Sodium–Glucose Cotransporter 2 Inhibitors in Aortic Stenosis: Toward a Comprehensive Cardiometabolic Approach
Abstract
:1. Introduction
2. Pathophysiological Overview of Aortic Valve Stenosis
2.1. Hemodynamic Stress and Pressure Overload
2.2. Myocardial Remodeling: Fibrosis, Microvascular Dysfunction, and Energetic Impairment
2.3. Inflammation, Oxidative Stress, and Metabolic Reprogramming in Valve and Myocardium
3. SGLT2 Inhibitors in Aortic Valve Stenosis: Mechanisms Beyond Glycemic Control
3.1. Molecular Targets in the AS Myocardium
3.2. Anti-Inflammatory and Antioxidative Effects
3.3. Effects on Endothelial and Vascular Function
3.4. Metabolic and Energetic Effects
3.5. Cardiac Remodeling and Electrophysiologic Effects
3.6. Effects on Erythropoiesis
4. Evidence of SGLT2 Expression in Aortic Valve Stenosis and Clinical Outcomes
5. Therapeutic Potential in the Context of TAVI and AVR
6. Future Directions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hibino, M.; Pandey, A.K.; Hibino, H.; Verma, R.; Aune, D.; Yanagawa, B.; Takami, Y.; Bhatt, D.L.; Attizzani, G.F.; Pelletier, M.P.; et al. Mortality Trends of Aortic Stenosis in High-Income Countries from 2000 to 2020. Heart 2023, 109, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Mensah, G.A.; Fuster, V.; Murray, C.J.L.; Roth, G.A.; Mensah, G.A.; Abate, Y.H.; Abbasian, M.; Abd-Allah, F.; Abdollahi, A.; Abdollahi, M.; et al. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef]
- Lindman, B.R.; Clavel, M.-A.; Mathieu, P.; Iung, B.; Lancellotti, P.; Otto, C.M.; Pibarot, P. Calcific Aortic Stenosis. Nat. Rev. Dis. Primers 2016, 2, 16006. [Google Scholar] [CrossRef]
- Corrigendum to: 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease: Developed by the Task Force for the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic. Eur. Heart J. 2022, 43, 2022. [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2021, 77, 450–500. [Google Scholar] [CrossRef] [PubMed]
- Strom, J.B.; Playford, D.; Stewart, S.; Li, S.; Shen, C.; Xu, J.; Strange, G. Increasing Risk of Mortality across the Spectrum of Aortic Stenosis Is Independent of Comorbidity & Treatment: An International, Parallel Cohort Study of 248,464 Patients. PLoS ONE 2022, 17, e0268580. [Google Scholar] [CrossRef]
- Yarbrough, W.M.; Mukherjee, R.; Ikonomidis, J.S.; Zile, M.R.; Spinale, F.G. Myocardial Remodeling with Aortic Stenosis and after Aortic Valve Replacement: Mechanisms and Future Prognostic Implications. J. Thorac. Cardiovasc. Surg. 2012, 143, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Rader, F.; Sachdev, E.; Arsanjani, R.; Siegel, R.J. Left Ventricular Hypertrophy in Valvular Aortic Stenosis: Mechanisms and Clinical Implications. Am. J. Med. 2015, 128, 344–352. [Google Scholar] [CrossRef]
- White, M.; Baral, R.; Ryding, A.; Tsampasian, V.; Ravindrarajah, T.; Garg, P.; Koskinas, K.C.; Clark, A.; Vassiliou, V.S. Biomarkers Associated with Mortality in Aortic Stenosis: A Systematic Review and Meta-Analysis. Med. Sci. 2021, 9, 29. [Google Scholar] [CrossRef]
- Beerkens, F.J.; Tang, G.H.L.; Kini, A.S.; Lerakis, S.; Dangas, G.D.; Mehran, R.; Khera, S.; Goldman, M.; Fuster, V.; Bhatt, D.L.; et al. Transcatheter Aortic Valve Replacement Beyond Severe Aortic Stenosis: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2025, 85, 944–964. [Google Scholar] [CrossRef]
- Lindman, B.R.; Lindenfeld, J. Prevention and Mitigation of Heart Failure in the Treatment of Calcific Aortic Stenosis: A Unifying Therapeutic Principle. JAMA Cardiol. 2021, 6, 993–994. [Google Scholar] [CrossRef] [PubMed]
- Rossebø, A.B.; Pedersen, T.R.; Boman, K.; Brudi, P.; Chambers, J.B.; Egstrup, K.; Gerdts, E.; Gohlke-Bärwolf, C.; Holme, I.; Kesäniemi, Y.A.; et al. Intensive Lipid Lowering with Simvastatin and Ezetimibe in Aortic Stenosis. N. Engl. J. Med. 2008, 359, 1343–1356. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.R.; Sukul, D.; Dweck, M.R.; Madhavan, M.V.; Arsenault, B.J.; Coylewright, M.; Merryman, W.D.; Newby, D.E.; Lewis, J.; Harrell, F.E.J.; et al. Evaluating Medical Therapy for Calcific Aortic Stenosis: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 2354–2376. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.R.; Merryman, W.D. Unloading the Stenotic Path to Identifying Medical Therapy for Calcific Aortic Valve Disease: Barriers and Opportunities. Circulation 2021, 143, 1455–1457. [Google Scholar] [CrossRef]
- Dayan, V.; Vignolo, G.; Magne, J.; Clavel, M.-A.; Mohty, D.; Pibarot, P. Outcome and Impact of Aortic Valve Replacement in Patients with Preserved LVEF and Low-Gradient Aortic Stenosis. J. Am. Coll. Cardiol. 2015, 66, 2594–2603. [Google Scholar] [CrossRef]
- Belmonte, M.; Paolisso, P.; Bertolone, D.T.; Viscusi, M.M.; Gallinoro, E.; de Oliveira, E.K.; Shumkova, M.; Beles, M.; Esposito, G.; Addeo, L.; et al. Combined Cardiac Damage Staging by Echocardiography and Cardiac Catheterization in Patients with Clinically Significant Aortic Stenosis. Can. J. Cardiol. 2024, 40, 643–654. [Google Scholar] [CrossRef]
- Ribeiro, H.B.; Lerakis, S.; Gilard, M.; Cavalcante, J.L.; Makkar, R.; Herrmann, H.C.; Windecker, S.; Enriquez-Sarano, M.; Cheema, A.N.; Nombela-Franco, L.; et al. Transcatheter Aortic Valve Replacement in Patients with Low-Flow, Low-Gradient Aortic Stenosis: The TOPAS-TAVI Registry. J. Am. Coll. Cardiol. 2018, 71, 1297–1308. [Google Scholar] [CrossRef]
- Nombela-Franco, L.; del Trigo, M.; Morrison-Polo, G.; Veiga, G.; Jimenez-Quevedo, P.; Abdul-Jawad Altisent, O.; Campelo-Parada, F.; Biagioni, C.; Puri, R.; DeLarochellière, R.; et al. Incidence, Causes, and Predictors of Early (≤30 Days) and Late Unplanned Hospital Readmissions After Transcatheter Aortic Valve Replacement. JACC Cardiovasc. Interv. 2015, 8, 1748–1757. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Giannakoulas, G.; Sagris, M.; Theofilis, P.; Fragakis, N.; Biondi-Zoccai, G. Effect of Glucagon-like Peptide-1 Receptor Agonism on Aortic Valve Stenosis Risk: A Mendelian Randomization Analysis. J. Clin. Med. 2024, 13, 6411. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; Boer, R.A.d.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Udell, J.A.; Jones, W.S.; Petrie, M.C.; Harrington, J.; Anker, S.D.; Bhatt, D.L.; Hernandez, A.F.; Butler, J. Sodium Glucose Cotransporter-2 Inhibition for Acute Myocardial Infarction: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2022, 79, 2058–2068. [Google Scholar] [CrossRef]
- von Lewinski, D.; Kolesnik, E.; Tripolt, N.J.; Pferschy, P.N.; Benedikt, M.; Wallner, M.; Alber, H.; Berger, R.; Lichtenauer, M.; Saely, C.H.; et al. Empagliflozin in Acute Myocardial Infarction: The EMMY Trial. Eur. Heart J. 2022, 43, 4421–4432. [Google Scholar] [CrossRef] [PubMed]
- Paolisso, P.; Bergamaschi, L.; Gragnano, F.; Gallinoro, E.; Cesaro, A.; Sardu, C.; Mileva, N.; Foà, A.; Armillotta, M.; Sansonetti, A.; et al. Outcomes in Diabetic Patients Treated with SGLT2-Inhibitors with Acute Myocardial Infarction Undergoing PCI: The SGLT2-I AMI PROTECT Registry. Pharmacol. Res. 2023, 187, 106597. [Google Scholar] [CrossRef]
- Harrington, J.; Udell, J.A.; Jones, W.S.; Anker, S.D.; Bhatt, D.L.; Petrie, M.C.; Vedin, O.; Sumin, M.; Zwiener, I.; Hernandez, A.F.; et al. Empagliflozin in Patients Post Myocardial Infarction Rationale and Design of the EMPACT-MI Trial. Am. Heart J. 2022, 253, 86–98. [Google Scholar] [CrossRef]
- Stachteas, P.; Nasoufidou, A.; Karagiannidis, E.; Patoulias, D.; Karakasis, P.; Alexiou, S.; Samaras, A.; Zormpas, G.; Stavropoulos, G.; Tsalikakis, D.; et al. The Role of Sodium Glucose Co-Transporter 2 Inhibitors in Atrial Fibrillation: A Comprehensive Review. J. Clin. Med. 2024, 13, 5408. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Xie, S.; Deng, Y.; Xie, X.; Liu, Y. Blocking the NLRP3 Inflammasome Reduces Osteogenic Calcification and M1 Macrophage Polarization in a Mouse Model of Calcified Aortic Valve Stenosis. Atherosclerosis 2022, 347, 28–38. [Google Scholar] [CrossRef]
- Li, X.-X.; Chen, Z.-D.; Sun, X.-J.; Yang, Y.-Q.; Jin, H.; Liu, N.-F. Empagliflozin Ameliorates Vascular Calcification in Diabetic Mice through Inhibiting Bhlhe40-Dependent NLRP3 Inflammasome Activation. Acta Pharmacol. Sin. 2024, 45, 751–764. [Google Scholar] [CrossRef]
- Karakasis, P.; Theofilis, P.; Vlachakis, P.K.; Korantzopoulos, P.; Patoulias, D.; Antoniadis, A.P.; Fragakis, N. Atrial Fibrosis in Atrial Fibrillation: Mechanistic Insights, Diagnostic Challenges, and Emerging Therapeutic Targets. Int. J. Mol. Sci. 2024, 26, 209. [Google Scholar] [CrossRef]
- Shah, S.M.; Shah, J.; Lakey, S.M.; Garg, P.; Ripley, D.P. Pathophysiology, Emerging Techniques for the Assessment and Novel Treatment of Aortic Stenosis. Open Hear. 2023, 10, e002244. [Google Scholar] [CrossRef]
