Positivity Rate of PD-L1 Expression and Its Clinical Significance in Vulvar Cancer: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection, Data Extraction, and Risk of Bias
2.4. Statistical Analysis
3. Results
3.1. A Description of the Included Studies
3.2. PD-L1 Expression in VSCCs
3.3. PD-L1 Expression and VSCC Prognosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CI | Confidence Interval |
CPS | Combined Positive Score |
CSS | Cancer-Specific Survival |
DFS | Disease-Free Survival |
HR | Hazard Ratio |
HPV | Human Papillomavirus |
IC | Immune Cells |
JAK2/STAT1 | Janus Kinase 2/Signal Transducer and Activator of Transcription 1 |
NOS | Newcastle–Ottawa Scale |
OR | Odds Ratio |
OS | Overall Survival |
PD-1 | Programmed Cell Death Protein 1 |
PD-L1 | Programmed Death Ligand 1 |
PI3K/Akt | Phosphoinositide 3-Kinase/Protein Kinase B |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PROSPERO | International Prospective Register of Systematic Reviews |
PFS | Progression-Free Survival |
qPCR | Quantitative Polymerase Chain Reaction |
Ras/MEK/ERK | Rat Sarcoma/Mitogen-Activated Protein Kinase Kinase/Extracellular Signal-Regulated Kinase |
RFS | Recurrence-Free Survival |
RR | Relative Risk |
TC | Tumor Cells |
TCS | Tumor Cell Score |
TPS | Tumor Proportion Score |
VC | Vulvar Cancer |
VSCC | Vulvar Squamous Cell Carcinoma |
WHO | World Health Organization |
References
- Thangarajah, F.; Morgenstern, B.; Pahmeyer, C.; Schiffmann, L.M.; Puppe, J.; Mallmann, P.; Hamacher, S.; Buettner, R.; Alidousty, C.; Holz, B.; et al. Clinical Impact of PD-L1 and PD-1 Expression in Squamous Cell Cancer of the Vulva. J. Cancer Res. Clin. Oncol. 2019, 145, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, T.H.; Hakim, A.A.; Lee, S.J.; Wakabayashi, M.T.; Morgan, R.J.; Han, E.S. Surgical Management of Vulvar Cancer. J. Natl. Compr. Canc. Netw. 2017, 15, 121–128. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Koncar, R.F.; Feldman, R.; Bahassi, E.M.; Hashemi Sadraei, N. Comparative Molecular Profiling of HPV-Induced Squamous Cell Carcinomas. Cancer Med. 2017, 6, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Czogalla, B.; Pham, D.; Trillsch, F.; Rottmann, M.; Gallwas, J.; Burges, A.; Mahner, S.; Kirchner, T.; Jeschke, U.; Mayr, D.; et al. PD-L1 Expression and Survival in P16-Negative and -Positive Squamous Cell Carcinomas of the Vulva. J. Cancer Res. Clin. Oncol. 2020, 146, 569–577. [Google Scholar] [CrossRef]
- Kortekaas, K.E.; Santegoets, S.J.; Tas, L.; Ehsan, I.; Charoentong, P.; Van Doorn, H.C.; Van Poelgeest, M.I.E.; Mustafa, D.A.M.; Van Der Burg, S.H. Primary Vulvar Squamous Cell Carcinomas with High T Cell Infiltration and Active Immune Signaling Are Potential Candidates for Neoadjuvant PD-1/PD-L1 Immunotherapy. J. Immunother. Cancer 2021, 9, e003671. [Google Scholar] [CrossRef]
- Lérias, S.; Esteves, S.; Silva, F.; Cunha, M.; Cochicho, D.; Martins, L.; Félix, A. CD274 (PD-L1), CDKN2A (P16), TP53, and EGFR Immunohistochemical Profile in Primary, Recurrent and Metastatic Vulvar Cancer. Mod. Pathol. 2020, 33, 893–904. [Google Scholar] [CrossRef] [PubMed]
