Identification and Functional Analysis of a Key Gene in the CHH Gene Family for Glucose Metabolism in the Pacific White Shrimp Litopenaeus vannamei
Abstract
:1. Introduction
2. Results
2.1. Identification and Classification of CHH Gene Family Members
2.2. Structura Characterization of CHH Gene Family Members
2.3. Gene Structure of LvCHH Ia
2.4. Gene Expression Patterns of LvCHH Ia
2.5. LvCHH Ia Gene RNA Interference
2.6. Transcriptome Analysis After LvCHH Ia Knockdown
2.6.1. Differential Expressed Genes Analysis in Thoracic Ganglia
2.6.2. Differential Expressed Genes Analysis in Hepatopancreas
2.7. rLvCHH Ia Protein Injection
3. Discussion
3.1. Evolution Analysis of the CHH Gene Family
3.2. Effect of LvCHH Ia on Hemolymph Glucose
3.3. Mechanisms of LvCHH Ia Affecting Glucose Metabolism
3.4. Effects of LvCHH Ia on Molting and Growth
4. Materials and Methods
4.1. Experimental Animals
4.2. Identification and Analysis of CHH Gene Family Members
4.3. Characterization of CHH Gene Family Members
4.4. Gene Cloning
4.5. Gene and Protein Structure
4.6. Gene Expression Pattern
4.7. RNA Interference
4.8. Recombinant Protein Injection
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simoes, L.A.R.; Normann, R.S.; Chung, J.S.; Vinagre, A.S. A Brief and Updated Introduction to the Neuroendocrine System of Crustaceans. Mol. Cell. Endocrinol. 2024, 590, 112265. [Google Scholar] [CrossRef] [PubMed]
- Fanjul-Moles, M.L. Biochemical and Functional Aspects of Crustacean Hyperglycemic Hormone in Decapod Crustaceans: Review and Update. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 142, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.M.; Gu, P.L.; Chu, K.H.; Tobe, S.S. Crustacean Neuropeptide Genes of the CHH/MIH/GIH Family: Implications from Molecular Studies. Gen. Comp. Endocrinol. 2003, 134, 214–219. [Google Scholar] [CrossRef] [PubMed]
- De Kleijn, D.P.; Van Herp, F. Molecular Biology of Neurohormone Precursors in the Eyestalk of Crustacea. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1995, 112, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, C.; Greve, P.; Martin, G. Overview on the Sub-Grouping of the Crustacean Hyperglycemic Hormone Family. Neuropeptides 1999, 33, 71–80. [Google Scholar] [CrossRef]
- Meredith, J.; Ring, M.; Macins, A.; Marschall, J.; Cheng, N.N.; Theilmann, D.; Brock, H.W.; Phillips, J.E. Locust Ion Transport Peptide (ITP): Primary Structure, Cdna and Expression in a Baculovirus System. J. Exp. Biol. 1996, 199 Pt 5, 1053–1061. [Google Scholar] [CrossRef]
- McCowan, C.; Garb, J.E. Recruitment and Diversification of an Ecdysozoan Family of Neuropeptide Hormones for Black Widow Spider Venom Expression. Gene 2014, 536, 366–375. [Google Scholar] [CrossRef]
- Undheim, E.A.; Grimm, L.L.; Low, C.F.; Morgenstern, D.; Herzig, V.; Zobel-Thropp, P.; Pineda, S.S.; Habib, R.; Dziemborowicz, S.; Fry, B.G.; et al. Weaponization of a Hormone: Convergent Recruitment of Hyperglycemic Hormone into the Venom of Arthropod Predators. Structure 2015, 23, 1283–1292. [Google Scholar] [CrossRef]
- Montagne, N.; Desdevises, Y.; Soyez, D.; Toullec, J.Y. Molecular Evolution of the Crustacean Hyperglycemic Hormone Family in Ecdysozoans. BMC Evol. Biol. 2010, 10, 62. [Google Scholar] [CrossRef]
