C.; Farre, M.; Barcelo, D. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ. Res. 2017, 159, 579–587. [Google Scholar] [CrossRef]
- Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Alexander Karaulov, A.; Nabiev, I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Res. Lett. 2018, 13, 44. [Google Scholar] [CrossRef]
- Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Lobat Tayebi, L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J. Nanopart. Res. 2023, 25, 43. [Google Scholar] [CrossRef]
- Song, Q.; Wang, X.Q.; Holmes, T.R.; Bonkowski, M.; Roth, E.W.; Ponedal, A.; Mirkin, C.; Paller, A.S. Epidermal SR-A Complexes Are Lipid Raft Based and Promote Nucleic Acid Nanoparticle Uptake. J. Invest. Dermatol. 2021, 141, 1428–1437.e8. [Google Scholar] [CrossRef]
- Shen, W.J.; Asthana, S.; Kraemer, F.B.; Azhar, S. Scavenger receptor B type 1: Expression, molecular regulation, and cholesterol transport function. J. Lipid Res. 2018, 59, 1114–1131. [Google Scholar] [CrossRef]
- Matveev, S.; Uittenbogaard, A.; van der Westhuyzen, D.; Smart, E.J. Caveolin-1 negatively regulates SR-BI mediated selective uptake of high-density lipoprotein-derived cholesteryl ester. FEBS J. 2001, 268, 5609–5616. [Google Scholar] [CrossRef]
- Wang, L.; Connelly, M.A.; Ostermeyer, A.G.; Chen, H.H.; Williams, D.L.; Brown, D.A.J. Caveolin-1 does not affect SR-BI-mediated cholesterol efflux or selective uptake of cholesteryl ester in two cell lines. Lipid Res. 2003, 44, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Horie, M.; Tabei, Y. Role of oxidative stress in nanoparticles toxicity. Free Radic. Res. 2020, 55, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Kurmi, B.D.; Singh, D.; Mehan, S.; Khanna, K.; Karwasra, R.; Kakkar, D. Nanoparticles toxicity: An overview of its mechanism and plausible mitigation strategies. J. Drug Target. 2024, 32, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk-Roszczenko, O.K.; Roszczenko, P.; Shmakova, A.; Finiuk, N.; Holota, S.; Lesyk, R.; Bielawska, A.; Vassetzky, Y.; Bielawski, K. The Chemical Inhibitors of Endocytosis: From Mechanisms to Potential Clinical Applications. Cells 2023, 12, 2312. [Google Scholar] [CrossRef]
- Francia, V.; Reker-Smit, C.; Boel, G.; Salvati, A. Limits and Challenges in Using Transport Inhibitors to Characterize How nano-sized Drug Carriers Enter Cells. Nanomedicine 2019, 14, 1533–1549. [Google Scholar] [CrossRef]
- Kadlecova, Z.; Spielman, S.J.; Loerke, D.; Mohanakrishnan, A.; Reed, D.K.; Schmid, S.L. Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. J. Cell Biol. 2017, 216, 167–179. [Google Scholar] [CrossRef]
- von Kleist, L.; Stahlschmidt, W.; Bulut, H.; Gromova, K.; Puchkov, D.; Robertson, M.J.; MacGregor, K.A.; Tomilin, N.; Pechstein, A.; Chau, N.; et al. Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell 2011, 146, 471–484. [Google Scholar] [CrossRef]
- Dutta, D.; Williamson, C.D.; Cole, N.B.; Donaldson, J.G. Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis. PLoS ONE 2012, 7, e45799. [Google Scholar] [CrossRef]
- Bolard, J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta 1986, 864, 257–304. [Google Scholar] [CrossRef]
- Hao, M.; Mukherjee, S.; Sun, Y.; Maxfield, F.R. Effects of cholesterol depletion and increased lipid unsaturation on the properties of endocytic membranes. J. Biol. Chem. 2004, 279, 14171–14178. [Google Scholar] [CrossRef]
- Kleyman, T.R.; Cragoe, E.J., Jr. Amiloride and its analogs as tools in the study of ion transport. J. Membr. Biol. 1988, 105, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Boucrot, E.; Ferreira, A.P.; Almeida-Souza, L.; Debard, S.; Vallis, Y.; Howard, G.; Bertot, L.; Sauvonnet, N.; McMahon, H.T. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 2015, 517, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Nieland, T.J.; Penman, M.; Dori, L.; Krieger, M.; Kirchhausen, T. Discovery of chemical inhibitors of the selective transfer of lipids mediated by the HDL receptor SR-BI. Proc. Natl. Acad. Sci. USA 2002, 99, 15422–15427. [Google Scholar] [CrossRef] [PubMed]
PS NPs | Nominal Size [nm] | Fluorescence | Manufacturer |
---|---|---|---|
PS 30 | 30 | Green (FITC), Ex. 498 Em. 517 | Magsphere Inc. |
PS 50 | 50 | Far-red (Cy5), Ex. 650 Em. 670 | NANOCS, Inc. |