- Merlo, S. Modern Treatment of Vulvar Cancer. Radiol. Oncol. 2020, 54, 371–376. [Google Scholar] [CrossRef]
- Hecking, T.; Thiesler, T.; Schiller, C.; Lunkenheimer, J.-M.M.; Ayub, T.H.; Rohr, A.; Condic, M.; Keyver-Paik, M.-D.D.; Fimmers, R.; Kirfel, J.; et al. Tumoral PD-L1 Expression Defines a Subgroup of Poor-Prognosis Vulvar Carcinomas with Non-Viral Etiology. Oncotarget 2017, 8, 92890–92903. [Google Scholar] [CrossRef]
- Sznurkowski, J.J.; Zawrocki, A.; Sznurkowska, K.; Peksa, R.; Biernat, W.; Żawrocki, A.; Sznurkowska, K.; Pęksa, R.; Biernat, W. PD-L1 Expression on Immune Cells Is a Favorable Prognostic Factor for Vulvar Squamous Cell Carcinoma Patients. Oncotarget 2017, 8, 89903–89912. [Google Scholar] [CrossRef]
- How, J.A.; Jazaeri, A.A.; Soliman, P.T.; Fleming, N.D.; Gong, J.; Piha-Paul, S.A.; Janku, F.; Stephen, B.; Naing, A. Pembrolizumab in Vaginal and Vulvar Squamous Cell Carcinoma: A Case Series from a Phase II Basket Trial. Sci. Rep. 2021, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wendel Naumann, R.; Hollebecque, A.; Meyer, T.; Devlin, M.J.; Oaknin, A.; Kerger, J.; López-Picazo, J.M.; Machiels, J.P.; Delord, J.P.; Evans, T.R.J.; et al. Safety and Efficacy of Nivolumab Monotherapy in Recurrent or Metastatic Cervical, Vaginal, or Vulvar Carcinoma: Results from the Phase I/II CheckMate 358 Trial. J. Clin. Oncol. 2019, 37, 2825–2834. [Google Scholar] [CrossRef]
- Shields, L.B.E.E.; Gordinier, M.E. Pembrolizumab in Recurrent Squamous Cell Carcinoma of the Vulva: Case Report and Review of the Literature. Gynecol. Obstet. Invest. 2019, 84, 94–98. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, B.; Wang, Y.; Li, M.; Liu, X.; Cao, J.; Li, C.; Hu, J. Clinicopathological and Prognostic Significance of PD-L1 Expression in Colorectal Cancer: A Meta-Analysis. Int. J. Colorectal Dis. 2021, 36, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Acheampong, E.; Abed, A.; Morici, M.; Bowyer, S.; Amanuel, B.; Lin, W.; Millward, M.; Gray, E.S. Tumour PD-L1 Expression in Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis. Cells 2020, 9, 2393. [Google Scholar] [CrossRef]
- Adiputra, P.A.T.; Sudarsa, I.W.; Wihandani, D.M.; Saputra, I.P.G.S.; Wiranata, S.; Supadmanaba, I.G.P. Analysis of PD-L1 Expression in Breast Cancer: A Systematic Review and Meta-Analysis in Asian Population. Asian Pac. J. Cancer Prev. 2023, 24, 1453–1462. [Google Scholar] [CrossRef]
- Steiniche, T.; Ladekarl, M.; Georgsen, J.B.; Andreasen, S.; Busch-Sørensen, M.; Zhou, W.; Marton, M.J.; Pruitt, S.K.; Jin, F.; Liaw, K.L. Association of Programmed Death Ligand 1 Expression with Prognosis among Patients with Ten Uncommon Advanced Cancers. Future Sci. OA 2020, 6, FSO616. [Google Scholar] [CrossRef]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 Pathway: Current Researches in Cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar] [PubMed]
- Chinn, Z.; Stoler, M.H.; Mills, A.M. PD-L1 and IDO Expression in Cervical and Vulvar Invasive and Intraepithelial Squamous Neoplasias: Implications for Combination Immunotherapy. Histopathology 2019, 74, 256–268. [Google Scholar] [CrossRef]
