From Biosynthesis to Legislation: A Review of Hydroxytyrosol’s Biological Functions and Safety
Abstract
1. Introduction
2. Synthesis Methods of HT
2.1. Natural Synthesis of HT
2.2. Enzyme-Mediated Synthesis of HT
2.3. Non-Transgenic Biosynthesis of HT
2.4. Transgenic Biosynthesis of HT
3. Biological Functions of HT
3.1. Antioxidant Activity
3.2. Anti-Inflammatory Activity
3.3. Cardiovascular Protection
3.4. Neuroprotective Effects
3.5. Antitumor Activity
4. Safety of HT
4.1. Animal Studies of HT: Absorption and Metabolism
4.2. Human Studies of HT: Absorption and Metabolism
4.3. Toxicity and Safety Studies of HT
4.4. Metabolism of HT
5. Legal Regulations of HT in Different Countries
5.1. United States
5.2. China
5.3. European Union
6. Future Research and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Achmon, Y.; Fishman, A. The Antioxidant Hydroxytyrosol: Biotechnological Production Challenges and Opportunities. Appl. Microbiol. Biotechnol. 2015, 99, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E. Benefits of the Mediterranean Diet: Insights From the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Zamora, L.; Peñalver, R.; Ros, G.; Nieto, G. Olive Tree Derivatives and Hydroxytyrosol: Their Potential Effects on Human Health and Its Use as Functional Ingredient in Meat. Foods 2021, 10, 2611. [Google Scholar] [CrossRef]
- Vijakumaran, U.; Shanmugam, J.; Heng, J.W.; Azman, S.S.; Yazid, M.D.; Haizum Abdullah, N.A.; Sulaiman, N. Effects of Hydroxytyrosol in Endothelial Functioning: A Comprehensive Review. Molecules 2023, 28, 1861. [Google Scholar] [CrossRef]
- Ramírez-Tejero, J.A.; Martínez-Lara, E.; Peinado, M.Á.; Del Moral, M.L.; Siles, E. Hydroxytyrosol as a Promising Ally in the Treatment of Fibromyalgia. Nutrients 2020, 12, 2386. [Google Scholar] [CrossRef]
- Visioli, F.; Davalos, A.; López De Las Hazas, M.; Crespo, M.C.; Tomé-Carneiro, J. An Overview of the Pharmacology of Olive Oil and Its Active Ingredients. Br. J. Pharmacol. 2020, 177, 1316–1330. [Google Scholar] [CrossRef]
- Crespo, M.C.; Tomé-Carneiro, J.; Dávalos, A.; Visioli, F. Pharma-Nutritional Properties of Olive Oil Phenols. Transfer of New Findings to Human Nutrition. Foods 2018, 7, 90. [Google Scholar] [CrossRef]
- Chen, C.; Chen, L.; Zhou, J.; Cai, R.; Ye, Z.; Zhang, D. Anti-Psoriasis Activities of Hydroxytyrosol on HaCaT Cells under Psoriatic Inflammation in Vitro. Immunopharmacol. Immunotoxicol. 2023, 45, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Muñoz, J.L.; Garcia-Molina, F.; Varon, R.; Garcia-Ruíz, P.A.; Tudela, J.; Garcia-Cánovas, F.; Rodríguez-López, J.N. Suicide Inactivation of the Diphenolase and Monophenolase Activities of Tyrosinase. IUBMB Life 2010, 62, 539–547. [Google Scholar] [CrossRef]