PS 100 | 110 | Blue, Ex. 331 Em. 395, Anionic surfactant | Magsphere Inc. |
PS NPs | Hydrodynamic Size [nm] | |||
---|---|---|---|---|
PBS | HT-29 Medium | Caco-2 Medium | Hep G2 Medium | |
30 nm | 56.96 ± 1.28 | 34.40 ± 0.44 | 38.63 ± 1.31 | 50.59 ± 1.63 |
50 nm | 166.30 ± 2.97 | 277.16 ± 5.67 | 36.05 ± 13.85 | 376.85 ± 15.93 |
100 nm | 95.32 ± 0.39 | 144.97 ± 0.95 | 157.23 ± 2.38 | 170.40 ± 2.07 |
Zeta Potential [mV] | ||||
30 nm | −37.66 ± 4.09 | −30.56 ± 0.70 | −33.13 ± 1.79 | −33.30 ± 2.70 |
50 nm | −36.06 ± 2.90 | −32.63 ± 0.20 | −33.83 ± 0.66 | −36.93 ± 1.95 |
100 nm | −49.53 ± 5.28 | −35.16 ± 0.66 | −33.20 ± 0.85 | −34.60 ± 1.04 |
PS NPs | Size [nm] | |||
---|---|---|---|---|
PBS | HT-29 Medium | Caco-2 Medium | Hep G2 Medium | |
30 nm | 35.50 ± 1.61 | 37.90 ± 2.88 | 37.33 ± 3.54 | 32.50 ± 3.90 |
50 nm | 66.20 ± 3.66 | 67.12 ± 1.44 | 70.00 ± 3.85 | 69.99 ± 3.93 |
100 nm | 110.32 ± 2.39 | 104.88 ± 2.95 | 107.23 ± 4.55 | 112.40 ± 4.22 |
Concentration [particles/mL] | ||||
PBS | HT-29 Medium | Caco-2 Medium | Hep G2 Medium | |
30 nm | 5.90 ± 4.64 (×1014) | 5.80 ± 3.30 (×1014) | 5.21 ± 5.77 (×1014) | 5.10∙± 3.22 (×1014) |
50 nm | 4.34 ± 2.89 (×1012) | 4.90 ± 1.21 (×1012) | 4.78 ± 3.55 (×1012) | 5.00 ± 2.10 (×1012) |
100 nm | 6.60∙± 3.45 (×1014) | 6.33 ± 2.77 (×1014) | 5.99 ± 1.60 (×1014) | 6.76 ± 1.54 (×1014) |
Process Inhibited | Inhibitor | PS NPs Concentration [μg/mL] | Cell Line | ||
---|---|---|---|---|---|
HT-29MTX | Caco-2 | Hep G2 | |||
Membrane dependent | |||||
Clathrin-mediated endocytosis (CMDE/FEME) | Chlorpromazine | 10 | |||
100 | |||||
Pitstop2 | 10 | ||||
100 | |||||
Clathrin-independent endocytosis (CAV) | Nystatin | 10 | |||
100 | |||||
Micropinocytosis | Amiloride | 10 | |||
100 | |||||
Scavenger receptor-dependent | |||||
MSR1 (SCARA1, SR-A1) | Polyinosinic acid | 10 | |||
100 | |||||
SCARB1 (SR-B1) | BLT-1 | 10 | |||
100 | |||||
Mixture of inhibitors | |||||
Clathrin-mediated endocytosis + SCARB1 | Pitstop2 + BLT-1 | 10 | |||
100 | |||||
MSR1 + SCARB1 | Polyinosinic acid + BLT-1 | 10 | |||
100 |
Feature | Caco-2 | HT-29MTX | Hep G2 | Inhibitor Used in This Study | Lit. |
---|---|---|---|---|---|
Clathrin-mediated endocytosis (CMDE), clathrin-independent, dynamin-dependent endocytosis (FEME) | + | +++ | + | Chlorpromazine, Pitstop2 | [15,16,17,18] |
Caveolin/lipid rafts-mediated endocytosis, clathrin-independent, (CAV) | +++ CAV1 expression 10× > Hep G2 | +++ CAV1 expression 10× > Hep G2 | − Very low expression of CAV1 | Nystatin | [17,19] |
Macropinocytosis | + | ++ | + | Amiloride | [20,21] |
Excerpt from scavenger receptors expression (taken from The Human Protein Atlas, https://www.proteinatlas.org, accessed on 20 November 2024) | |||||
MSR1 (SCARA1) (consensus name SR-A1) | ++ (2× > HT-29 | + | + (similar to HT-29) | Polyinosinic acid (PIA) | |
SCARB1 (consensus name SR-B1) | ++ (similar to HT-29) | ++ | +++ (2× > HT-29 | BLT-1 | |
CD36 (consensus name SR-B2) | − | − | + | None | |
CD68 (consensus name SR-D1) | + | + | ++ | None | |
SCARF1 (consensus name SR-F1 | − | ++ | − | None | |
AGER (RAGE) (consensus name SR-J1) | − | − | − | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Męczyńska-Wielgosz, S.; Sikorska, K.; Czerwińska, M.; Kapka-Skrzypczak, L.; Kruszewski, M. Uptake and Toxicity of Polystyrene NPs in Three Human Cell Lines. Int. J. Mol. Sci. 2025, 26, 4783. https://doi.org/10.3390/ijms26104783
Męczyńska-Wielgosz S, Sikorska K, Czerwińska M, Kapka-Skrzypczak L, Kruszewski M. Uptake and Toxicity of Polystyrene NPs in Three Human Cell Lines. International Journal of Molecular Sciences. 2025; 26(10):4783. https://doi.org/10.3390/ijms26104783
Chicago/Turabian StyleMęczyńska-Wielgosz, Sylwia, Katarzyna Sikorska, Malwina Czerwińska, Lucyna Kapka-Skrzypczak, and Marcin Kruszewski. 2025. "Uptake and Toxicity of Polystyrene NPs in Three Human Cell Lines" International Journal of Molecular Sciences 26, no. 10: 4783. https://doi.org/10.3390/ijms26104783
APA StyleMęczyńska-Wielgosz, S., Sikorska, K., Czerwińska, M., Kapka-Skrzypczak, L., & Kruszewski, M. (2025). Uptake and Toxicity of Polystyrene NPs in Three Human Cell Lines. International Journal of Molecular Sciences, 26(10), 4783. https://doi.org/10.3390/ijms26104783