- Contos, G.; Baca, Y.; Xiu, J.; Brown, J.; Holloway, R.; Korn, W.M.; Herzog, T.J.; Jones, N.; Winer, I. Assessment of Immune Biomarkers and Establishing a Triple Negative Phenotype in Gynecologic Cancers. Gynecol. Oncol. 2021, 163, 312–319. [Google Scholar] [CrossRef]
- Kim, M.; Chang, C.S.; Choi, M.C.; Lee, J.W.; Park, H.; Joo, W.D. Rechallenge with Anti-PD-1 Inhibitors in Patients with Recurrent Gynecologic Malignancies. Yonsei Med. J. 2023, 64, 587–592. [Google Scholar] [CrossRef]
- Scheel, A.H.; Dietel, M.; Heukamp, L.C.; Jöhrens, K.; Kirchner, T.; Reu, S.; Rüschoff, J.; Schildhaus, H.U.; Schirmacher, P.; Tiemann, M.; et al. Harmonized PD-L1 Immunohistochemistry for Pulmonary Squamous-Cell and Adenocarcinomas. Mod. Pathol. 2016, 29, 1165–1172. [Google Scholar] [CrossRef]
- Agilent Technologies. PD-L1 IHC 22C3 PharmDx Interpretation Manual-Urothelial Carcinoma FDA-Approved for in Vitro Diagnostic Use; Agilent: Santa Clara, CA, USA, 2021. [Google Scholar]
- Kolitz, E.; Lucas, E.; Hosler, G.A.; Kim, J.; Hammer, S.; Lewis, C.; Xu, L.; Day, A.T.; Mauskar, M.; Lea, J.S.; et al. Human Papillomavirus–Positive and –Negative Vulvar Squamous Cell Carcinoma Are Biologically but Not Clinically Distinct. J. Investig. Dermatol. 2022, 142, 1280–1290.e7. [Google Scholar] [CrossRef] [PubMed]
- Bardhan, K.; Anagnostou, T.; Boussiotis, V.A. The PD1: PD-L1/2 Pathway from Discovery to Clinical Implementation. Front. Immunol. 2016, 7, 550. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Liu, Y.; Park, H.J.; Baek, I.; Tran, H.; Cheang, G.; Novo, J.; Dillon, J.; Matoso, A.; Farmer, E.; et al. Recurrent Genetic Alterations and Biomarker Expression in Primary and Metastatic Squamous Cell Carcinomas of the Vulva. Hum. Pathol. 2019, 92, 67–80. [Google Scholar] [CrossRef]
- Cereceda, K.; Bravo, N.; Jorquera, R.; González-Stegmaier, R.; Villarroel-Espíndola, F. Simultaneous and Spatially-Resolved Analysis of T-Lymphocytes, Macrophages and PD-L1 Immune Checkpoint in Rare Cancers. Cancers 2022, 14, 2815. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, O.; Annibali, D.; Aguzzi, C.; Tuyaerts, S.; Amant, F.; Morelli, M.B.; Santoni, G.; Amantini, C.; Maggi, F.; Nabissi, M. The Controversial Role of PD-1 and Its Ligands in Gynecological Malignancies. Front. Oncol. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Necchi, A.; Spiess, P.E.; Bandini, M.; Basile, G.; Grivas, P.; Bratslavsky, G.; Jacob, J.; Danziger, N.; Lin, D.; Decker, B.; et al. Advanced Squamous Cell Carcinomas of the Pelvic and Perineal Region: A Comprehensive Genomic Profiling Study. Oncologist 2022, 27, 1016–1024. [Google Scholar] [CrossRef]
- Zerdes, I.; Matikas, A.; Bergh, J.; Rassidakis, G.Z.; Foukakis, T. Genetic, Transcriptional and Post-Translational Regulation of the Programmed Death Protein Ligand 1 in Cancer: Biology and Clinical Correlations. Oncogene 2018, 37, 4639–4661. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; Clark, J.; et al. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality if Nonrandomized Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (accessed on 20 March 2025).