- Covi, J.A.; Chang, E.S.; Mykles, D.L. Conserved Role of Cyclic Nucleotides in the Regulation of Ecdysteroidogenesis by the Crustacean Molting Gland. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 152, 470–477. [Google Scholar] [CrossRef]
- Webster, S.G.; Keller, R.; Dircksen, H. The CHH-Superfamily of Multifunctional Peptide Hormones Controlling Crustacean Metabolism, Osmoregulation, Moulting, and Reproduction. Gen. Comp. Endocrinol. 2012, 175, 217–233. [Google Scholar] [CrossRef]
- Wang, C.G. Preliminary Study on Molecular Mechanism of Functionalgenes Relate to Ecdysone Signaling Pathway in Molting of Litopenaeus Vannamei. Ph.D. Thesis, Guangdong Ocean University, Zhanjiang, China, 2022. [Google Scholar]
- Gu, P.L.; Chan, S.M. The Shrimp Hyperglycemic Hormone-Like Neuropeptide Is Encoded by Multiple Copies of Genes Arranged in a Cluster. FEBS Lett. 1998, 441, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Sook Chung, J.; Christie, A.; Flynn, E. Molecular Cloning of Crustacean Hyperglycemic Hormone (CHH) Family Members (CHH, Molt-Inhibiting Hormone and Mandibular Organ-Inhibiting Hormone) and Their Expression Levels in the Jonah Crab, Cancer borealis. Gen. Comp. Endocrinol. 2020, 295, 113522. [Google Scholar] [CrossRef] [PubMed]
- Vrinda, S.; Reshmi, C.; Jose, S.; Reynold, P.; Vijayan, K.; Philip, R.; Singh, I. Crustacean Hyperglycemic Hormone Family Gene Silencing in Penaeus monodon Mediated through Dsrna Synthesized in Vitro from Genomic and Cdna. Indian J. Biotechnol. 2017, 16, 37–43. [Google Scholar]
- Kegel, G.; Reichwein, B.; Weese, S.; Gaus, G.; Peter-Kataliníc, J.; Keller, R. Amino Acid Sequence of the Crustacean Hyperglycemic Hormone (CHH) from the Shore Crab, Carcinus maenas. FEBS Lett. 1989, 255, 10–14. [Google Scholar] [CrossRef]
- Liu, A.; Liu, J.; Chen, X.; Lu, B.; Zeng, C.; Ye, H. A Novel Crustacean Hyperglycemic Hormone (CHH) from the Mud Crab Scylla paramamosain Regulating Carbohydrate Metabolism. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2019, 231, 49–55. [Google Scholar] [CrossRef]
- Vrinda, S.; Jasmin, C.; Philip, R.; Singh, B.I. Thioredoxin Fused CHH1 Protein as Antigen for Polyclonal Antisera: Application to Regulate Glycemia in Penaeus monodon. Indian J. Exp. Biol. 2018, 56, 83–92. [Google Scholar]
- Santos, E.A.; Keller, R. Effect of Exposure to Atmospheric Air on Blood Glucose and Lactate Concentrations in Two Crustacean Species: A Role of the Crustacean Hyperglycemic Hormone (CHH). Comp. Biochem. Physiol. Part A Physiol. 1993, 106, 343–347. [Google Scholar] [CrossRef]
- Wu, M.Z. Characterization and Function Analysis of the CHH-I Genes in Tiger Shrimp (Penaeus monodon). Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2018. [Google Scholar]
- Sun, D.; Lv, J.; Gao, B.; Liu, P.; Li, J. Crustacean Hyperglycemic Hormone of Portunus Trituberculatus: Evidence of Alternative Splicing and Potential Roles in Osmoregulation. Cell Stress Chaperones 2019, 24, 517–525. [Google Scholar] [CrossRef]
- Dircksen, H. Insect Ion Transport Peptides Are Derived from Alternatively Spliced Genes and Differentially Expressed in the Central and Peripheral Nervous System. J. Exp. Biol. 2009, 212 Pt 3, 401–412. [Google Scholar] [CrossRef]