- Goody, P.R.; Hosen, M.R.; Christmann, D.; Niepmann, S.T.; Zietzer, A.; Adam, M.; Bönner, F.; Zimmer, S.; Nickenig, G.; Jansen, F. Aortic Valve Stenosis: From Basic Mechanisms to Novel Therapeutic Targets. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 885–900. [Google Scholar] [CrossRef] [PubMed]
- Bing, R.; Cavalcante, J.L.; Everett, R.J.; Clavel, M.-A.; Newby, D.E.; Dweck, M.R. Imaging and Impact of Myocardial Fibrosis in Aortic Stenosis. JACC Cardiovasc. Imaging 2019, 12, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Delicce, A.V.; Makaryus, A.N. Physiology, Frank Starling Law; StatPearls Inc.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Chambers, J. The Left Ventricle in Aortic Stenosis: Evidence for the Use of ACE Inhibitors. Heart 2006, 92, 420–423. [Google Scholar] [CrossRef]
- Sun, L.; Chandra, S.; Sucosky, P. Ex Vivo Evidence for the Contribution of Hemodynamic Shear Stress Abnormalities to the Early Pathogenesis of Calcific Bicuspid Aortic Valve Disease. PLoS ONE 2012, 7, e48843. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, N.G.; Kemp, W.L. Educational Case: Aortic Valve Stenosis. Acad. Pathol. 2020, 7, 2374289520961765. [Google Scholar] [CrossRef]
- Zheng, K.H.; Tzolos, E.; Dweck, M.R. Pathophysiology of Aortic Stenosis and Future Perspectives for Medical Therapy. Cardiol. Clin. 2020, 38, 1–12. [Google Scholar] [CrossRef]
- Ajmone Marsan, N.; Delgado, V.; Shah, D.J.; Pellikka, P.; Bax, J.J.; Treibel, T.; Cavalcante, J.L. Valvular Heart Disease: Shifting the Focus to the Myocardium. Eur. Heart J. 2023, 44, 28–40. [Google Scholar] [CrossRef]
- Stassen, J.; Ewe, S.H.; Pio, S.M.; Pibarot, P.; Redfors, B.; Leipsic, J.; Genereux, P.; Van Mieghem, N.M.; Kuneman, J.H.; Makkar, R.; et al. Managing Patients with Moderate Aortic Stenosis. JACC Cardiovasc. Imaging 2023, 16, 837–855. [Google Scholar] [CrossRef]
- Smucker, M.L.; Tedesco, C.L.; Manning, S.B.; Owen, R.M.; Feldman, M.D. Demonstration of an Imbalance between Coronary Perfusion and Excessive Load as a Mechanism of Ischemia during Stress in Patients with Aortic Stenosis. Circulation 1988, 78, 573–582. [Google Scholar] [CrossRef]
- Treibel, T.A.; Badiani, S.; Lloyd, G.; Moon, J.C. Multimodality Imaging Markers of Adverse Myocardial Remodeling in Aortic Stenosis. JACC Cardiovasc. Imaging 2019, 12, 1532–1548. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.W.L.; Everett, R.J.; Kwiecinski, J.; Vesey, A.T.; Yeung, E.; Esson, G.; Jenkins, W.; Koo, M.; Mirsadraee, S.; White, A.C.; et al. Myocardial Fibrosis and Cardiac Decompensation in Aortic Stenosis. JACC Cardiovasc. Imaging 2017, 10, 1320–1333. [Google Scholar] [CrossRef]
- Mahmod, M.; Francis, J.M.; Pal, N.; Lewis, A.; Dass, S.; De Silva, R.; Petrou, M.; Sayeed, R.; Westaby, S.; Robson, M.D.; et al. Myocardial Perfusion and Oxygenation Are Impaired during Stress in Severe Aortic Stenosis and Correlate with Impaired Energetics and Subclinical Left Ventricular Dysfunction. J. Cardiovasc. Magn. Reson. 2014, 16, 29. [Google Scholar] [CrossRef] [PubMed]
- Hjortnaes, J.; New, S.E.P.; Aikawa, E. Visualizing Novel Concepts of Cardiovascular Calcification. Trends Cardiovasc. Med. 2013, 23, 71–79. [Google Scholar] [CrossRef]
- New, S.E.P.; Goettsch, C.; Aikawa, M.; Marchini, J.F.; Shibasaki, M.; Yabusaki, K.; Libby, P.; Shanahan, C.M.; Croce, K.; Aikawa, E. Macrophage-Derived Matrix Vesicles: An Alternative Novel Mechanism for Microcalcification in Atherosclerotic Plaques. Circ. Res. 2013, 113, 72–77. [Google Scholar] [CrossRef]
- Rutkovskiy, A.; Malashicheva, A.; Sullivan, G.; Bogdanova, M.; Kostareva, A.; Stensløkken, K.-O.; Fiane, A.; Vaage, J. Valve Interstitial Cells: The Key to Understanding the Pathophysiology of Heart Valve Calcification. J. Am. Heart Assoc. 2017, 6, e006339. [Google Scholar] [CrossRef]
- Michelena, H.I.; Prakash, S.K.; Della Corte, A.; Bissell, M.M.; Anavekar, N.; Mathieu, P.; Bossé, Y.; Limongelli, G.; Bossone, E.; Benson, D.W.; et al. Bicuspid Aortic Valve: Identifying Knowledge Gaps and Rising to the Challenge from the International Bicuspid Aortic Valve Consortium (BAVCon). Circulation 2014, 129, 2691–2704. [Google Scholar] [CrossRef] [PubMed]
- Kerstjens-Frederikse, W.S.; van de Laar, I.M.B.H.; Vos, Y.J.; Verhagen, J.M.A.; Berger, R.M.F.; Lichtenbelt, K.D.; Klein Wassink-Ruiter, J.S.; van der Zwaag, P.A.; du Marchie Sarvaas, G.J.; Bergman, K.A.; et al. Cardiovascular Malformations Caused by NOTCH1 Mutations Do Not Keep Left: Data on 428 Probands with Left-Sided CHD and Their Families. Genet. Med. 2016, 18, 914–923. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.-G. The Interplay Between TGF-β Signaling and Cell Metabolism. Front. Cell Dev. Biol. 2022, 10, 846723. [Google Scholar] [CrossRef]
- Varshney, R.; Murphy, B.; Woolington, S.; Ghafoory, S.; Chen, S.; Robison, T.; Ahamed, J. Inactivation of Platelet-Derived TGF-Β1 Attenuates Aortic Stenosis Progression in a Robust Murine Model. Blood Adv. 2019, 3, 777–788. [Google Scholar] [CrossRef]
- Androshchuk, V.; Chehab, O.; Wilcox, J.; McDonaugh, B.; Montarello, N.; Rajani, R.; Prendergast, B.; Patterson, T.; Redwood, S. Evolving Perspectives on Aortic Stenosis: The Increasing Importance of Evaluating the Right Ventricle before Aortic Valve Intervention. Front. Cardiovasc. Med. 2024, 11, 1506993. [Google Scholar] [CrossRef]
- Scarsini, R.; Gallinoro, E.; Ancona, M.B.; Portolan, L.; Paolisso, P.; Springhetti, P.; Della Mora, F.; Mainardi, A.; Belmonte, M.; Moroni, F.; et al. Characterisation of Coronary Microvascular Dysfunction in Patients with Severe Aortic Stenosis Undergoing TAVI. EuroIntervention 2024, 20, e289–e300. [Google Scholar] [CrossRef]
- Lancellotti, P.; Nchimi, A. Coronary Microvascular Reserve and Outcome in Aortic Stenosis: Pathophysiological Significance vs. Clinical Relevance. Eur. Heart J. 2017, 38, 1230–1232. [Google Scholar] [CrossRef] [PubMed]
- Monga, S.; Valkovič, L.; Tyler, D.; Lygate, C.A.; Rider, O.; Myerson, S.G.; Neubauer, S.; Mahmod, M. Insights Into the Metabolic Aspects of Aortic Stenosis with the Use of Magnetic Resonance Imaging. JACC Cardiovasc. Imaging 2022, 15, 2112–2126. [Google Scholar] [CrossRef]
- Cherpaz, M.; Meugnier, E.; Seillier, G.; Pozzi, M.; Pierrard, R.; Leboube, S.; Farhat, F.; Vola, M.; Obadia, J.-F.; Amaz, C.; et al. Myocardial Transcriptomic Analysis of Diabetic Patients with Aortic Stenosis: Key Role for Mitochondrial Calcium Signaling. Cardiovasc. Diabetol. 2024, 23, 239. [Google Scholar] [CrossRef]
- Wang, K.; Xie, X.; Hu, X.; Wang, Z.; Xia, J.; Wu, Q. Stearic Acid Alleviates Aortic Medial Degeneration through Maintaining Mitochondrial Dynamics Homeostasis via Inhibiting JNK/MAPK Signaling. iScience 2024, 27, 110594. [Google Scholar] [CrossRef] [PubMed]
- Sucosky, P.; Balachandran, K.; Elhammali, A.; Jo, H.; Yoganathan, A.P. Altered Shear Stress Stimulates Upregulation of Endothelial VCAM-1 and ICAM-1 in a BMP-4– and TGF-β1–Dependent Pathway. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, L.A.; Grego-Bessa, J.; Raya, A.; Bertrán, E.; Pérez-Pomares, J.M.; Díez, J.; Aranda, S.; Palomo, S.; McCormick, F.; Izpisúa-Belmonte, J.C.; et al. Notch Promotes Epithelial-Mesenchymal Transition during Cardiac Development and Oncogenic Transformation. Genes Dev. 2004, 18, 99–115. [Google Scholar] [CrossRef]
- Peeters, F.E.C.M.; Meex, S.J.R.; Dweck, M.R.; Aikawa, E.; Crijns, H.J.G.M.; Schurgers, L.J.; Kietselaer, B.L.J.H. Calcific Aortic Valve Stenosis: Hard Disease in the Heart: A Biomolecular Approach towards Diagnosis and Treatment. Eur. Heart J. 2018, 39, 2618–2624. [Google Scholar] [CrossRef]
- Lehti, S.; Käkelä, R.; Hörkkö, S.; Kummu, O.; Helske-Suihko, S.; Kupari, M.; Werkkala, K.; Kovanen, P.T.; Oörni, K. Modified Lipoprotein-Derived Lipid Particles Accumulate in Human Stenotic Aortic Valves. PLoS ONE 2013, 8, e65810. [Google Scholar] [CrossRef]
- Miller, J.D.; Chu, Y.; Brooks, R.M.; Richenbacher, W.E.; Peña-Silva, R.; Heistad, D.D. Dysregulation of Antioxidant Mechanisms Contributes to Increased Oxidative Stress in Calcific Aortic Valvular Stenosis in Humans. J. Am. Coll. Cardiol. 2008, 52, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Galeone, A.; Brunetti, G.; Oranger, A.; Greco, G.; Di Benedetto, A.; Mori, G.; Colucci, S.; Zallone, A.; Paparella, D.; Grano, M. Aortic Valvular Interstitial Cells Apoptosis and Calcification Are Mediated by TNF-Related Apoptosis-Inducing Ligand. Int. J. Cardiol. 2013, 169, 296–304. [Google Scholar] [CrossRef]
- Isoda, K.; Matsuki, T.; Kondo, H.; Iwakura, Y.; Ohsuzu, F. Deficiency of Interleukin-1 Receptor Antagonist Induces Aortic Valve Disease in BALB/c Mice. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q.; Song, R.; Zeng, Q.; Yao, Q.; Ao, L.; Xu, D.; Fullerton, D.A.; Meng, X. Activation of TLR3 Induces Osteogenic Responses in Human Aortic Valve Interstitial Cells through the NF-ΚB and ERK1/2 Pathways. Int. J. Biol. Sci. 2015, 11, 482–493. [Google Scholar] [CrossRef] [PubMed]