- Newair, E.F.; Khairy, M.; Ismael, M.; Al-Anazi, A.; White, R.J.; Dionysiou, D.D. Monitoring the Oxidative Function of Hydroxytyrosol and Potential Interactions with Glutathione Produced by Human Cells. Microchem. J. 2024, 197, 109863. [Google Scholar] [CrossRef]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L.; Ramirez-Tortosa, M. Hydroxytyrosol: Bioavailability, Toxicity, and Clinical Applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Çelik, G.; Saygın, Ö.; Akmehmet Balcıoğlu, I. Multistage Recovery Process of Phenolic Antioxidants with a Focus on Hydroxytyrosol from Olive Mill Wastewater Concentrates. Sep. Purif. Technol. 2021, 259, 117757. [Google Scholar] [CrossRef]
- De Marco, E.; Savarese, M.; Paduano, A.; Sacchi, R. Characterization and Fractionation of Phenolic Compounds Extracted from Olive Oil Mill Wastewaters. Food Chem. 2007, 104, 858–867. [Google Scholar] [CrossRef]
- Mauro, M.D.D.; Fava, G.; Spampinato, M.; Aleo, D.; Melilli, B.; Saita, M.G.; Centonze, G.; Maggiore, R.; D’Antona, N. Polyphenolic Fraction from Olive Mill Wastewater: Scale-Up and in Vitro Studies for Ophthalmic Nutraceutical Applications. Antioxidants 2019, 8, 462. [Google Scholar] [CrossRef]
- Yangui, A.; Njimou, J.R.; Cicci, A.; Bravi, M.; Abderrabba, M.; Chianese, A. Competitive Adsorption, Selectivity and Separation of Valuable Hydroxytyrosol and Toxic Phenol from Olive Mill Wastewater. J. Environ. Chem. Eng. 2017, 5, 3581–3589. [Google Scholar] [CrossRef]
- Sedej, I.; Milczarek, R.; Wang, S.C.; Sheng, R.; De Jesús Avena-Bustillos, R.; Dao, L.; Takeoka, G. Membrane-Filtered Olive Mill Wastewater: Quality Assessment of the Dried Phenolic-Rich Fraction. J. Food Sci. 2016, 81, E889–E896. [Google Scholar] [CrossRef]
- El-Abbassi, A.; Kiai, H.; Raiti, J.; Hafidi, A. Cloud Point Extraction of Phenolic Compounds from Pretreated Olive Mill Wastewater. J. Environ. Chem. Eng. 2014, 2, 1480–1486. [Google Scholar] [CrossRef]
- Abdennbi, S.; Trabelsi, L.; Ben Ahmed, G.; Ayadi, M.; Maktouf, S.; Gargouri, K.; Chaieb, M.; Mekki, A. Assessment of the Germination Power and α-Amylase Activity in the Soil Rhizospheric Compartment Amended with Olive Mill Waste Waters. Environ. Monit. Assess. 2024, 196, 1203. [Google Scholar] [CrossRef]
- Dich, A.; Abdelmoumene, W.; Belyagoubi, L.; Assadpour, E.; Belyagoubi Benhammou, N.; Zhang, F.; Jafari, S.M. Olive Oil Wastewater: A Comprehensive Review on Examination of Toxicity, Valorization Strategies, Composition, and Modern Management Approaches. Environ. Sci. Pollut. Res. 2025, 32, 6349–6379. [Google Scholar] [CrossRef]
- Huamán-Castilla, N.L.; Díaz Huamaní, K.S.; Palomino Villegas, Y.C.; Allcca-Alca, E.E.; León-Calvo, N.C.; Colque Ayma, E.J.; Zirena Vilca, F.; Mariotti-Celis, M.S. Exploring a Sustainable Process for Polyphenol Extraction from Olive Leaves. Foods 2024, 13, 265. [Google Scholar] [CrossRef]
- Akretche, H.; Pierre, G.; Moussaoui, R.; Michaud, P.; Delattre, C. Valorization of Olive Mill Wastewater for the Development of Biobased Polymer Films with Antioxidant Properties Using Ecofriendly Processes. Green Chem. 2016, 18, 1839–1854. [Google Scholar] [CrossRef]