- Chung, J.S.; Webster, S.G. Does the N-Terminal Pyroglutamate Residue Have Any Physiological Significance for Crab Hyperglycemic Neuropeptides? Eur. J. Biochem. 1996, 240, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Katayama, H.; Ohira, T.; Aida, K.; Nagasawa, H. Significance of a Carboxyl-Terminal Amide Moiety in the Folding and Biological Activity of Crustacean Hyperglycemic Hormone. Peptides 2002, 23, 1537–1546. [Google Scholar] [CrossRef] [PubMed]
- Toyota, K.; Kamio, Y.; Ohira, T. Identification and Physiological Assays of Crustacean Hyperglycemic Hormones in the Japanese Spiny Lobster, Panulirus japonicus. Zool. Sci. 2023, 41, 14–20. [Google Scholar] [CrossRef]
- Chang, W.H.; Lai, A.G. Comparative Genomic Analysis of Crustacean Hyperglycemic Hormone (CHH) Neuropeptide Genes across Diverse Crustacean Species. F1000Res 2018, 7, 100. [Google Scholar] [CrossRef]
- Liu, C.J.; Huang, S.S.; Toullec, J.Y.; Chang, C.Y.; Chen, Y.R.; Huang, W.S.; Lee, C.Y. Functional Assessment of Residues in the Amino- and Carboxyl-Termini of Crustacean Hyperglycemic Hormone (CHH) in the Mud Crab Scylla olivacea Using Point-Mutated Peptides. PLoS ONE 2015, 10, e0134983. [Google Scholar] [CrossRef]
- Manfrin, C.; Tom, M.; De Moro, G.; Gerdol, M.; Guarnaccia, C.; Mosco, A.; Pallavicini, A.; Giulianini, P.G. Application of D-Crustacean Hyperglycemic Hormone Induces Peptidases Transcription and Suppresses Glycolysis-Related Transcripts in the Hepatopancreas of the Crayfish Pontastacus leptodactylus—Results of a Transcriptomic Study. PLoS ONE 2013, 8, e65176. [Google Scholar] [CrossRef]
- Xu, L.; Pan, L.; Zhang, X.; Wei, C. Effects of Crustacean Hyperglycemic Hormone (CHH) on Regulation of Hemocyte Intracellular Signaling Pathways and Phagocytosis in White Shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2019, 93, 559–566. [Google Scholar] [CrossRef]
- Aquiloni, L.; Giulianini, P.G.; Mosco, A.; Guarnaccia, C.; Ferrero, E.; Gherardi, F. Crustacean Hyperglycemic Hormone (CHH) as a Modulator of Aggression in Crustacean Decapods. PLoS ONE 2012, 7, e50047. [Google Scholar] [CrossRef]
- Tsutsui, N.; Sakamoto, T.; Arisaka, F.; Tanokura, M.; Nagasawa, H.; Nagata, K. Crystal Structure of a Crustacean Hyperglycemic Hormone (CHH) Precursor Suggests Structural Variety in the C-Terminal Regions of CHH Superfamily Members. FEBS J. 2016, 283, 4325–4339. [Google Scholar] [CrossRef]
- Jiang, X.; Shi, J.; Yang, H.; Zhao, Z. The Cholinergic Pathway Transmits Signals of Neuropeptide F to Regulate Feeding of Ostrinia furnacalis Larvae. Pest Manag. Sci. 2023, 79, 3593–3601. [Google Scholar] [CrossRef]
- Riggs, J.W.; Callis, J. Studies of the Pfkb Family of Proteins in Arabidopsis thaliana. FEBS J. 2016, 30, lb164-lb164. [Google Scholar] [CrossRef]
- Feller, G.; Thiry, M.; Gerday, C. Nucleotide Sequence of the Lipase Gene Lip2 from the Antarctic Psychrotroph moraxella Ta144 and Site-Specific Mutagenesis of the Conserved Serine and Histidine Residues. DNA Cell Biol. 1991, 10, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Linzen, B. Blue Blood: Structure and Evolution of Hemocyanin. Naturwissenschaften 1989, 76, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Willott, E.; Wang, X.Y.; Wells, M.A. Cdna and Gene Sequence of Manduca Sexta Arylphorin, an Aromatic Amino Acid-Rich Larval Serum Protein. Homology to Arthropod Hemocyanins. J. Biol. Chem. 1989, 264, 19052–19059. [Google Scholar] [CrossRef] [PubMed]