- West, X.Z.; Malinin, N.L.; Merkulova, A.A.; Tischenko, M.; Kerr, B.A.; Borden, E.C.; Podrez, E.A.; Salomon, R.G.; Byzova, T.V. Oxidative Stress Induces Angiogenesis by Activating TLR2 with Novel Endogenous Ligands. Nature 2010, 467, 972–976. [Google Scholar] [CrossRef]
- Yutzey, K.E.; Demer, L.L.; Body, S.C.; Huggins, G.S.; Towler, D.A.; Giachelli, C.M.; Hofmann-Bowman, M.A.; Mortlock, D.P.; Rogers, M.B.; Sadeghi, M.M.; et al. Calcific Aortic Valve Disease: A Consensus Summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2387–2393. [Google Scholar] [CrossRef]
- Proudfoot, D.; Skepper, J.N.; Hegyi, L.; Bennett, M.R.; Shanahan, C.M.; Weissberg, P.L. Apoptosis Regulates Human Vascular Calcification in Vitro: Evidence for Initiation of Vascular Calcification by Apoptotic Bodies. Circ. Res. 2000, 87, 1055–1062. [Google Scholar] [CrossRef]
- Zebhi, B.; Lazkani, M.; Bark, D.J. Calcific Aortic Stenosis—A Review on Acquired Mechanisms of the Disease and Treatments. Front. Cardiovasc. Med. 2021, 8, 734175. [Google Scholar] [CrossRef]
- Guo, L.; Du, Y.; Li, H.; He, T.; Yao, L.; Yang, G.; Yang, X. Metabolites-Mediated Posttranslational Modifications in Cardiac Metabolic Remodeling: Implications for Disease Pathology and Therapeutic Potential. Metabolism 2025, 165, 156144. [Google Scholar] [CrossRef]
- Vendrov, A.E.; Lozhkin, A.; Hayami, T.; Levin, J.; Chamon, J.S.F.; Abdel-Latif, A.; Runge, M.S.; Madamanchi, N.R. Mitochondrial Dysfunction and Metabolic Reprogramming Induce Macrophage Pro-Inflammatory Phenotype Switch and Atherosclerosis Progression in Aging. Front. Immunol. 2024, 15, 1410832. [Google Scholar] [CrossRef]
- Pal, N.; Acharjee, A.; Ament, Z.; Dent, T.; Yavari, A.; Mahmod, M.; Ariga, R.; West, J.; Steeples, V.; Cassar, M.; et al. Metabolic Profiling of Aortic Stenosis and Hypertrophic Cardiomyopathy Identifies Mechanistic Contrasts in Substrate Utilization. FASEB J. 2024, 38, e23505. [Google Scholar] [CrossRef] [PubMed]
- Monga, S.; Valkovic, L.; Mahmod, M.; Myerson, S.G.; Neubauer, S.; Rider, O.J. Characterisation of Metabolic Phenotype in Aortic Stenosis: Insights from a Multi-Parametric Cardiac Magnetic Resonance Study. Eur. Heart J. 2022, 43, ehac544. [Google Scholar] [CrossRef]
- Peng, G.; Yan, J.; Chen, L.; Li, L. Glycometabolism Reprogramming: Implications for Cardiovascular Diseases. Prog. Biophys. Mol. Biol. 2023, 179, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Pun-García, A.; Clemente-Moragón, A.; Villena-Gutierrez, R.; Gómez, M.; Sanz-Rosa, D.; Díaz-Guerra, A.; Prados, B.; Medina, J.P.; Montó, F.; Ivorra, M.D.; et al. Beta-3 Adrenergic Receptor Overexpression Reverses Aortic Stenosis–Induced Heart Failure and Restores Balanced Mitochondrial Dynamics. Basic Res. Cardiol. 2022, 117, 62. [Google Scholar] [CrossRef] [PubMed]
- Watson, W.D.; Green, P.G.; Lewis, A.J.M.; Arvidsson, P.; De Maria, G.L.; Arheden, H.; Heiberg, E.; Clarke, W.T.; Rodgers, C.T.; Valkovič, L.; et al. Retained Metabolic Flexibility of the Failing Human Heart. Circulation 2023, 148, 109–123. [Google Scholar] [CrossRef]
- Monga, S.; Valkovič, L.; Myerson, S.G.; Neubauer, S.; Mahmod, M.; Rider, O.J. Role of Cardiac Energetics in Aortic Stenosis Disease Progression: Identifying the High-Risk Metabolic Phenotype. Circ. Cardiovasc. Imaging 2023, 16, e014863. [Google Scholar] [CrossRef]
- Elrakaybi, A.; Laubner, K.; Zhou, Q.; Hug, M.J.; Seufert, J. Cardiovascular Protection by SGLT2 Inhibitors—Do Anti-Inflammatory Mechanisms Play a Role? Mol. Metab. 2022, 64, 101549. [Google Scholar] [CrossRef]
- Mylonas, N.; Nikolaou, P.E.; Karakasis, P.; Stachteas, P.; Fragakis, N.; Andreadou, I. Endothelial Protection by Sodium-Glucose Cotransporter 2 Inhibitors: A Literature Review of In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2024, 25, 7274. [Google Scholar] [CrossRef]
- Karakasis, P.; Fragakis, N.; Kouskouras, K.; Karamitsos, T.; Patoulias, D.; Rizzo, M. Sodium-Glucose Cotransporter-2 Inhibitors in Patients with Acute Coronary Syndrome: A Modern Cinderella? Clin. Ther. 2024, 46, 841–850. [Google Scholar] [CrossRef]
- Stachteas, P.; Karakasis, P.; Patoulias, D.; Clemenza, F.; Fragakis, N.; Rizzo, M. The Effect of Sodium-Glucose Co-Transporter-2 Inhibitors on Markers of Subclinical Atherosclerosis. Ann. Med. 2023, 55, 2304667. [Google Scholar] [CrossRef]
- Zheng, R.; Song, W.; Lu, J.; Yuan, M.; Sun, X.; Lu, C. The Protective Role of SGLT2 Inhibitors on Aortic Aneurysm Mediated by Oxidative Stress and Inflammation in Type 2 Diabetes Mellitus. Cardiovasc. Diabetol. 2025, 24, 63. [Google Scholar] [CrossRef] [PubMed]
- Alsereidi, F.R.; Khashim, Z.; Marzook, H.; Al-Rawi, A.M.; Salomon, T.; Almansoori, M.K.; Madkour, M.M.; Hamam, A.M.; Ramadan, M.M.; Peterson, Q.P.; et al. Dapagliflozin Mitigates Cellular Stress and Inflammation through PI3K/AKT Pathway Modulation in Cardiomyocytes, Aortic Endothelial Cells, and Stem Cell-Derived β Cells. Cardiovasc. Diabetol. 2024, 23, 388. [Google Scholar] [CrossRef]
- Yue, L.; Wang, Y.; Wang, C.; Niu, S.; Dong, X.; Guan, Y.; Chen, S. Empagliflozin Improves Aortic Injury in Obese Mice by Regulating Fatty Acid Metabolism. Open Med. 2024, 19, 20241012. [Google Scholar] [CrossRef]
- Wen, Q.; Zhang, R.; Ye, K.; Yang, J.; Shi, H.; Liu, Z.; Li, Y.; Liu, T.; Zhang, S.; Chen, W.; et al. Empagliflozin Rescues Pro-Arrhythmic and Ca2+ Homeostatic Effects of Transverse Aortic Constriction in Intact Murine Hearts. Sci. Rep. 2024, 14, 15683. [Google Scholar] [CrossRef]
- Chandrasekar, B.; Mummidi, S.; DeMarco, V.G.; Higashi, Y. Empagliflozin Reverses Oxidized LDL-Induced RECK Suppression, Cardiotrophin-1 Expression, MMP Activation, and Human Aortic Smooth Muscle Cell Proliferation and Migration. Mediat. Inflamm. 2023, 2023, 6112301. [Google Scholar] [CrossRef]
- Campeau, M.-A.; Leask, R.L. Empagliflozin Reduces Endoplasmic Reticulum Stress Associated TXNIP/NLRP3 Activation in Tunicamycin-Stimulated Aortic Endothelial Cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 267–279. [Google Scholar] [CrossRef]
- Kawade, S.; Ogiso, K.; Shayo, S.C.; Obo, T.; Arimura, A.; Hashiguchi, H.; Deguchi, T.; Nishio, Y. Luseogliflozin and Caloric Intake Restriction Increase Superoxide Dismutase 2 Expression, Promote Antioxidative Effects, and Attenuate Aortic Endothelial Dysfunction in Diet-Induced Obese Mice. J. Diabetes Investig. 2023, 14, 548–559. [Google Scholar] [CrossRef]
- Liu, H.; Wei, P.; Fu, W.; Xia, C.; Li, Y.; Tian, K.; Li, Y.; Cheng, D.; Sun, J.; Xu, Y.; et al. Dapagliflozin Ameliorates the Formation and Progression of Experimental Abdominal Aortic Aneurysms by Reducing Aortic Inflammation in Mice. Oxid. Med. Cell. Longev. 2022, 2022, 8502059. [Google Scholar] [CrossRef]
- Ashry, N.A.; Abdelaziz, R.R.; Suddek, G.M.; Saleh, M.A. Canagliflozin Ameliorates Aortic and Hepatic Dysfunction in Dietary-Induced Hypercholesterolemia in the Rabbit. Life Sci. 2021, 280, 119731. [Google Scholar] [CrossRef]
- Sukhanov, S.; Higashi, Y.; Yoshida, T.; Mummidi, S.; Aroor, A.R.; Jeffrey Russell, J.; Bender, S.B.; DeMarco, V.G.; Chandrasekar, B. The SGLT2 Inhibitor Empagliflozin Attenuates Interleukin-17A-Induced Human Aortic Smooth Muscle Cell Proliferation and Migration by Targeting TRAF3IP2/ROS/NLRP3/Caspase-1-Dependent IL-1β and IL-18 Secretion. Cell. Signal. 2021, 77, 109825. [Google Scholar] [CrossRef]
- Ortega, R.; Collado, A.; Selles, F.; Gonzalez-Navarro, H.; Sanz, M.-J.; Real, J.T.; Piqueras, L. SGLT-2 (Sodium-Glucose Cotransporter 2) Inhibition Reduces Ang II (Angiotensin II)–Induced Dissecting Abdominal Aortic Aneurysm in ApoE (Apolipoprotein E) Knockout Mice. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1614–1628. [Google Scholar] [CrossRef]
- El-Daly, M.; Pulakazhi Venu, V.K.; Saifeddine, M.; Mihara, K.; Kang, S.; Fedak, P.W.M.; Alston, L.A.; Hirota, S.A.; Ding, H.; Triggle, C.R.; et al. Hyperglycaemic Impairment of PAR2-Mediated Vasodilation: Prevention by Inhibition of Aortic Endothelial Sodium-Glucose-Co-Transporter-2 and Minimizing Oxidative Stress. Vasc. Pharmacol. 2018, 109, 56–71. [Google Scholar] [CrossRef]
- Solini, A.; Giannini, L.; Seghieri, M.; Vitolo, E.; Taddei, S.; Ghiadoni, L.; Bruno, R.M. Dapagliflozin Acutely Improves Endothelial Dysfunction, Reduces Aortic Stiffness and Renal Resistive Index in Type 2 Diabetic Patients: A Pilot Study. Cardiovasc. Diabetol. 2017, 16, 138. [Google Scholar] [CrossRef]
- Urbano Pagan, L.; Gomes, M.J.; Damatto, F.C.; Oliveira, J.P.G.; Gatto, M.; Souza, L.M.; Santos, A.C.C.; Borim, P.A.; Rodrigues, E.A.; Mota, G.A.F.; et al. Effects of SGLT2 Inhibition on Cardiac Remodeling and Heart Failure Development in Rats with Aortic Stenosis. Eur. Heart J. 2023, 44, ehad655. [Google Scholar] [CrossRef]