- Guodong, R.; Jianguo, Z.; Xiaoxia, L.; Ying, L. Identification of Putative Genes for Polyphenol Biosynthesis in Olive Fruits and Leaves Using Full-Length Transcriptome Sequencing. Food Chem. 2019, 300, 125246. [Google Scholar] [CrossRef] [PubMed]
- Mougiou, N.; Baalbaki, B.; Doupis, G.; Kavroulakis, N.; Poulios, S.; Vlachonasios, K.E.; Koubouris, G.C. The Effect of Low Temperature on Physiological, Biochemical and Flowering Functions of Olive Tree in Relation to Genotype. Sustainability 2020, 12, 10065. [Google Scholar] [CrossRef]
- Mougiou, N.; Trikka, F.; Trantas, E.; Ververidis, F.; Makris, A.; Argiriou, A.; Vlachonasios, K.E. Expression of Hydroxytyrosol and Oleuropein Biosynthetic Genes Are Correlated with Metabolite Accumulation during Fruit Development in Olive, Olea Europaea, Cv. Koroneiki. Plant Physiol. Biochem. 2018, 128, 41–49. [Google Scholar] [CrossRef]
- Gonzalez-Ramirez, M.; Marin-Torres, M.M.; Gallardo-Fernandez, M.; Planells-Carcel, A.; Bisquert, R.; Valero, E.; Ubeda, C.; Troncoso, A.M.; Garcia-Parrilla, M.C. Approaching Study on the Relationship Between Saccharomyces Cerevisiae Production of Tyrosol, Hydroxytyrosol, and Melatonin with Volatile Compounds in Fermented Must. Food Bioprocess. Technol. 2023, 17, 154–168. [Google Scholar] [CrossRef]
- Hamza, M.; Sayadi, S. High Production of Aspergillus niger Β-glucosidase at Pilot-scale and Application for Hydroxytyrosol Release from Olive By-product. Int. J. Food Sci. Technol. 2015, 50, 1882–1890. [Google Scholar] [CrossRef]
- Chatzikonstantinou, A.V.; Giannakopoulou, A.; Spyrou, S.; Simos, Y.V.; Kontogianni, V.G.; Peschos, D.; Katapodis, P.; Polydera, A.C.; Stamatis, H. Production of Hydroxytyrosol Rich Extract from Olea Europaea Leaf with Enhanced Biological Activity Using Immobilized Enzyme Reactors. Environ. Sci. Pollut. Res. 2022, 29, 29624–29637. [Google Scholar] [CrossRef]
- Macedo, G.A.; Barbosa, P.D.P.M.; Dias, F.F.G.; Crawford, L.M.; Wang, S.C.; Bell, J.M.L.N.D.M. Optimizing the Integration of Microwave Processing and Enzymatic Extraction to Produce Polyphenol-Rich Extracts from Olive Pomace. Foods 2023, 12, 3754. [Google Scholar] [CrossRef]
- Briante, R.; Patumi, M.; Febbraio, F.; Nucci, R. Production of Highly Purified Hydroxytyrosol from Olea Europaea Leaf Extract Biotransformed by Hyperthermophilic β-Glycosidase. J. Biotechnol. 2004, 111, 67–77. [Google Scholar] [CrossRef]
- Trincone, A.; Pagnotta, E.; Tramice, A. Enzymatic Routes for the Production of Mono- and Di-Glucosylated Derivatives of Hydroxytyrosol. Bioresour. Technol. 2012, 115, 79–83. [Google Scholar] [CrossRef]
- Brouk, M.; Fishman, A. Protein Engineering of Toluene Monooxygenases for Synthesis of Hydroxytyrosol. Food Chem. 2009, 116, 114–121. [Google Scholar] [CrossRef]
- Donadio, G.; Sarcinelli, C.; Pizzo, E.; Notomista, E.; Pezzella, A.; Di Cristo, C.; De Lise, F.; Di Donato, A.; Izzo, V. The Toluene O-Xylene Monooxygenase Enzymatic Activity for the Biosynthesis of Aromatic Antioxidants. PLoS ONE 2015, 10, e0124427. [Google Scholar] [CrossRef] [PubMed]