- Montiel-Arzate, A.; Sánchez-Castrejón, E.; Camacho-Jiménez, L.; Díaz, F.; Ponce-Rivas, E. Effect of Recombinant Crustacean Hyperglycemic Hormones rCHH-B1 and rCHH-B2 on Lipid Metabolism in the Pacific White Shrimp Litopenaeus vannamei. Aquac. Res. 2020, 51, 4267–4278. [Google Scholar] [CrossRef]
- Vinagre, A.S.; Model, J.F.A.; Vogt, É.L.; Manara, L.M.; Trapp, M.; Da Silva, R.S.M.; Chung, J.S. Diet Composition and Long-Term Starvation Do Not Affect Crustacean Hyperglycemic Hormone (CHH) Transcription in the Burrowing Crab Neohelice granulata (Dana, 1851). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020, 247, 110738. [Google Scholar] [CrossRef]
- Chi, Y.; Cheng, Y.; Vanitha, J.; Kumar, N.; Ramamoorthy, R.; Ramachandran, S.; Jiang, S.Y. Expansion Mechanisms and Functional Divergence of the Glutathione S-Transferase Family in Sorghum and Other Higher Plants. DNA Res. 2011, 18, 1–16. [Google Scholar] [CrossRef]
- Kim, B.M.; Amores, A.; Kang, S.; Ahn, D.H.; Kim, J.H.; Kim, I.C.; Lee, J.H.; Lee, S.G.; Lee, H.; Lee, J.; et al. Antarctic Blackfin Icefish Genome Reveals Adaptations to Extreme Environments. Nat. Ecol. Evol. 2019, 3, 469–478. [Google Scholar] [CrossRef]
- Sonay, T.B.; Carvalho, T.; Robinson, M.D.; Greminger, M.P.; Krützen, M.; Comas, D.; Highnam, G.; Mittelman, D.; Sharp, A.; Marques-Bonet, T. Tandem Repeat Variation in Human and Great Ape Populations and Its Impact on Gene Expression Divergence. Genome Res. 2015, 25, 1591–1599. [Google Scholar] [CrossRef]
- Yannai, A.; Katz, S.; Hershberg, R. The Codon Usage of Lowly Expressed Genes Is Subject to Natural Selection. Genome Biol. Evol. 2018, 10, 1237–1246. [Google Scholar] [CrossRef]
- Valadez-Cano, C.; Olivares-Hernández, R.; Resendis-Antonio, O.; DeLuna, A.; Delaye, L. Natural Selection Drove Metabolic Specialization of the Chromatophore in Paulinella chromatophora. BMC Evol. Biol. 2017, 17, 99. [Google Scholar] [CrossRef] [PubMed]
- Mulleder, M.; Campbell, K.; Matsarskaia, O.; Eckerstorfer, F.; Ralser, M. Saccharomyces cerevisiae Single-Copy Plasmids for Auxotrophy Compensation, Multiple Marker Selection, and for Designing Metabolically Cooperating Communities. F1000Res 2016, 5, 2351. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Hayes, T.K.; Holman, G.M.; Chavez, A.R.; Keeley, L.L. Primary Structure of CHH/MIH/GIH-Like Peptides in Sinus Gland Extracts from Penaeus vannamei. Peptides 2000, 21, 477–484. [Google Scholar] [CrossRef]
- Bandi, S.; Singh, S.M.; Shah, D.D.; Upadhyay, V.; Mallela, K.M.G. 2d Nmr Analysis of the Effect of Asparagine Deamidation Versus Methionine Oxidation on the Structure, Stability, Aggregation, and Function of a Therapeutic Protein. Mol. Pharm. 2019, 16, 4621–4635. [Google Scholar] [CrossRef]
- Mosco, A.; Edomi, P.; Guarnaccia, C.; Lorenzon, S.; Pongor, S.; Ferrero, E.A.; Giulianini, P.G. Functional Aspects of CHH C-Terminal Amidation in Crayfish Species. Regul. Pept. 2008, 147, 88–95. [Google Scholar] [CrossRef]