- Marfella, R.; Scisciola, L.; D’Onofrio, N.; Maiello, C.; Trotta, M.C.; Sardu, C.; Panarese, I.; Ferraraccio, F.; Capuano, A.; Barbieri, M.; et al. Sodium-Glucose Cotransporter-2 (SGLT2) Expression in Diabetic and Non-Diabetic Failing Human Cardiomyocytes. Pharmacol. Res. 2022, 184, 106448. [Google Scholar] [CrossRef]
- Scisciola, L.; Taktaz, F.; Fontanella, R.A.; Pesapane, A.; Surina; Cataldo, V.; Ghosh, P.; Franzese, M.; Puocci, A.; Paolisso, P.; et al. Targeting High Glucose-Induced Epigenetic Modifications at Cardiac Level: The Role of SGLT2 and SGLT2 Inhibitors. Cardiovasc. Diabetol. 2023, 22, 24. [Google Scholar] [CrossRef]
- Scisciola, L.; Paolisso, P.; Belmonte, M.; Gallinoro, E.; Delrue, L.; Taktaz, F.; Fontanella, R.A.; Degrieck, I.; Pesapane, A.; Casselman, F.; et al. Myocardial Sodium–Glucose Cotransporter 2 Expression and Cardiac Remodelling in Patients with Severe Aortic Stenosis: The BIO-AS Study. Eur. J. Heart Fail. 2024, 26, 471–482. [Google Scholar] [CrossRef]
- Chung, C.-C.; Lin, Y.-K.; Chen, Y.-C.; Kao, Y.-H.; Yeh, Y.-H.; Trang, N.N.; Chen, Y.-J. Empagliflozin Suppressed Cardiac Fibrogenesis through Sodium-Hydrogen Exchanger Inhibition and Modulation of the Calcium Homeostasis. Cardiovasc. Diabetol. 2023, 22, 27. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Kassimis, G.; Koufakis, T.; Klisic, A.; Doumas, M.; Fragakis, N.; Rizzo, M. Therapeutic Potential of Sodium-Glucose Co-Transporter-2 Inhibitors and Glucagon-like Peptide-1 Receptor Agonists for Patients with Acute Coronary Syndrome: A Review of Clinical Evidence. Curr. Pharm. Des. 2024, 30, 2109–2119. [Google Scholar] [CrossRef]
- Packer, M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation 2022, 146, 1383–1405. [Google Scholar] [CrossRef]
- Gager, G.M.; von Lewinski, D.; Sourij, H.; Jilma, B.; Eyileten, C.; Filipiak, K.; Hülsmann, M.; Kubica, J.; Postula, M.; Siller-Matula, J.M. Effects of SGLT2 Inhibitors on Ion Homeostasis and Oxidative Stress Associated Mechanisms in Heart Failure. Biomed. Pharmacother. 2021, 143, 112169. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Rawat, S.; Ho, K.L.; Wagg, C.S.; Zhang, L.; Teoh, H.; Dyck, J.E.; Uddin, G.M.; Oudit, G.Y.; Mayoux, E.; et al. Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational Insights Into the Heart Failure Benefits of SGLT2 Inhibitors. JACC Basic Transl. Sci. 2018, 3, 575–587. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, J.; Li, X.; Sun, X.; Zhang, J.; Ren, D.; Tong, N.; Li, J. Empagliflozin Attenuates Ischemia and Reperfusion Injury through LKB1/AMPK Signaling Pathway. Mol. Cell. Endocrinol. 2020, 501, 110642. [Google Scholar] [CrossRef]
- Chen, M. Empagliflozin Attenuates Doxorubicin-Induced Cardiotoxicity by Activating AMPK/SIRT-1/PGC-1α-Mediated Mitochondrial Biogenesis. Toxicol. Res. 2023, 12, 216–223. [Google Scholar] [CrossRef]
- Umino, H.; Hasegawa, K.; Minakuchi, H.; Muraoka, H.; Kawaguchi, T.; Kanda, T.; Tokuyama, H.; Wakino, S.; Itoh, H. High Basolateral Glucose Increases Sodium-Glucose Cotransporter 2 and Reduces Sirtuin-1 in Renal Tubules through Glucose Transporter-2 Detection. Sci. Rep. 2018, 8, 6791. [Google Scholar] [CrossRef]
- Troise, D.; Mercuri, S.; Infante, B.; Losappio, V.; Cirolla, L.; Netti, G.S.; Ranieri, E.; Stallone, G. MTOR and SGLT-2 Inhibitors: Their Synergistic Effect on Age-Related Processes. Int. J. Mol. Sci. 2024, 25, 8676. [Google Scholar] [CrossRef]
- Tomita, I.; Kume, S.; Sugahara, S.; Osawa, N.; Yamahara, K.; Yasuda-Yamahara, M.; Takeda, N.; Chin-Kanasaki, M.; Kaneko, T.; Mayoux, E.; et al. SGLT2 Inhibition Mediates Protection from Diabetic Kidney Disease by Promoting Ketone Body-Induced MTORC1 Inhibition. Cell Metab. 2020, 32, 404–419.e6. [Google Scholar] [CrossRef]
- Jaikumkao, K.; Promsan, S.; Thongnak, L.; Swe, M.T.; Tapanya, M.; Htun, K.T.; Kothan, S.; Intachai, N.; Lungkaphin, A. Dapagliflozin Ameliorates Pancreatic Injury and Activates Kidney Autophagy by Modulating the AMPK/MTOR Signaling Pathway in Obese Rats. J. Cell. Physiol. 2021, 236, 6424–6440. [Google Scholar] [CrossRef]
- Lindman, B.R.; Dweck, M.R.; Lancellotti, P.; Généreux, P.; Piérard, L.A.; O’Gara, P.T.; Bonow, R.O. Management of Asymptomatic Severe Aortic Stenosis: Evolving Concepts in Timing of Valve Replacement. JACC Cardiovasc. Imaging 2020, 13, 481–493. [Google Scholar] [CrossRef]
- Treibel, T.A.; Kozor, R.; Schofield, R.; Benedetti, G.; Fontana, M.; Bhuva, A.N.; Sheikh, A.; López, B.; González, A.; Manisty, C.; et al. Reverse Myocardial Remodeling Following Valve Replacement in Patients with Aortic Stenosis. J. Am. Coll. Cardiol. 2018, 71, 860–871. [Google Scholar] [CrossRef]
- Ducharme-Smith, A.; Chahal, C.A.A.; Sawatari, H.; Podboy, A.; Sherif, A.; Scott, C.G.; Brady, P.A.; Gersh, B.J.; Somers, V.K.; Nkomo, V.T.; et al. Relationship Between Anemia and Sudden Cardiac Death in Patients with Severe Aortic Stenosis. Am. J. Cardiol. 2020, 136, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Xarrié, E.; Asmarats, L.; Roqué-Figuls, M.; Millán, X.; Li, C.H.P.; Fernández-Peregrina, E.; Sánchez-Ceña, J.; Massó van Roessel, A.; Maestre Hittinger, M.L.; Paniagua, P.; et al. Impact of Baseline Anemia in Patients Undergoing Transcatheter Aortic Valve Replacement: A Prognostic Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 6025. [Google Scholar] [CrossRef]
- Mazer, C.D.; Hare, G.M.T.; Connelly, P.W.; Gilbert, R.E.; Shehata, N.; Quan, A.; Teoh, H.; Leiter, L.A.; Zinman, B.; Jüni, P.; et al. Effect of Empagliflozin on Erythropoietin Levels, Iron Stores, and Red Blood Cell Morphology in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease. Circulation 2020, 141, 704–707. [Google Scholar] [CrossRef]
- Angermann, C.E.; Sehner, S.; Gerhardt, L.M.S.; Santos-Gallego, C.G.; Requena-Ibanez, J.A.; Zeller, T.; Maack, C.; Sanz, J.; Frantz, S.; Ertl, G.; et al. Anaemia Predicts Iron Homoeostasis Dysregulation and Modulates the Response to Empagliflozin in Heart Failure with Reduced Ejection Fraction: The EMPATROPISM-FE Trial. Eur. Heart J. 2025, 46, 1507–1523. [Google Scholar] [CrossRef]
- Packer, M. Mechanisms of Enhanced Renal and Hepatic Erythropoietin Synthesis by Sodium–Glucose Cotransporter 2 Inhibitors. Eur. Heart J. 2023, 44, 5027–5035. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fu, R.; Liu, H.; Ma, Y.; Qiu, X.; Dong, Z. The Effects of Sodium Glucose Co-Transporter (SGLT) 2 Inhibitors on Hematocrit Levels: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Ann. Palliat. Med. 2021, 10, 6467–6481. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.; Zhang, Z.; Shah, H.; Fanaroff, A.C.; Nathan, A.S.; Parise, H.; Lutz, J.; Sugeng, L.; Bellumkonda, L.; Redfors, B.; et al. Effect of Sodium-Glucose Cotransporter-2 Inhibitors on the Progression of Aortic Stenosis. JACC Cardiovasc. Interv. 2025, 18, 738–748. [Google Scholar] [CrossRef]
- Jariwala, P.; Kulkarni, G.P.; Punjani, A.; Boorugu, H.; Gude, D. Role of Empagliflozin in Heart Failure with Severe Aortic Stenosis before Valve Replacement: EASTER-HF Study. Indian Heart J. 2024, 76, 207–209. [Google Scholar] [CrossRef]
- Paolisso, P.; Belmonte, M.; Gallinoro, E.; Scarsini, R.; Bergamaschi, L.; Portolan, L.; Armillotta, M.; Esposito, G.; Moscarella, E.; Benfari, G.; et al. SGLT2-Inhibitors in Diabetic Patients with Severe Aortic Stenosis and Cardiac Damage Undergoing Transcatheter Aortic Valve Implantation (TAVI). Cardiovasc. Diabetol. 2024, 23, 420. [Google Scholar] [CrossRef]
- Raposeiras-Roubín, S.; Amat-Santos, I.J.; Rossello, X.; González Ferreiro, R.; González Bermúdez, I.; Lopez Otero, D.; Nombela-Franco, L.; Gheorghe, L.; Diez, J.L.; Baladrón Zorita, C.; et al. Dapagliflozin in Patients Undergoing Transcatheter Aortic-Valve Implantation. N. Engl. J. Med. 2025, 392, 1396–1405. [Google Scholar] [CrossRef]
- Thakkar, S.; Nair, A.; Samimi, S.; Kharsa, C.; Zaid, S.; Aoun, J.; Desai, P.; Faza, N.; Little, S.; Atkins, M.; et al. TCT-184 Comparative Outcomes of SGLT2 Inhibitors in Patients Undergoing Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2024, 84, B9. [Google Scholar] [CrossRef]
- Abdelfattah, O.M.; Jacquemyn, X.; Sá, M.P.; Jneid, H.; Sultan, I.; Cohen, D.J.; Gillam, L.D.; Aron, L.; Clavel, M.-A.; Pibarot, P.; et al. Cardiac Damage Staging Predicts Outcomes in Aortic Valve Stenosis After Aortic Valve Replacement: Meta-Analysis. JACC Adv. 2024, 3, 100959. [Google Scholar] [CrossRef] [PubMed]
- Okumus, N.; Abraham, S.; Puri, R.; Tang, W.H.W. Aortic Valve Disease, Transcatheter Aortic Valve Replacement, and the Heart Failure Patient: A State-of-the-Art Review. JACC Heart Fail. 2023, 11, 1070–1083. [Google Scholar] [CrossRef]
- Thornton, G.D.; Musa, T.A.; Rigolli, M.; Loudon, M.; Chin, C.; Pica, S.; Malley, T.; Foley, J.R.J.; Vassiliou, V.S.; Davies, R.H.; et al. Association of Myocardial Fibrosis and Stroke Volume by Cardiovascular Magnetic Resonance in Patients with Severe Aortic Stenosis with Outcome After Valve Replacement: The British Society of Cardiovascular Magnetic Resonance AS700 Study. JAMA Cardiol. 2022, 7, 513–520. [Google Scholar] [CrossRef]