- Allouche, N.; Sayadi, S. Synthesis of Hydroxytyrosol, 2-Hydroxyphenylacetic Acid, and 3-Hydroxyphenylacetic Acid by Differential Conversion of Tyrosol Isomers Using Serratia marcescens Strain. J. Agric. Food Chem. 2005, 53, 6525–6530. [Google Scholar] [CrossRef]
- Bouallagui, Z.; Sayadi, S. Production of High Hydroxytyrosol Yields via Tyrosol Conversion by Pseudomonas aeruginosa Immobilized Resting Cells. J. Agric. Food Chem. 2006, 54, 9906–9911. [Google Scholar] [CrossRef]
- Carlozzi, P.; Seggiani, M.; Capperucci, A.; Tanini, D.; Cinelli, P.; Lazzeri, A. Hydroxytyrosol Rich-Mixture from Olive Mill Wastewater and Production of Green Products by Feeding Rhodopseudomonas Sp. S16-FVPT5 with the Residual Effluent. J. Biotechnol. 2019, 295, 28–36. [Google Scholar] [CrossRef]
- Rebollo-Romero, I.; Fernández-Cruz, E.; Carrasco-Galán, F.; Valero, E.; Cantos-Villar, E.; Cerezo, A.B.; Troncoso, A.M.; Garcia-Parrilla, M.C. Factors Influencing the Production of the Antioxidant Hydroxytyrosol during Alcoholic Fermentation: Yeast Strain, Initial Tyrosine Concentration and Initial Must. LWT 2020, 130, 109631. [Google Scholar] [CrossRef]
- Anissi, J.; Sendide, K.; Ouardaoui, A.; Benlemlih, M.; El Hassouni, M. Production of Hydroxytyrosol from Hydroxylation of Tyrosol by Rhodococcus pyridinivorans 3HYL DSM109178. Biocatal. Biotransform. 2021, 39, 418–428. [Google Scholar] [CrossRef]
- Satoh, Y.; Tajima, K.; Munekata, M.; Keasling, J.D.; Lee, T.S. Engineering of L-Tyrosine Oxidation in Escherichia Coli and Microbial Production of Hydroxytyrosol. Metab. Eng. 2012, 14, 603–610. [Google Scholar] [CrossRef]
- Chen, W.; Yao, J.; Meng, J.; Han, W.; Tao, Y.; Chen, Y.; Guo, Y.; Shi, G.; He, Y.; Jin, J.-M.; et al. Promiscuous Enzymatic Activity-Aided Multiple-Pathway Network Design for Metabolic Flux Rearrangement in Hydroxytyrosol Biosynthesis. Nat. Commun. 2019, 10, 960. [Google Scholar] [CrossRef]
- Yao, J.; He, Y.; Su, N.; Bharath, S.R.; Tao, Y.; Jin, J.-M.; Chen, W.; Song, H.; Tang, S.-Y. Developing a Highly Efficient Hydroxytyrosol Whole-Cell Catalyst by de-Bottlenecking Rate-Limiting Steps. Nat. Commun. 2020, 11, 1515. [Google Scholar] [CrossRef]
- Zeng, B.; Lai, Y.; Liu, L.; Cheng, J.; Zhang, Y.; Yuan, J. Engineering Escherichia coli for High-Yielding Hydroxytyrosol Synthesis from Biobased l -Tyrosine. J. Agric. Food Chem. 2020, 68, 7691–7696. [Google Scholar] [CrossRef] [PubMed]