- Cocks, M.; Chaux, A.; Jenson, E.G.; Miller, J.A.; Rodriguez Pena, M.D.C.; Tregnago, A.C.; Taheri, D.; Eich, M.L.; Sharma, R.; Vang, R.; et al. Immune Checkpoint Status and Tumor Microenvironment in Vulvar Squamous Cell Carcinoma. Virchows Archiv. 2020, 477, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Howitt, B.E.; Sun, H.H.; Roemer, M.G.M.; Kelley, A.; Chapuy, B.; Aviki, E.; Pak, C.; Connelly, C.; Gjini, E.; Shi, Y.; et al. Genetic Basis for PD-L1 Expression in Squamous Cell Carcinomas of the Cervix and Vulva. JAMA Oncol. 2016, 2, 518–522. [Google Scholar] [CrossRef]
- Palisoul, M.L.; Mullen, M.M.; Feldman, R.; Thaker, P.H. Identification of Molecular Targets in Vulvar Cancers. Gynecol. Oncol. 2017, 146, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Choschzick, M.; Gut, A.; Fink, D. PD-L1 Receptor Expression in Vulvar Carcinomas Is HPV-Independent. Virchows Archiv. 2018, 473, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Ott, P.A.; Bang, Y.-J.J.; Piha-Paul, S.A.; Razak, A.R.A.; Bennouna, J.; Soria, J.-C.S.; Hope, R.S.; Cohen, R.B.; O-Neil, B.H.; Mehnert, J.M.; et al. T-Cell–Inflamed Gene-Expression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated with Pembrolizumab across 20 Cancers: KEYNOTE-028. J. Clin. Oncol. 2019, 37, 318–327. [Google Scholar] [CrossRef]
- Curley, J.; Conaway, M.R.; Chinn, Z.; Duska, L.; Stoler, M.; Mills, A.M. Looking Past PD-L1: Expression of Immune Checkpoint TIM-3 and Its Ligand Galectin-9 in Cervical and Vulvar Squamous Neoplasia. Mod. Pathol. 2020, 33, 1182–1192. [Google Scholar] [CrossRef]
- Dibbern, M.E.; Bullock, T.N.; Jenkins, T.M.; Duska, L.R.; Stoler, M.H.; Mills, A.M. Loss of MHC Class i Expression in HPV-Associated Cervical and Vulvar Neoplasia: A Potential Mechanism of Resistance to Checkpoint Inhibition. Am. J. Surg. Pathol. 2020, 44, 1184–1191. [Google Scholar] [CrossRef]
- Williams, E.A.; Werth, A.J.; Sharaf, R.; Montesion, M.; Sokol, E.S.; Pavlick, D.C.; McLaughlin-Drubin, M.; Erlich, R.; Toma, H.; Williams, K.J.; et al. Vulvar Squamous Cell Carcinoma: Comprehensive Genomic Profiling of HPV+ Versus HPV—Forms Reveals Distinct Sets of Potentially Actionable Molecular Targets. JCO Precis. Oncol. 2020, 4, 647–661. [Google Scholar] [CrossRef]
- Garganese, G.; Inzani, F.; Fragomeni, S.M.; Mantovani, G.; Della Corte, L.; Piermattei, A.; Santoro, A.; Angelico, G.; Giacò, L.; Corrado, G.; et al. The Vulvar Immunohistochemical Panel (Vip) Project: Molecular Profiles of Vulvar Squamous Cell Carcinoma. Cancers 2021, 13, 6373. [Google Scholar] [CrossRef]
- Shapira-Frommer, R.; Mileshkin, L.; Manzyuk, L.; Penel, N.; Burge, M.; Piha-Paul, S.A.; Girda, E.; Lopez Martin, J.A.; van Dongen, M.G.J.; Italiano, A.; et al. Efficacy and Safety of Pembrolizumab for Patients with Previously Treated Advanced Vulvar Squamous Cell Carcinoma: Results from the Phase 2 KEYNOTE-158 Study. Gynecol. Oncol. 2022, 166, 211–218. [Google Scholar] [CrossRef]
- Corey, L.; Wallbillich, J.J.; Wu, S.; Farrell, A.; Hodges, K.; Xiu, J.; Nabhan, C.; Guastella, A.; Kheil, M.; Gogoi, R.; et al. The Genomic Landscape of Vulvar Squamous Cell Carcinoma. Int. J. Gynecol. Pathol. 2023, 42, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhu, Y.; Luo, J.; Li, J.; Niu, S.; Chen, H.; Zhou, F. An Integrated Model for Prognosis in Vulvar Squamous Cell Carcinoma. BMC Cancer 2023, 23, 534. [Google Scholar] [CrossRef] [PubMed]