- Evertz, R.; Hub, S.; Beuthner, B.E.; Backhaus, S.J.; Lange, T.; Schulz, A.; Toischer, K.; Seidler, T.; von Haehling, S.; Puls, M.; et al. Aortic Valve Calcification and Myocardial Fibrosis Determine Outcome Following Transcatheter Aortic Valve Replacement. ESC Heart Fail. 2023, 10, 2307–2318. [Google Scholar] [CrossRef] [PubMed]
- Fukutomi, M.; Onishi, T.; Ando, T.; Higuchi, R.; Hagiya, K.; Saji, M.; Takamisawa, I.; Iguchi, N.; Takayama, M.; Shimizu, A.; et al. Impact of Prior Hospitalization for Heart Failure on Clinical Outcomes of Patients after Transcatheter Aortic Valve Implantation with New-Generation Devices: Insights from the LAPLACE-TAVI Registry. Catheter. Cardiovasc. Interv. 2024, 104, 1469–1476. [Google Scholar] [CrossRef]
- Puls, M.; Beuthner, B.E.; Topci, R.; Jacob, C.F.; Steinhaus, K.E.; Paul, N.; Beißbarth, T.; Toischer, K.; Jacobshagen, C.; Hasenfuß, G. Patients with Paradoxical Low-Flow, Low-Gradient Aortic Stenosis Gain the Least Benefit from TAVI among All Hemodynamic Subtypes. Clin. Res. Cardiol. 2024. [Google Scholar] [CrossRef]
- Thyregod, H.G.H.; Jørgensen, T.H.; Ihlemann, N.; Steinbrüchel, D.A.; Nissen, H.; Kjeldsen, B.J.; Petursson, P.; De Backer, O.; Olsen, P.S.; Søndergaard, L. Transcatheter or Surgical Aortic Valve Implantation: 10-Year Outcomes of the NOTION Trial. Eur. Heart J. 2024, 45, 1116–1124. [Google Scholar] [CrossRef]
- Lopez-Martinez, H.; Vilalta, V.; Farjat-Pasos, J.; Ferrer-Sistach, E.; Mohammadi, S.; Escabia, C.; Kalavrouziotis, D.; Resta, H.; Borrellas, A.; Dumont, E.; et al. Heart Failure Hospitalization Following Surgical or Transcatheter Aortic Valve Implantation in Low-Risk Aortic Stenosis. ESC Heart Fail. 2024, 11, 2531–2541. [Google Scholar] [CrossRef]
- Saijo, Y.; Kusunose, K.; Takahashi, T.; Yamada, H.; Sata, M.; Sato, K.; Albakaa, N.; Ishizu, T.; Seo, Y.; Izumo, M.; et al. Impact of Transcatheter Aortic Valve Replacement on Cardiac Reverse Remodeling and Prognosis in Mixed Aortic Valve Disease. J. Am. Heart Assoc. 2024, 13, e033289. [Google Scholar] [CrossRef]
- Wagener, M.; Reuthebuch, O.; Heg, D.; Tüller, D.; Ferrari, E.; Grünenfelder, J.; Huber, C.; Moarof, I.; Muller, O.; Nietlispach, F.; et al. Clinical Outcomes in High-Gradient, Classical Low-Flow, Low-Gradient, and Paradoxical Low-Flow, Low-Gradient Aortic Stenosis After Transcatheter Aortic Valve Implantation: A Report from the SwissTAVI Registry. J. Am. Heart Assoc. 2023, 12, e029489. [Google Scholar] [CrossRef]
- Jakulla, R.S.; Gunta, S.P.; Huded, C.P. Heart Failure after Aortic Valve Replacement: Incidence, Risk Factors, and Implications. J. Clin. Med. 2023, 12, 6048. [Google Scholar] [CrossRef] [PubMed]
- Amat-Santos, I.J.; Sánchez-Luna, J.P.; Abu-Assi, E.; Melendo-Viu, M.; Cruz-Gonzalez, I.; Nombela-Franco, L.; Muñoz-Garcí, A.J.; Blas, S.G.; de la Torre Hernandez, J.M.; Romaguera, R.; et al. Rationale and Design of the Dapagliflozin after Transcatheter Aortic Valve Implantation (DapaTAVI) Randomized Trial. Eur. J. Heart Fail. 2022, 24, 581–588. [Google Scholar] [CrossRef]
- Usman, M.S.; Bhatt, D.L.; Hameed, I.; Anker, S.D.; Cheng, A.Y.Y.; Hernandez, A.F.; Jones, W.S.; Khan, M.S.; Petrie, M.C.; Udell, J.A.; et al. Effect of SGLT2 Inhibitors on Heart Failure Outcomes and Cardiovascular Death across the Cardiometabolic Disease Spectrum: A Systematic Review and Meta-Analysis. Lancet Diabetes Endocrinol. 2024, 12, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.S.; Siddiqi, T.J.; Anker, S.D.; Bakris, G.L.; Bhatt, D.L.; Filippatos, G.; Fonarow, G.C.; Greene, S.J.; Januzzi, J.L.J.; Khan, M.S.; et al. Effect of SGLT2 Inhibitors on Cardiovascular Outcomes Across Various Patient Populations. J. Am. Coll. Cardiol. 2023, 81, 2377–2387. [Google Scholar] [CrossRef]
- Karakasis, P.; Pamporis, K.; Stachteas, P.; Patoulias, D.; Bougioukas, K.I.; Fragakis, N. Efficacy and Safety of Sodium-Glucose Cotransporter-2 Inhibitors in Heart Failure with Mildly Reduced or Preserved Ejection Fraction: An Overview of 36 Systematic Reviews. Heart Fail. Rev. 2023, 28, 1033–1051. [Google Scholar] [CrossRef]
- Stachteas, P.; Nasoufidou, A.; Patoulias, D.; Karakasis, P.; Karagiannidis, E.; Mourtzos, M.-A.; Samaras, A.; Apostolidou, X.; Fragakis, N. The Role of Sodium-Glucose Co-Transporter-2 Inhibitors on Diuretic Resistance in Heart Failure. Int. J. Mol. Sci. 2024, 25, 3122. [Google Scholar] [CrossRef] [PubMed]
- Karakasis, P.; Theofilis, P.; Patoulias, D.; Schuermans, A.; Vlachakis, P.K.; Klisic, A.; Rizzo, M.; Fragakis, N. Sodium-Glucose Cotransporter 2 Inhibitors and Outcomes in Transthyretin Amyloid Cardiomyopathy: Systematic Review and Meta-Analysis. Eur. J. Clin. Investig. 2025, e14392. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Giannakoulas, G.; Rosenkranz, S.; Fragakis, N. Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Pulmonary Arterial Wedge Pressure. Eur. J. Intern. Med. 2024, 124, 147–149. [Google Scholar] [CrossRef]
- Olivotto, I.; Oreziak, A.; Barriales-Villa, R.; Abraham, T.P.; Masri, A.; Garcia-Pavia, P.; Saberi, S.; Lakdawala, N.K.; Wheeler, M.T.; Owens, A.; et al. Mavacamten for Treatment of Symptomatic Obstructive Hypertrophic Cardiomyopathy (EXPLORER-HCM): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2020, 396, 759–769. [Google Scholar] [CrossRef]
- Ho, C.Y.; Mealiffe, M.E.; Bach, R.G.; Bhattacharya, M.; Choudhury, L.; Edelberg, J.M.; Hegde, S.M.; Jacoby, D.; Lakdawala, N.K.; Lester, S.J.; et al. Evaluation of Mavacamten in Symptomatic Patients with Nonobstructive Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2020, 75, 2649–2660. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.B. Drugs Targeting the Sarcomere in Heart Failure and Hypertrophic Cardiomyopathy. Nat. Rev. Cardiol. 2021, 18, 71. [Google Scholar] [CrossRef]
- Saberi, S.; Cardim, N.; Yamani, M.; Schulz-Menger, J.; Li, W.; Florea, V.; Sehnert, A.J.; Kwong, R.Y.; Jerosch-Herold, M.; Masri, A.; et al. Mavacamten Favorably Impacts Cardiac Structure in Obstructive Hypertrophic Cardiomyopathy: EXPLORER-HCM Cardiac Magnetic Resonance Substudy Analysis. Circulation 2021, 143, 606–608. [Google Scholar] [CrossRef]
- Hansson, N.H.; Sörensen, J.; Harms, H.J.; Kim, W.Y.; Nielsen, R.; Tolbod, L.P.; Frøkiær, J.; Bouchelouche, K.; Dodt, K.K.; Sihm, I.; et al. Metoprolol Reduces Hemodynamic and Metabolic Overload in Asymptomatic Aortic Valve Stenosis Patients: A Randomized Trial. Circ. Cardiovasc. Imaging 2017, 10, e006557. [Google Scholar] [CrossRef]
- Rossi, A.; Temporelli, P.L.; Cicoira, M.; Gaibazzi, N.; Cioffi, G.; Nistri, S.; Magatelli, M.; Tavazzi, L.; Faggiano, P. Beta-Blockers Can Improve Survival in Medically-Treated Patients with Severe Symptomatic Aortic Stenosis. Int. J. Cardiol. 2015, 190, 15–17. [Google Scholar] [CrossRef]
- Hansson, E.C.; Martinsson, A.; Baranowska, J.; Törngren, C.; Pan, E.; Björklund, E.; Karlsson, M. Betablockers and Clinical Outcome after Surgical Aortic Valve Replacement: A Report from the SWEDEHEART Registry. Eur. J. Cardio-Thorac. Surg. 2024, 66, ezae365. [Google Scholar] [CrossRef] [PubMed]
- Bang, C.N.; Greve, A.M.; Rossebø, A.B.; Ray, S.; Egstrup, K.; Boman, K.; Nienaber, C.; Okin, P.M.; Devereux, R.B.; Wachtell, K. Antihypertensive Treatment with β-Blockade in Patients with Asymptomatic Aortic Stenosis and Association with Cardiovascular Events. J. Am. Heart Assoc. 2017, 6, e006709. [Google Scholar] [CrossRef]
- Shumkova, M.; De Oliveira, E.O.; Hrubyak, L.H.; Beles, M.B.; Bertolone, D.T.B.; Ratti, A.R.; Adeo, L.A.; Viscusi, M.V.; Barbato, E.B.; Wyffels, E.W.; et al. Continuation of Beta-Blockers at Discharge Is Associated with Improved Outcome in Patients with HFpEF and Concomitant Moderate Aortic Stenosis. Eur. Heart J. 2024, 45, 1051. [Google Scholar] [CrossRef]
- Hopfgarten, J.; James, S.; Lindhagen, L.; Baron, T.; Ståhle, E.; Christersson, C. Medical Treatment of Heart Failure with Renin-Angiotensin-Aldosterone System Inhibitors and Beta-Blockers in Aortic Stenosis: Association with Long-Term Outcome after Aortic Valve Replacement. Eur. Heart J. Open 2024, 4, oeae039. [Google Scholar] [CrossRef]
- Bull, S.; Loudon, M.; Francis, J.M.; Joseph, J.; Gerry, S.; Karamitsos, T.D.; Prendergast, B.D.; Banning, A.P.; Neubauer, S.; Myerson, S.G. A Prospective, Double-Blind, Randomized Controlled Trial of the Angiotensin-Converting Enzyme Inhibitor Ramipril in Aortic Stenosis (RIAS Trial). Eur. Heart J. Cardiovasc. Imaging 2015, 16, 834–841. [Google Scholar] [CrossRef]
- Goel, S.S.; Kleiman, N.S.; Zoghbi, W.A.; Reardon, M.J.; Kapadia, S.R. Renin-Angiotensin System Blockade in Aortic Stenosis: Implications Before and After Aortic Valve Replacement. J. Am. Heart Assoc. 2020, 9, e016911. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, T.; Saito, S.; Yamanaka, F.; Shishido, K.; Tanaka, Y.; Yamabe, T.; Shirai, S.; Tada, N.; Araki, M.; Naganuma, T.; et al. Renin-Angiotensin System Blockade Therapy after Transcatheter Aortic Valve Implantation. Heart 2018, 104, 644–651. [Google Scholar] [CrossRef]