- Martins da Silva, R.; de Oliveira Daumas Filho, C.R.; Calixto, C.; Nascimento da Silva, J.; Lopes, C.; da Silva Vaz, I., Jr.; Logullo, C. Pepck and Glucose Metabolism Homeostasis in Arthropods. Insect Biochem. Mol. Biol. 2023, 160, 103986. [Google Scholar] [CrossRef]
- Valle, M. Pyruvate Carboxylase, Structure and Function. Subcell. Biochem. 2017, 83, 291–322. [Google Scholar]
- Pan, B.Y.; Li, G.Y.; Wu, Y.; Zhou, Z.S.; Zhou, M.; Li, C. Glucose Utilization in the Regulation of Chitin Synthesis in Brown Planthopper. J. Insect Sci. 2019, 19, 3. [Google Scholar] [CrossRef]
- Chaudhry, R.; Varacallo, M.A. Biochemistry, Glycolysis; Statpearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Melkonian, E.A.; Asuka, E.; Schury, M.P. Physiology, Gluconeogenesis; Statpearls: Treasure Island, FL, USA, 2025. [Google Scholar]
- Massa, L.; Baltrusch, S.; Okar, D.A.; Lange, A.J.; Lenzen, S.; Tiedge, M. Interaction of 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase (PFK-2/FBPase-2) with Glucokinase Activates Glucose Phosphorylation and Glucose Metabolism in Insulin-Producing Cells. Diabetes 2004, 53, 1020–1029. [Google Scholar] [CrossRef]
- Cisternas, P.; Salazar, P.; Silva-Alvarez, C.; Barros, L.F.; Inestrosa, N.C. Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis. J. Biol. Chem. 2016, 291, 25950–25964. [Google Scholar] [CrossRef]
- Chiang, Y.T.; Ip, W.; Jin, T. The Role of the Wnt Signaling Pathway in Incretin Hormone Production and Function. Front. Physiol. 2012, 3, 273. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K. Phosphatase and Tensin Homolog (PTEN) as a Negative Regulator of Pi3k and Akt Pathway. Indian J. Nat. Sci. 2022, 13, 44743–44755. [Google Scholar]
- Xu, Y.; Tong, X.; Liu, P.; Huang, J.; Chen, S.; Liu, D.; Gu, T.; Xie, Y.; Guo, D.; Xu, Y. Deficiency of INPP4A Promotes M2 Macrophage Polarization in Eosinophilic Chronic Rhinosinusitis with Nasal Polyps. Inflamm. Res. 2024, 73, 581–595. [Google Scholar] [CrossRef] [PubMed]
- Mehrbani Azar, Y.; Protein Expression Analysis of PI3K/AKT Pathway Components in Cells Expressing INPP5K and Myo1c. University of Skövde, School of Bioscience. Skövde, Sweden, 2012; p18. Available online: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A991811&dswid=-7747 (accessed on 30 March 2025).
- Ye, C.; Lu, Z.; Sarath Babu, V.; Zhang, X.; Liu, X.; Zhao, L.; Pan, G.; Lin, L. Cloning and Expression Analysis of Chitinase-3b from Giant Freshwater Prawn (Macrobrachium rosenbergii) during Molting Cycle. J. Fish. China 2019, 43, 751–762. [Google Scholar]
- Schwartz, N.B.; Domowicz, M.S. Roles of Chondroitin Sulfate Proteoglycans as Regulators of Skeletal Development. Front. Cell Dev. Biol. 2022, 10, 745372. [Google Scholar] [CrossRef]
- Svensson, L.; Aszodi, A.; Heinegard, D.; Hunziker, E.B.; Reinholt, F.P.; Fassler, R.; Oldberg, A. Cartilage Oligomeric Matrix Protein-Deficient Mice Have Normal Skeletal Development. Mol. Cell Biol. 2002, 22, 4366–4371. [Google Scholar] [CrossRef]
- Tian, Z.; Peng, H.; Deng, W.; Jiao, C. Identification of a Transforming Growth Factor-Beta Type I Receptor Transcript in Eriocheir Sinensis and Its Molting-Related Expression in Muscle Tissues. Mol. Biol. Rep. 2020, 47, 77–86. [Google Scholar] [CrossRef]