- Bui, C.M.; Medeiros, F.; Azimpouran, M.; Venturina, M.; Balzer, B. PD-L1 Expression in HPV-Associated Versus HPV-Independent Invasive Vulvar Squamous Cell Carcinoma. Int. J. Gynecol. Pathol. 2024, 43, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Gordinier, M.E.; Schau, G.F.; Pollock, S.B.; Shields, L.B.E.; Talwalkar, S. Genomic Characterization of Vulvar Squamous Cell Carcinoma Reveals Differential Gene Expression Based on Clinical Outcome. Gynecol. Oncol. 2024, 180, 111–117. [Google Scholar] [CrossRef]
- Mamat @ Yusof, M.N.; Chew, K.T.; Kampan, N.; Nor, N.H.; Md Zin, R.R.; Tan, G.C.; Shafiee, M.N. PD-L1 Expression in Endometrial Cancer and Its Association with Clinicopathological Features: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 3911. [Google Scholar] [CrossRef]
- Boman, C.; Zerdes, I.; Mårtensson, K.; Bergh, J.; Foukakis, T.; Valachis, A.; Matikas, A. Discordance of PD-L1 Status between Primary and Metastatic Breast Cancer: A Systematic Review and Meta-Analysis. Cancer Treat. Rev. 2021, 99, 102257. [Google Scholar] [CrossRef]
- Fakhri, G.; Akel, R.; Khalifeh, I.; Chami, H.; Hajj Ali, A.; Al Assaad, M.; Atwi, H.; Kadara, H.; Tfayli, A. Prevalence of Programmed Death Ligand-1 in Patients Diagnosed with Non-Small Cell Lung Cancer in Lebanon. SAGE Open Med. 2021, 9, 20503121211043709. [Google Scholar] [CrossRef]
- Fu, H.; Fu, Z.; Mao, M.; Si, L.; Bai, J.; Wang, Q.; Guo, R. Prevalence and Prognostic Role of PD-L1 in Patients with Gynecological Cancers: A Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2023, 189, 104084. [Google Scholar] [CrossRef]
- Li, J.-B.; Lai, M.-Y.; Lin, Z.-C.; Guan, W.-L.; Sun, Y.-T.; Yang, J.; Wang, W.-X.; Yang, Z.-R.; Qiu, M.-Z. The Optimal Threshold of PD-L1 Combined Positive Score to Predict the Benefit of PD-1 Antibody plus Chemotherapy for Patients with HER2-Negative Gastric Adenocarcinoma: A Meta-Analysis. Cancer Immunol. Immunother. 2024, 73, 132. [Google Scholar] [CrossRef]
- Khan, M.; Du, K.; Ai, M.; Wang, B.; Lin, J.; Ren, A.; Chen, C.; Huang, Z.; Qiu, W.; Yuan, Y.; et al. PD-L1 Expression as Biomarker of Efficacy of PD-1/PD-L1 Checkpoint Inhibitors in Metastatic Triple Negative Breast Cancer: A Systematic Review and Meta-Analysis. Front. Immunol. 2023, 14, 1060308. [Google Scholar] [CrossRef]
- Mantovani, G.; Fragomeni, S.M.; Inzani, F.; Fagotti, A.; Della Corte, L.; Gentileschi, S.; Tagliaferri, L.; Zannoni, G.F.; Scambia, G.; Garganese, G. Molecular Pathways in Vulvar Squamous Cell Carcinoma: Implications for Target Therapeutic Strategies. J. Cancer Res. Clin. Oncol. 2020, 146, 1647–1658. [Google Scholar] [CrossRef]
- Lei, Q.; Wang, D.; Sun, K.; Wang, L.; Zhang, Y. Resistance Mechanisms of Anti-PD1/PDL1 Therapy in Solid Tumors. Front. Cell Dev. Biol. 2020, 8, 672. [Google Scholar] [CrossRef]
- Qiu, L.; Zheng, H.; Zhao, X. The Prognostic and Clinicopathological Significance of PD-L1 Expression in Patients with Diffuse Large B-Cell Lymphoma: A Meta-Analysis. BMC Cancer 2019, 19, 273. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wu, D.; Li, L.; Chai, Y.; Huang, J. PD-L1 and Survival in Solid Tumors: A Meta-Analysis. PLoS ONE 2015, 10, 131403. [Google Scholar] [CrossRef]