- Rodriguez-Gabella, T.; Catalá, P.; Muñoz-García, A.J.; Nombela-Franco, L.; Del Valle, R.; Gutiérrez, E.; Regueiro, A.; Jimenez-Diaz, V.A.; Ribeiro, H.B.; Rivero, F.; et al. Renin-Angiotensin System Inhibition Following Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2019, 74, 631–641. [Google Scholar] [CrossRef]
- Inohara, T.; Manandhar, P.; Kosinski, A.S.; Matsouaka, R.A.; Kohsaka, S.; Mentz, R.J.; Thourani, V.H.; Carroll, J.D.; Kirtane, A.J.; Bavaria, J.E.; et al. Association of Renin-Angiotensin Inhibitor Treatment with Mortality and Heart Failure Readmission in Patients with Transcatheter Aortic Valve Replacement. JAMA 2018, 320, 2231–2241. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Redfors, B.; Nazif, T.; Kirtane, A.; Crowley, A.; Ben-Yehuda, O.; Kapadia, S.; Finn, M.T.; Goel, S.; Lindman, B.R.; et al. Impact of Renin–Angiotensin System Inhibitors on Clinical Outcomes in Patients with Severe Aortic Stenosis Undergoing Transcatheter Aortic Valve Replacement: An Analysis of from the PARTNER 2 Trial and Registries. Eur. Heart J. 2020, 41, 943–954. [Google Scholar] [CrossRef]
- Chockalingam, A.; Venkatesan, S.; Subramaniam, T.; Jagannathan, V.; Elangovan, S.; Alagesan, R.; Gnanavelu, G.; Dorairajan, S.; Krishna, B.P.; Chockalingam, V. Safety and Efficacy of Angiotensin-Converting Enzyme Inhibitors in Symptomatic Severe Aortic Stenosis: Symptomatic Cardiac Obstruction-Pilot Study of Enalapril in Aortic Stenosis (SCOPE-AS). Am. Heart J. 2004, 147, 740. [Google Scholar] [CrossRef]
- Bang, C.N.; Greve, A.M.; Køber, L.; Rossebø, A.B.; Ray, S.; Boman, K.; Nienaber, C.A.; Devereux, R.B.; Wachtell, K. Renin-Angiotensin System Inhibition Is Not Associated with Increased Sudden Cardiac Death, Cardiovascular Mortality or All-Cause Mortality in Patients with Aortic Stenosis. Int. J. Cardiol. 2014, 175, 492–498. [Google Scholar] [CrossRef]
- Dalsgaard, M.; Iversen, K.; Kjaergaard, J.; Grande, P.; Goetze, J.P.; Clemmensen, P.; Hassager, C. Short-Term Hemodynamic Effect of Angiotensin-Converting Enzyme Inhibition in Patients with Severe Aortic Stenosis: A Placebo-Controlled, Randomized Study. Am. Heart J. 2014, 167, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Takeji, Y.; Taniguchi, T.; Morimoto, T.; Shirai, S.; Kitai, T.; Tabata, H.; Ohno, N.; Murai, R.; Osakada, K.; et al. Safety of Calcium Channel Blockers in Patients with Severe Aortic Stenosis and Hypertension. Circ. J. 2024. [Google Scholar] [CrossRef]
- Saeed, S.; Mancia, G.; Rajani, R.; Parkin, D.; Chambers, J.B. Antihypertensive Treatment with Calcium Channel Blockers in Patients with Moderate or Severe Aortic Stenosis: Relationship with All-Cause Mortality. Int. J. Cardiol. 2020, 298, 122–125. [Google Scholar] [CrossRef]
- Miyahara, D.; Izumo, M.; Sato, Y.; Shoji, T.; Yamaga, M.; Sekiguchi, M.; Tanaka, T.; Kobayashi, Y.; Kai, T.; Okuno, T.; et al. Calcium Channel Blocker Use and Outcomes Following Transcatheter Aortic Valve Intervention for Aortic Stenosis. Cardiovasc. Interv. Ther. 2025, 40, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Claveau, D.; Piha-Gossack, A.; Friedland, S.N.; Afilalo, J.; Rudski, L. Complications Associated with Nitrate Use in Patients Presenting with Acute Pulmonary Edema and Concomitant Moderate or Severe Aortic Stenosis. Ann. Emerg. Med. 2015, 66, 355–362.e1. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.; Silva, A.L.; Ramalho, R.; Vieira, M.J.; Goncalves, L.; Teixeira, R. The Use of Sublingual Nitroglycerin in Patients with Severe Aortic Stenosis before Cardiac CT-Prospective Suty. Eur. Hear. J.-Cardiovasc. Imaging 2024, 25, jeae142. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
Author, Year | Model/Study Design | Key Molecular Targets or Pathways | Main Findings | Implications for AS |
---|---|---|---|---|
Zheng et al., 2025 [82] | Retrospective cohort; 4964 T2DM patients (1942 SGLT2i users) | Inflammation (CRP, neutrophils, lymphocytes), oxidative stress (uric acid, bilirubin, GGT) | SGLT2i use was associated with a 9% lower risk of aortic aneurysm (adjusted HR: 0.91, p = 0.001); effects mediated in part by reductions in inflammatory and oxidative stress markers. Dapagliflozin and empagliflozin showed the strongest risk reduction. | Supports anti-inflammatory and antioxidative effects of SGLT2i; suggests vascular benefits may extend to aortic pathology, relevant for AS patients with vascular remodeling and inflammation. |
Alsereidi et al., 2024 [83] | In vitro (cardiomyocytes, aortic endothelial cells, SC-β cells) | AKT/PI3K, SGLT2, NHE1, GLUT1, NRF2, MAPK, NF-κB, NLRP3 | Dapagliflozin attenuated ISO-induced cardiomyocyte hypertrophy and inflammation via AKT/PI3K activation, reduced ROS, and suppressed NLRP3 inflammasome activity. In AECs, it restored eNOS expression, suppressed TNFα-induced NF-κB and VCAM/ICAM expression, and reduced GRP78 (ER stress marker). In SC-β cells, DAPA enhanced insulin functionality and MAFA expression while reducing NHE1 and GRP78 expression under inflammatory stress. | Demonstrates multifaceted anti-inflammatory, antioxidant, and anti-hypertrophic effects of SGLT2i across relevant cardiovascular and endocrine cell types, supporting their therapeutic potential in AS-associated myocardial and vascular remodeling. |
Yue et al., 2024 [84] | Obese mice model; aortic proteomics with empagliflozin intervention (10 mg/kg/day for 12 weeks) | Fatty acid metabolism (FASN, SCD3, ACSL1, ACSL5), mitochondrial energetics, aortic stiffness (PWV) | Empagliflozin reduced expression of FASN, SCD3, ACSL1, and ACSL5 in the aorta; improved lipid/glucose profile; attenuated aortic stiffness (PWV ↓), collagen deposition, and endothelial injury. Proteomics confirmed shift in metabolic pathways. | Suggests empagliflozin may modulate aortic fatty acid metabolism, reduce stiffness, and preserve vascular integrity—mechanisms relevant to AS progression and its vascular complications. |
Wen et al., 2024 [85] | Murine model; transverse aortic constriction (TAC) with Langendorff-perfused heart analysis | INaL (late Na+ current), p-CaMKII, Nav1.5, NCX, RyR2, Ca2+ transient alternans, CaTD80, TTP100 | Empagliflozin attenuated TAC-induced cardiac hypertrophy, restored ejection fraction and fractional shortening, and reversed electrophysiologic remodeling (shortened APD80, improved Ca2+ handling, reduced arrhythmogenicity). It reduced p-CaMKII and Nav1.5 expression and improved Ca2+ transient kinetics and alternans under isoproterenol stress. | Demonstrates that empagliflozin counteracts pressure overload-induced cardiac remodeling, restores Ca2+ homeostasis, and prevents ventricular arrhythmias—findings highly relevant to AS-associated hypertrophy and decompensation. |
Chandrasekar et al., 2023 [86] | In vitro (human aortic SMCs exposed to OxLDL); molecular assays and confocal microscopy | RECK, MMP2/9, miR-30b, NF-κB, CT-1, LIFR, gp130 | Empagliflozin reversed OxLDL-induced miR-30b expression and RECK suppression; inhibited MMP2/9 activation, SMC proliferation/migration, and inflammatory phenotype. Also inhibited CT-1-mediated mitogenic effects via LIFR/gp130. | Highlights empagliflozin’s direct vascular protective effects in modulating matrix remodeling, inflammation, and oxidative stress—relevant to aortic wall changes and valvular sclerosis in AS. |
Campeau et al., 2024 [87] | In vitro (human aortic endothelial cells exposed to tunicamycin-induced ER stress) | TXNIP, NLRP3, CHOP, phospho-eIF2α/eIF2α, NRF2 | Empagliflozin (50–100 µM) reduced tunicamycin-induced ER stress and inflammation in ECs by downregulating CHOP, TXNIP, and NLRP3 and dampening NRF2 nuclear translocation. Effects were dose-dependent. | Supports a role for SGLT2i in reducing endothelial ER stress and inflammasome activation, mechanisms implicated in valvular inflammation and aortic endothelial dysfunction in AS. |
Kawade et al., 2023 [88] | Diet-induced obese mice; luseogliflozin treatment with free or paired feeding | SOD2, ROS, ICAM-1, VCAM-1, MCP-1, FFA-induced oxidative stress | Luseogliflozin improved endothelial function by increasing SOD2 expression and reducing ROS in the thoracic aorta. It reversed FFA-induced endothelial dysfunction and metabolic abnormalities under caloric restriction. | Provides mechanistic evidence that SGLT2i enhances vascular antioxidant defenses and restores endothelial function—critical processes in AS-related aortic remodeling. |