- Mykles, D.L.; Adams, M.E.; Gade, G.; Lange, A.B.; Marco, H.G.; Orchard, I. Neuropeptide Action in Insects and Crustaceans. Physiol. Biochem. Zool. 2010, 83, 836–846. [Google Scholar] [CrossRef]
- Jing, Y.P.; Wen, X.; Li, L.; Zhang, S.; Zhang, C.; Zhou, S. The Vitellogenin Receptor Functionality of the Migratory Locust Depends on Its Phosphorylation by Juvenile Hormone. Proc. Natl. Acad. Sci. USA 2021, 118, e2106908118. [Google Scholar] [CrossRef]
- Lian, H.-M.; Guo, J.-Y.; Sun, Y.; Zhang, M.-H.; Piao, L.-H.; Jin, Z.; Cai, Y.-L. Mechanism of CNP-Mediated DG-PKC and IP4 Signaling Pathway in Diabetic Rats with Gastric Motility Disorder. Mol. Biol. Rep. 2020, 47, 141–149. [Google Scholar] [CrossRef]
- Deng, W.; Wang, C.; Zhang, Y.; Xu, Y.; Zhang, S.; Liu, Z.; Xue, Y. Gps-Pail: Prediction of Lysine Acetyltransferase-Specific Modification Sites from Protein Sequences. Sci. Rep. 2016, 6, 39787. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Xue, Y.; Jin, C.; Wang, M.; Yao, X. Prediction of Nepsilon-Acetylation on Internal Lysines Implemented in Bayesian Discriminant Method. Biochem. Biophys. Res. Commun. 2006, 350, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Jindal, A.; Ghani, U.; Kotelnikov, S.; Egbert, M.; Hashemi, N.; Vajda, S.; Padhorny, D.; Kozakov, D. Elucidation of Protein Function Using Computational Docking and Hotspot Analysis by Cluspro and Ftmap. Biol. Crystallogr. 2022, 78, 690–697. [Google Scholar] [CrossRef]
- Kozakov, D.; Grove, L.E.; Hall, D.R.; Bohnuud, T.; Mottarella, S.E.; Luo, L.; Xia, B.; Beglov, D.; Vajda, S. The Ftmap Family of Web Servers for Determining and Characterizing Ligand-Binding Hot Spots of Proteins. Nat. Protoc. 2015, 10, 733–755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yuan, J.; Sun, Y.; Li, S.; Gao, Y.; Yu, Y.; Liu, C.; Wang, Q.; Lv, X.; Zhang, X.; et al. Penaeid Shrimp Genome Provides Insights into Benthic Adaptation and Frequent Molting. Nat. Commun. 2019, 10, 356. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhang, X.; Si, S.; Sun, M.; Li, A.; Yuan, J.; Li, F. Identification and Functional Analysis of a Key Gene in the CHH Gene Family for Glucose Metabolism in the Pacific White Shrimp Litopenaeus vannamei. Int. J. Mol. Sci. 2025, 26, 4612. https://doi.org/10.3390/ijms26104612
Zhang C, Zhang X, Si S, Sun M, Li A, Yuan J, Li F. Identification and Functional Analysis of a Key Gene in the CHH Gene Family for Glucose Metabolism in the Pacific White Shrimp Litopenaeus vannamei. International Journal of Molecular Sciences. 2025; 26(10):4612. https://doi.org/10.3390/ijms26104612
Chicago/Turabian StyleZhang, Chengyi, Xiaojun Zhang, Shuqing Si, Mingzhe Sun, Aixin Li, Jianbo Yuan, and Fuhua Li. 2025. "Identification and Functional Analysis of a Key Gene in the CHH Gene Family for Glucose Metabolism in the Pacific White Shrimp Litopenaeus vannamei" International Journal of Molecular Sciences 26, no. 10: 4612. https://doi.org/10.3390/ijms26104612
APA StyleZhang, C., Zhang, X., Si, S., Sun, M., Li, A., Yuan, J., & Li, F. (2025). Identification and Functional Analysis of a Key Gene in the CHH Gene Family for Glucose Metabolism in the Pacific White Shrimp Litopenaeus vannamei. International Journal of Molecular Sciences, 26(10), 4612. https://doi.org/10.3390/ijms26104612