- Mocan, L.P.; Craciun, R.; Grapa, C.; Melincovici, C.S.; Rusu, I.; Al Hajjar, N.; Sparchez, Z.; Leucuta, D.; Ilies, M.; Sparchez, M.; et al. PD-L1 Expression on Immune Cells, but Not on Tumor Cells, Is a Favorable Prognostic Factor for Patients with Intrahepatic Cholangiocarcinoma. Cancer Immunol. Immunother. 2023, 72, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Blažek, T.; Petráš, M.; Knybel, L.; Cvek, J.; Soumarová, R. Programmed Cell Death Ligand 1 Expression on Immune Cells and Survival in Patients with Nonmetastatic Head and Neck Cancer: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2023, 6, E236324. [Google Scholar] [CrossRef]
- Badve, S.S.; Penault-Llorca, F.; Reis-Filho, J.S.; Deurloo, R.; Siziopikou, K.P.; D’Arrigo, C.; Viale, G. Determining PD-L1 Status in Patients with Triple-Negative Breast Cancer: Lessons Learned from IMpassion130. J. Natl. Cancer Inst. 2022, 114, 664–675. [Google Scholar] [CrossRef]
- Noske, A.; Wagner, D.C.; Schwamborn, K.; Foersch, S.; Steiger, K.; Kiechle, M.; Oettler, D.; Karapetyan, S.; Hapfelmeier, A.; Roth, W.; et al. Interassay and Interobserver Comparability Study of Four Programmed Death-Ligand 1 (PD-L1) Immunohistochemistry Assays in Triple-Negative Breast Cancer. Breast 2021, 60, 238–244. [Google Scholar] [CrossRef]
- Mercier, A.; Conan-Charlet, V.; Quintin-Roué, I.; Doucet, L.; Marcorelles, P.; Uguen, A. Reproducibility in PD-L1 Immunohistochemistry Quantification through the Tumor Proportion Score and the Combined Positive Score: Could Dual Immunostaining Help Pathologists? Cancers 2023, 15, 2768. [Google Scholar] [CrossRef]
- Liu, C.; Fan, L.; Wu, Q.; Shi, Y.; Sun, X. Prognostic Significance of PD-L1 Expression in Pancreatic Cancer: Evidence from an Updated Meta-Analysis. Pol. J. Pathol. 2023, 74, 151–160. [Google Scholar] [CrossRef]
- Hu, T.; Wan, X.; Wu, H.; Cheng, X.; Xu, S. Predictive Values of PD-L1 Expression for Survival Outcomes in Patients with Cervical Cancer: A Systematic Review and Meta-Analysis. Ginekol. Pol. 2022, 93, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tian, J.; Qu, C.; Tang, Z.; Wang, Y.; Li, K.; Yang, Y.; Liu, S. Prognostic Value of Programmed Cell Death Ligand-1 Expression in Breast Cancer: A Meta-Analysis. Medicine 2020, 99, E23359. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.F.V.E.; Padín-Iruegas, M.E.; Caponio, V.C.A.; Lorenzo-Pouso, A.I.; Saavedra-Nieves, P.; Chamorro-Petronacci, C.M.; Suaréz-Peñaranda, J.; Pérez-Sayáns, M. Caspase 3 and Cleaved Caspase 3 Expression in Tumorogenesis and Its Correlations with Prognosis in Head and Neck Cancer: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 11937. [Google Scholar] [CrossRef]
- Qiao, W.; Wang, W.; Liu, H.; Guo, W.; Li, P.; Deng, M. Prognostic and Clinical Significance of Focal Adhesion Kinase Expression in Breast Cancer: A Systematic Review and Meta-Analysis. Transl. Oncol. 2020, 13, 100835. [Google Scholar] [CrossRef] [PubMed]
- Schwab, R.; Schiestl, L.J.; Cascant Ortolano, L.; Klecker, P.H.; Schmidt, M.M.W.; Almstedt, K.; Heimes, A.-S.S.; Brenner, W.; Stewen, K.; Schmidt, M.M.W.; et al. Efficacy of Pembrolizumab in Advanced Cancer of the Vulva: A Systematic Review and Single-Arm Meta-Analysis. Front. Oncol. 2024, 14, 1352975. [Google Scholar] [CrossRef]
Author, Year | Country | Mean Age (Range), Years | Sample Size | Stage | Histology and Molecular Status | Clone Antibody | Cutoff | Clinical Outcome |
---|---|---|---|---|---|---|---|---|