Liu et al., 2022 [89] | Murine model of AAA (PPE-induced); dapagliflozin 1 or 5 mg/kg for 14 days | Inflammation (macrophages, T/B cells), MMP2/9, angiogenesis (CD31), SMCs | Dapagliflozin reduced aneurysm formation and progression by decreasing aortic leukocyte infiltration, attenuating MMP2/9 expression, preserving SMCs, and reducing mural angiogenesis. Also limited progression of existing AAAs. | Reinforces anti-inflammatory, anti-proteolytic, and vascular-stabilizing effects of SGLT2i; may translate to benefits in AS-related aortic wall inflammation and remodeling. |
Ashry et al., 2021 [90] | Hypercholesterolemic rabbit model; canagliflozin (10 mg/kg/day) for 4 weeks | Oxidative stress (SOD, MDA, GSH), NOx, CRP, PPARγ, endothelial function | Canagliflozin improved lipid profile, decreased CRP and oxidative markers (MDA, NOx), restored antioxidant enzymes (SOD, GSH), and enhanced acetylcholine-induced aortic relaxation. It also reduced aortic intima/media ratio and atherosclerotic lesion area. | Provides evidence for vascular protective effects of SGLT2i via anti-inflammatory, antioxidative, and endothelial mechanisms, supporting their relevance in AS-associated vascular remodeling. |
Sukhanov et al., 2021 [91] | In vitro (human aortic SMC); IL-17A stimulation ± empagliflozin (1 µM) | TRAF3IP2, ROS, NLRP3, caspase-1, IL-1β, IL-18 | Empagliflozin inhibited IL-17A-induced oxidative stress, NLRP3 expression, caspase-1 activation, and IL-1β/IL-18 secretion in SMCs. Reduced SMC proliferation and migration were observed, independent of glucose levels. | Provides strong mechanistic support for anti-inflammatory and anti-remodeling effects of empagliflozin in aortic smooth muscle—a key cellular contributor to vascular thickening and stiffness in AS. |
Ortega et al., 2019 [92] | ApoE−/− mice infused with Ang II; empagliflozin 1 or 3 mg/kg/day for 28 days | CCL-2, CCL-5, VEGF, MMP-2/9, TIMP-1, p38 MAPK, NF-κB, VCAM-1, ICAM-1 | Empagliflozin significantly reduced Ang II induced dissecting AAA by limiting aortic dilation, elastin degradation, macrophage infiltration, and neovascularization. It downregulated inflammatory chemokines, MMPs, and endothelial adhesion molecules. Also inhibited activation of p38 MAPK and NF-κB pathways and preserved SMCs. | Demonstrates robust vascular anti-inflammatory and anti-proteolytic effects of empagliflozin; supports potential role in modulating aortic wall integrity and inflammation relevant to AS progression and complications. |
El-Daly et al., 2018 [93] | In vitro (mouse aortic rings, endothelial cells); hyperglycemia-induced dysfunction model | SGLT2, ROS, NADPH oxidase, Src, EGFR, PKC, Rho-kinase, eNOS, PAR2 | Hyperglycemia impaired PAR2-mediated vasodilation via ROS generation and downstream signaling. Empagliflozin preserved endothelial NO-dependent vasodilation by inhibiting SGLT2-mediated glucose uptake, reducing ROS, and modulating NADPH oxidase, EGFR/Src/PKC/Rho-kinase signaling. | Highlights aortic endothelial expression of SGLT2 and provides mechanistic basis for vascular protection via antioxidative, eNOS-preserving pathways—highly relevant for AS-associated endothelial dysfunction. |
Solini et al., 2017 [94] | Pilot clinical study; 16 T2DM patients treated with dapagliflozin vs. 10 on HCT (2-day intervention) | Endothelial function (FMD), aortic stiffness (PWV), renal resistive index (RI), oxidative stress (urinary isoprostanes) | Dapagliflozin acutely improved FMD (2.8% → 4.0%), reduced PWV (10.1 → 8.9 m/s), and decreased RI (0.62 → 0.59). These effects occurred independently of natriuresis or blood glucose changes and were associated with a reduction in urinary isoprostanes. No similar vascular improvements were seen with HCT. | Provides early clinical evidence that SGLT2i enhances vascular function and reduces oxidative stress—mechanisms that may contribute to improved aortic and valvular compliance in AS. |
Urbano Pagan et al., 2023 [95] | Rat model of AS (supravalvular banding); empagliflozin 10 mg/kg/day for 8 weeks | Collagen I/III, IL-6, NF-κB (p65), glutathione peroxidase, MMP-2, catalase, lipid hydroperoxides | Empagliflozin improved LV remodeling and diastolic function and reduced interstitial fibrosis, oxidative stress, and inflammatory signaling (IL-6, p65 NF-κB). It enhanced antioxidant enzyme activity (GPx), modulated MMP-2 activation, and reduced myocardial collagen content. | Provides direct in vivo evidence that SGLT2i improves myocardial remodeling, oxidative balance, and diastolic function in AS—supporting disease-modifying potential in pressure overload-induced cardiac pathology. |
Author, Year | Study Design/Population | SGLT2 Inhibitor | Primary Endpoint(s) | Main Findings |
---|---|---|---|---|
Shah et al., 2025 [118] | Retrospective, multicenter target trial emulation; 11,698 patients with nonsevere AS (458 on SGLT2i, 11,240 not on SGLT2i) | Various (not specified individually) | Progression to severe AS | SGLT2i use was associated with a 39% lower risk of progression to severe AS (HR: 0.61; 95% CI: 0.39–0.94; p = 0.03); effect was stronger with longer exposure duration |
Scisciola et al., 2024 [98] | Observational biomarker study; 45 patients with severe AS (HG and LF–LG) vs. 10 controls undergoing non-valvular cardiac surgery | Focus on endogenous myocardial SGLT2 expression | Myocardial SGLT2 gene/protein expression and association with markers of cardiac remodeling | SGLT2 gene and protein expression were markedly elevated in LF–LG AS patients versus HG AS and controls, independently of diabetes. Expression correlated positively with fibrosis markers (TGF-β, collagen), inflammation (IL-6, NF-κB), metabolic dysregulation (GLUT4, PPAR-γ ↑, PPAR-α ↓), and oxidative stress (↓ SOD2). SGLT2 expression independently predicted reduced LVEF and was associated with maladaptive myocardial remodeling. |
Jariwala et al., 2024 [119] | Retrospective observational study; 40 patients with severe degenerative AS and heart failure (LVEF 30–80%), treated with empagliflozin (n = 20) or standard of care (n = 20) before AVR | Empagliflozin (10 mg daily) | Composite of heart failure hospitalization or cardiac death at 6 months | Empagliflozin significantly reduced 6-month HF hospitalization or death by 73% (RR: 0.27; p = 0.022). LVEF improved by +3.5%, and NT-proBNP decreased by 3975 pg/mL in the treatment group. Benefits observed across HFpEF and HFrEF phenotypes. No unexpected safety signals reported. |
Paolisso et al., 2024 [120] | Multicenter observational registry; 311 diabetic patients with severe AS, LVEF < 50%, and extra-valvular cardiac damage (EVCD) undergoing TAVI | Empagliflozin or Dapagliflozin | Composite of all-cause death and HF hospitalization (MACE) at 2 years | SGLT2i users had significantly higher rates of LV recovery and more often showed stable or improved EVCD. At 2 years, SGLT2i use was independently associated with reduced MACE (HR: 0.45), all-cause death (HR: 0.51), and HF hospitalization (HR: 0.40). The benefit was most evident in patients with baseline LVEF ≤ 30%, and emerged after the first 30 days post-TAVI. |
Raposeiras-Roubín et al., 2025 [121] | Randomized controlled trial (DapaTAVI); 1222 high-risk patients with severe AS undergoing TAVI, history of HF, and ≥1 risk factor (diabetes, renal dysfunction, or LVEF ≤ 40%) | Dapagliflozin (10 mg daily) | Composite of all-cause death or worsening heart failure at 1 year | Dapagliflozin significantly reduced the primary composite outcome (15.0% vs. 20.1%, HR: 0.72, p = 0.02). Significant reductions were observed in HF worsening (9.4% vs. 14.4%, SHR: 0.63), HF hospitalizations, and urgent visits. Benefits consistent across subgroups; genital infections and hypotension occurred more frequently with dapagliflozin. |
Thakkar et al., 2024 [122] | Retrospective cohort study; 67,604 patients with severe AS undergoing TAVI (2009–2024) using TriNetX network; 827 SGLT2i users vs. 827 non-users after propensity matching | Various (not specified) | Composite of all-cause mortality and HF hospitalization | SGLT2i use associated with lower risk of composite outcome (HR: 0.783; p = 0.004), HF hospitalization (HR: 0.799; p = 0.01), and acute kidney injury (HR: 0.563; p = 0.006); no significant difference in mortality, MI, stroke, or pacemaker implantation. |
Study | Design | Population | Intervention | Results |
---|---|---|---|---|
Hansson et al., 2017 [145] | Randomized, double-blind, placebo-controlled trial | 40 patients with asymptomatic moderate-severe aortic stenosis | Metoprolol (extended-release, 100 ± 53 mg/day) for 22 weeks | ↓ Heart rate by 8 bpm, ↑ ejection time by 26 ms, ↓ peak AV gradient by 7 mmHg, ↓ mean AV gradient by 4 mmHg, ↓ valvuloarterial impedance by 0.5 mmHg/mL·m2, ↓ myocardial oxygen consumption by 12%; stroke volume preserved; well tolerated |
Rossi et al., 2015 [146] | Retrospective observational study | 113 patients with symptomatic severe aortic stenosis (mean age 82 ± 8 years, 45% male) | Beta-blocker therapy (atenolol 16%, carvedilol 19%, metoprolol 5%, bisoprolol 60%) | ↓ all-cause mortality by 62% (HR 0.38, 95% CI 0.14–0.96, p = 0.04); mortality: 21% in BB group vs. 51% in non-BB group; effect consistent regardless of BAV status |
Hansson et al., 2024 [147] | Nationwide retrospective registry study (SWEDEHEART) | 11,849 patients undergoing isolated surgical aortic valve replacement (median follow-up: 5.4 years) | Beta-blocker therapy (cardioselective only, dispensed at 6 months post-SAVR) | Crude MACE rate: 6.5 vs. 5.1 events/100 pt-yrs with vs. without BB; adjusted HR for MACE: 1.14 (95% CI 1.05–1.23); no significant difference in all-cause death [HR 1.06 (0.98–1.15)], stroke [HR 1.07 (0.91–1.25)], or MI [HR 0.94 (0.71–1.25)]; association attenuated after adjusting for emerging comorbidities [HR 1.04 (0.95–1.14)] |
Bang et al., 2017 [148] | Post hoc analysis of a randomized controlled trial (SEAS study) | 1873 asymptomatic patients with mild to moderate aortic stenosis and preserved LVEF | Beta-blocker therapy at baseline (metoprolol 48%, bisoprolol 19%, atenolol 16%, others 17%) | ↓ all-cause mortality by 50% (HR 0.5, 95% CI 0.3–0.7, p < 0.001); ↓ cardiovascular death by 60% (HR 0.4, 95% CI 0.2–0.7, p < 0.001); ↓ sudden cardiac death by 80% (HR 0.2, 95% CI 0.1–0.6, p = 0.004); confirmed in competing risk analyses |
Shumkova et al., 2024 [149] | Observational cohort study | 61 patients with decompensated HFpEF and moderate aortic stenosis (mean age 82.7 ± 7.6 years) | Beta-blocker use at hospital discharge | ↓ all-cause mortality and HF hospitalization with beta-blocker use; HR for composite endpoint: 0.27 (95% CI 0.13–0.57, p < 0.01); survivors more likely discharged on BBs (66% vs. 34%, p < 0.05); better diastolic function (higher septal e′) associated with improved outcomes |
Hopfgarten et al., 2024 [150] | Nationwide retrospective cohort study (SWEDEHEART registry) | 4668 patients with heart failure undergoing aortic valve replacement (2008–2016) | Beta-blocker therapy post-AVR (75% exposure in both reduced and preserved LVEF groups) | ↓ all-cause mortality in reduced LVEF: HR 0.81 (95% CI 0.71–0.92); no mortality benefit in preserved LVEF: HR 0.87 (95% CI 0.69–1.10); no significant reduction in HF hospitalization in either group |
Bull et al., 2015 (RIAS trial) [151] | Randomized controlled trial | 100 asymptomatic patients with moderate/severe AS (mean age ~69 years, EF > 50%) | Ramipril 10 mg/day vs. placebo for 12 months | ↓ LV mass (−3.9 g vs. +4.5 g; p = 0.006), ↑ systolic tissue velocity (0.0 vs. −0.5 cm/s; p = 0.04), trend toward slower AV area reduction (0.0 vs. −0.2 cm2; p = 0.067), well tolerated; no significant difference in adverse events |
Goel et al., 2014 [152] | Retrospective cohort study | 1752 patients post-SAVR | ACEI/ARB after SAVR | ↑ 10-year survival (69% vs. 53%; p < 0.001) |
Ochiai et al., 2018 [153] | Retrospective multicenter cohort | 560 patients post-TAVR | ACEI/ARB post-TAVR | ↓ LV mass regression and 2-yr mortality (7.5% vs. 12.5%; p = 0.031) |
Rodriguez-Gabella et al., 2019 [154] | Retrospective multicenter cohort | 2785 patients post-TAVR | RAS blockade post-TAVR | ↓ CV death (5.6% vs. 9.5%; p < 0.001), ↓ stroke and HF rehospitalization |
Inohara et al., 2018 [155] | Retrospective registry analysis | 21,312 patients post-TAVR | RAS inhibitor at discharge post-TAVR | ↓ 1-year mortality (12.5% vs. 14.9%; HR 0.82), ↓ HF readmission |
Chen et al., 2020 [156] | Retrospective cohort (PARTNER 2) | 3979 patients in PARTNER 2 trial | Baseline ACEI/ARB before TAVR | ↓ 2-yr all-cause mortality (18.6% vs. 27.5%; p < 0.0001) |
Chockalingam et al., 2004 (SCOPE-AS) [157] | Randomized controlled trial | 56 patients with symptomatic severe AS (NYHA III–IV) | Enalapril (2.5 to 10 mg bid) vs. placebo for 4 weeks | Enalapril improved 6-min walk (+72 m vs. +27 m, p = 0.003), Borg index (−1.4 vs. −0.7, p = 0.03), NYHA class; well tolerated in patients with preserved LVEF; hypotension in 3 patients with low-normal BP and LV dysfunction |
Bang et al., 2014 [158] | Retrospective analysis of RCT (SEAS study) | 1873 asymptomatic patients with mild-to-moderate AS (mean follow-up: 4.3 years) | ACEI/ARB (n = 769) vs. no RASI (n = 1104) | No difference in SCD (HR 1.19, p = 0.694), CV mortality (HR 1.05, p = 0.854), or all-cause mortality (HR 0.81, p = 0.281); ↓ LVMI progression (p = 0.040), ↑ systolic BP reduction (p = 0.001); results confirmed in propensity-matched and time-varying Cox analyses |
Dalsgaard et al., 2014 [159] | Randomized controlled trial | 44 patients with severe AS (32 symptomatic, 12 asymptomatic; EF > 50%) | Trandolapril (up to 2 mg/day) vs. placebo for 3 days and up to 8 weeks | ↓ SBP (−14 ± 11 mmHg vs. −5 ± 13; p = 0.02), ↑ SAC (0.08 ± 0.16 vs. −0.05 ± 0.86 mL/m2/mmHg; p = 0.03), ↓ LVESV at follow-up (−7.8 vs. −0.5 mL; p = 0.04), ↓ NT-proBNP (−19 vs. 0.8 pmol/L; p = 0.04); no significant changes in CO, PCWP, gradients, or adverse events |
Yamamoto et al., 2024 (CURRENT AS Registry-2) [160] | Prospective multicenter observational registry with propensity score matching | 2460 patients with severe AS and hypertension (71.7% on CCBs) | Antihypertensive therapy with vs. without calcium channel blockers | 3-year all-cause death or HF hospitalization: 38.3% (CCB) vs. 38.7% (no CCB); HR 0.94 (95% CI 0.77–1.15; p = 0.56); ↓ sudden death in CCB group (4.2% vs. 5.2%; HR 0.48, p = 0.04); syncope: 1.1% vs. 1.0% (p = 0.74); comparable outcomes across age, AVR strategy, and AS severity |
Saeed et al., 2020 [161] | Retrospective observational cohort (EXTAS study) | 314 asymptomatic patients with moderate or severe AS (25% on CCBs) | Calcium channel blocker use vs. non-use | ↓ exercise time (8.3 vs. 10.1 min; p = 0.001); ↓ peak HR (120 vs. 138 bpm; p < 0.001); ↑ blunted BP response (49% vs. 33%; p = 0.013); ↑ all-cause mortality: 20.3% vs. 5.6%; HR 7.09 (95% CI 2.15–23.38; p = 0.001) |
Miyahara et al., 2025 [162] | Retrospective observational study with propensity score matching | 993 patients undergoing TAVI for severe AS (CCB use at discharge: 59.4%) | Calcium channel blocker use at discharge vs. non-use | Composite endpoint (death or HF hospitalization): HR 0.879; p = 0.409 (no significant difference); Subgroup with CAD showed improved prognosis with CCB use (p for interaction = 0.002); Median follow-up: 719 days |
Claveau et al., 2015 [163] | Retrospective cohort study | 195 ED episodes of acute pulmonary edema: 65 each with severe AS, moderate AS, and no AS | Sublingual or intravenous nitroglycerin in patients with and without AS | Clinically relevant hypotension: 26.2% (severe AS) vs. 23.1% (no AS); adjusted OR 0.99 (95% CI 0.41–2.41); Sustained SBP < 90 mmHg ≥ 30 min: 29.2% (severe AS), OR 2.34 (95% CI 0.91–6.01); No increased use of vasopressors or fluid boluses; in-hospital mortality: 15.4% (severe AS) |
Costa et al., 2024 [164] | Single-center prospective observational study | 113 patients with severe AS undergoing cardiac CT prior to TAVI | Sublingual nitroglycerin (0.5 mg) vs. no nitroglycerin before cardiac CT | SLN group: ↓ SBP by −17.4 ± 19.3 mmHg vs. −1.9 ± 20.0 mmHg in control (p = 0.009); only 2 patients in SLN group and 1 in control had SBP < 100 mmHg; no symptomatic hypotension; SLN considered safe for coronary assessment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakasis, P.; Theofilis, P.; Patoulias, D.; Vlachakis, P.K.; Pamporis, K.; Sagris, M.; Ktenopoulos, N.; Kassimis, G.; Antoniadis, A.P.; Fragakis, N. Sodium–Glucose Cotransporter 2 Inhibitors in Aortic Stenosis: Toward a Comprehensive Cardiometabolic Approach. Int. J. Mol. Sci. 2025, 26, 4494. https://doi.org/10.3390/ijms26104494
Karakasis P, Theofilis P, Patoulias D, Vlachakis PK, Pamporis K, Sagris M, Ktenopoulos N, Kassimis G, Antoniadis AP, Fragakis N. Sodium–Glucose Cotransporter 2 Inhibitors in Aortic Stenosis: Toward a Comprehensive Cardiometabolic Approach. International Journal of Molecular Sciences. 2025; 26(10):4494. https://doi.org/10.3390/ijms26104494
Chicago/Turabian StyleKarakasis, Paschalis, Panagiotis Theofilis, Dimitrios Patoulias, Panayotis K. Vlachakis, Konstantinos Pamporis, Marios Sagris, Nikolaos Ktenopoulos, George Kassimis, Antonios P. Antoniadis, and Nikolaos Fragakis. 2025. "Sodium–Glucose Cotransporter 2 Inhibitors in Aortic Stenosis: Toward a Comprehensive Cardiometabolic Approach" International Journal of Molecular Sciences 26, no. 10: 4494. https://doi.org/10.3390/ijms26104494
APA StyleKarakasis, P., Theofilis, P., Patoulias, D., Vlachakis, P. K., Pamporis, K., Sagris, M., Ktenopoulos, N., Kassimis, G., Antoniadis, A. P., & Fragakis, N. (2025). Sodium–Glucose Cotransporter 2 Inhibitors in Aortic Stenosis: Toward a Comprehensive Cardiometabolic Approach. International Journal of Molecular Sciences, 26(10), 4494. https://doi.org/10.3390/ijms26104494