Howitt, 2016 [34] | USA | 69 (49–93) | 23 | NR | VSCC according to p16 status | 9A11 | H-score | NR |
Hecking, 2017 [9] | Germany | 64 (26–93) | 103 | Primary, advanced, metastatic | VSCC according to p16/HPV DNA status | 22C3 | TCS ≥ 2% in TC ≥ 5% | OS, RFS |
Koncar, 2017 [4] | USA | 61 (29–85) | 83 | Primary, advanced, metastatic | VSCC, p53 wild-type | SP142 | TC ≥ 5% | NR |
Palisoul, 2017 [35] | USA | 65 (NR) | 51 | Primary, advanced, metastatic | VSCC (85%) and AC (15%) | 22C3 | TCS ≥ 2% in TC ≥ 5% | NR |
Sznurkowski, 2017 [10] | Poland | 68 (36–85) | 84 | Primary, advanced | VSCC | 22C3 | TC ≥ 5% | OS |
Choschzick, 2018 [36] | Switzerland | 69 (37–89) | 55 | Primary, advanced, metastatic | VSCC according to HPV RNA status | E1L3N | TC ≥ 1% | OS |
Ott, 2018 [37] | Worldwide | 59 (18–87) | 18 | Metastatic | VSCC | 22C3 | CPS ≥ 1 | NR |
Chinn, 2019 [19] | USA | NR | 20 | NR | VSCC according to p16 status | SP142 | TC ≥ 1% | NR |
Cocks, 2019 [33] | USA | 58 (25–87) | 21 | Primary, advanced | VSCC | E1L3N | TC ≥ 1% | OS, DFS, CSS |
Czogalla, 2019 [5] | Germany | 71 (20–96) | 128 | Primary, advanced, metastatic | VSCC | SP263 | TC ≥ 1% | OS, PFS |
Lérias, 2019 [7] | Portugal | 74 (26–93) | 83 | Primary, advanced | VSCC according to p16/HPV DNA status | 22C3 | TC ≥ 1% | OS |
Thangarajah, 2019 [1] | Germany | 62 (48–71) | 70 | Primary, advanced | VSCC | 28-8 | TC ≥ 1% | NR |
Xing, 2019 [26] | USA | NA (25–79) | 20 | Primary, advanced, metastatic | VSCC according to p16/HPV RNA status | 22C3 | CPS ≥ 1 | NR |
Curley, 2020 [38] | USA | NR | 19 | NR | VSCC HPV-associated vs. unassociated status | SP142 | CPS ≥ 1 | NR |
Dibbern, 2020 [39] | USA | NR | 18 | NR | VSCC HPV-associated | SP142 | CPS ≥ 1 | NR |
Steiniche, 2020 [17] | Denmark | 68 (66–73) | 44 | Advanced, metastatic | VSCC | 22C3 | CPS ≥ 1 | NR |
Williams, 2020 [40] | USA | 62 (25–92) | 73 | Primary, advanced | VSCC | 22C3 | TC ≥ 1% | NR |
Contos, 2021 [20] | USA | NR | 48 | NR | VSCC | SP142 | TC ≥ 5% | NR |
Garganese, 2021 [41] | Italy | 78 (48–96) | 101 | Primary, advanced | VSCC according to p16 status | SP263 | TC ≥ 5% | NR |
Kolitz, 2022 [24] | USA | 60 (NR) | 36 | Primary, advanced | VSCC | 22C3 | CPS ≥ 1 | OS, PFS |
Necchi, 2022 [29] | USA | 64 (29–89) | 143 | Primary, advanced, metastatic | VSCC | 22C3 | TC ≥ 1% | NR |
Shapira-Frommer, 2022 [42] | Worldwide | 64 (31–87) | 101 | Primary, advanced, metastatic | VSCC | 22C3 | CPS ≥ 1 | NR |
Corey, 2023 [43] | USA | 66 (30–90) | 427 | Primary, advanced, metastatic | VSCC | SP142 | TC ≥ 1% | NR |
Zhang T, 2023 [44] | China | 67 (29–91) | 69 | Primary, advanced | VSCC according to p16/HPV IHC status | 22C3 | CPS ≥ 1 | OS, PFS |
Bui, 2024 [45] | USA | 70.6 (34–96) | 53 | Primary, advanced, metastatic | VSCC according to p16 status | CD274 | CPS ≥ 1 | NR |
Gordinier, 2024 [46] | USA | 64.7 (36–93) | 21 | Primary, advanced, metastatic | VSCC | 22C3 | CPS ≥ 1 | NR |
PD-L1 Expression in Tumor Cells | Positivity | 95%CI | I2 | Studies |
---|---|---|---|---|
Overall | 59.9% | 47.8% to 71.4% | 96.4% | 26 |
By cutoff thresholds | ||||
CPS ≥ 1 | 82.1% | 74.5% to 88.7% | 68.6% | 10 |
TC ≥ 1% | 56.6% | 39.0% to 73.4% | 96.4% | 9 |
TC ≥ 5% | 30.5% | 13.5% to 50.9% | 95.2% | 6 |
H-score | 43.5% | 25.6% to 63.2% | - | 1 |
By PD-L1 antibodies | ||||
E1L3N | 59.4% | 29.9% to 85.5% | 82.6% | 2 |
SP263 | 70.2% | 48.9% to 87.6% | 91.1% | 2 |
22C3 | 56.9% | 37.5% to 75.3% | 96.9% | 13 |
SP142 | 64.3% | 34.6% to 89.0% | 97.0% | 6 |
28-8 | 32.9% | 23.0% to 44.5% | - | 1 |
9A11 | 43.5% | 25.6% to 63.2% | - | 1 |
CD274 | 90.6% | 79.6% to 95.9% | - | 1 |
By HPV positivity | ||||
HPV-positive | 55.2% | 35.1% to 74.4% | 93.3% | 13 |
HPV-negative | 68.7% | 48.2% to 85.9% | 94.4% | 15 |
By cancer stage | ||||
Primary stages | 40.1% | 24.4% to 56.8% | 90.6% | 9 |
Advanced/metastatic stages | 42.9% | 24.5% to 62.3% | 89.6% | 13 |
PD-L1 expression in intratumoral immune cells | Positivity | 95%CI | I2 | Studies |
Overall | 75.6% | 52.9% to 92.5% | 95.4% | 6 |
By cutoff thresholds | ||||
CPS ≥ 1 | 91.9% | 75.8% to 99.6% | 78.3% | 2 |
TC ≥ 5% | 36.9% | 27.4% to 47.6% | - | 1 |
TC ≥ 1% | 74.2% | 46.0% to 94.4% | 93.7% | 3 |
By PD-L1 antibodies | ||||
CD274 | 84.9% | 73.0% to 92.3% | - | 1 |
E1L3N | 66.7% | 45.4% to 82.8% | - | 1 |
SP263 | 91.4% | 85.3% to 95.1% | - | 1 |
22C3 | 73.1% | 8.2% to 100% | 98.2% | 2 |
28-8 | 58.6% | 46.9% to 69.4% | - | 1 |
PD-L1 expression in peritumoral immune cells | Positivity | 95%CI | I2 | Studies |
Overall | 78.9% | 54.4% to 95.5% | 91% | 3 |
PD-L1 expression and VSCC prognosis | HR | 95%CI | I2 | Studies |
Overall survival | 1.43 | 1.06 to 1.93 | 28.9% | 7 |
Progression-free survival | 1.57 | 1.07 to 2.30 | 38.8% | 5 |
Cancer-specific survival | 1.12 | 0.90 to 1.40 | - | 1 |
PD-L1 expression in intratumoral immune cells and VSCC prognosis | HR | 95%CI | I2 | Studies |
Overall survival | 1.44 | 0.59 to 3.51 | 81.7% | 4 |
Progression-free survival | 1.43 | 0.72 to 2.94 | 43.6% | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flindris, S.; Margioula-Siarkou, C.; Chalitsios, C.V.; Margioula-Siarkou, G.; Almperi, E.-A.; Almperis, A.; Styliara, E.; Flindris, K.; Paschopoulos, M.; Navrozoglou, I.; et al. Positivity Rate of PD-L1 Expression and Its Clinical Significance in Vulvar Cancer: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2025, 26, 4594. https://doi.org/10.3390/ijms26104594
Flindris S, Margioula-Siarkou C, Chalitsios CV, Margioula-Siarkou G, Almperi E-A, Almperis A, Styliara E, Flindris K, Paschopoulos M, Navrozoglou I, et al. Positivity Rate of PD-L1 Expression and Its Clinical Significance in Vulvar Cancer: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences. 2025; 26(10):4594. https://doi.org/10.3390/ijms26104594
Chicago/Turabian StyleFlindris, Stefanos, Crysoula Margioula-Siarkou, Christos V. Chalitsios, Georgia Margioula-Siarkou, Emmanouela-Aliki Almperi, Aristarchos Almperis, Effrosyni Styliara, Konstantinos Flindris, Minas Paschopoulos, Iordanis Navrozoglou, and et al. 2025. "Positivity Rate of PD-L1 Expression and Its Clinical Significance in Vulvar Cancer: A Systematic Review and Meta-Analysis" International Journal of Molecular Sciences 26, no. 10: 4594. https://doi.org/10.3390/ijms26104594
APA StyleFlindris, S., Margioula-Siarkou, C., Chalitsios, C. V., Margioula-Siarkou, G., Almperi, E.-A., Almperis, A., Styliara, E., Flindris, K., Paschopoulos, M., Navrozoglou, I., Tsilidis, K. K., Dinas, K., Petousis, S., & Markozannes, G. (2025). Positivity Rate of PD-L1 Expression and Its Clinical Significance in Vulvar Cancer: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 26(10), 4594. https://doi.org/10.3390/ijms26104594