- Orenes-Piñero, E.; García-Carmona, F.; Sánchez-Ferrer, Á. A New Process for Obtaining Hydroxytyrosol Using Transformed Escherichia Coli Whole Cells with Phenol Hydroxylase Gene from Geobacillus Thermoglucosidasius. Food Chem. 2013, 139, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.; Chen, J.; Hu, M.; Fang, F.; Zhou, J. Promoting FADH2 Regeneration of Hydroxylation for High-Level Production of Hydroxytyrosol from Glycerol in Escherichia coli. J. Agric. Food Chem. 2023, 71, 16681–16690. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Zhou, F.; Ruan, W.; Yin, H.; Li, Z.; Wang, H.; Li, T.; Cai, D.; Yang, S.; Ma, X.; et al. Systematic Metabolic Engineering of Bacillus licheniformis for Hyperproduction of the Antioxidant Hydroxytyrosol. Green Chem. 2023, 25, 8718–8729. [Google Scholar] [CrossRef]
- Muñiz-Calvo, S.; Bisquert, R.; Puig, S.; Guillamón, J.M. Overproduction of Hydroxytyrosol in Saccharomyces Cerevisiae by Heterologous Overexpression of the Escherichia Coli 4-Hydroxyphenylacetate 3-Monooxygenase. Food Chem. 2020, 308, 125646. [Google Scholar] [CrossRef]
- Bisquert, R.; Planells-Cárcel, A.; Valera-García, E.; Guillamón, J.M.; Muñiz-Calvo, S. Metabolic Engineering of Saccharomyces cerevisiae for Hydroxytyrosol Overproduction Directly from Glucose. Microb. Biotechnol. 2022, 15, 1499–1510. [Google Scholar] [CrossRef]
- Liu, H.; Wu, X.; Ma, H.; Li, J.; Liu, Z.; Guo, X.; Dong, J.; Zou, S.; Luo, Y. High-Level Production of Hydroxytyrosol in Engineered Saccharomyces cerevisiae. ACS Synth. Biol. 2022, 11, 3706–3713. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Hu, H.; Ng, K.R.; Yang, R.; Lyu, X. De Novo Production of Hydroxytyrosol by Metabolic Engineering of Saccharomyces cerevisiae. J. Agric. Food Chem. 2022, 70, 7490–7499. [Google Scholar] [CrossRef]
- Liu, Y.; Song, D.; Hu, H.; Yang, R.; Lyu, X. De Novo Production of Hydroxytyrosol by Saccharomyces cerevisiae–Escherichia coli Coculture Engineering. ACS Synth. Biol. 2022, 11, 3067–3077. [Google Scholar] [CrossRef]
- Manna, C.; Galletti, P.; Cucciolla, V.; Montedoro, G.; Zappia, V. Olive Oil Hydroxytyrosol Protects Human Erythrocytes against Oxidative Damages. J. Nutr. Biochem. 1999, 10, 159–165. [Google Scholar] [CrossRef]
- D’Angelo, S.; Ingrosso, D.; Migliardi, V.; Sorrentino, A.; Donnarumma, G.; Baroni, A.; Masella, L.; Antonietta Tufano, M.; Zappia, M.; Galletti, P. Hydroxytyrosol, a Natural Antioxidant from Olive Oil, Prevents Protein Damage Induced by Long-Wave Ultraviolet Radiation in Melanoma Cells. Free Radic. Biol. Med. 2005, 38, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, Z.; Feng, Z.; Hao, J.; Shen, W.; Li, X.; Sun, L.; Sharman, E.; Wang, Y.; Wertz, K.; et al. Hydroxytyrosol Protects against Oxidative Damage by Simultaneous Activation of Mitochondrial Biogenesis and Phase II Detoxifying Enzyme Systems in Retinal Pigment Epithelial Cells. J. Nutr. Biochem. 2010, 21, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, S.; Podstawa, M.; Visioli, F.; Bogani, P.; Müller, W.E.; Eckert, G.P. Hydroxytyrosol-Rich Olive Mill Wastewater Extract Protects Brain Cells in Vitro and Ex Vivo. J. Agric. Food Chem. 2007, 55, 5043–5049. [Google Scholar] [CrossRef]
- Yonezawa, Y.; Kihara, T.; Ibi, K.; Senshu, M.; Nejishima, H.; Takeda, Y.; Imai, K.; Ogawa, H. Olive-Derived Hydroxytyrosol Shows Anti-Inflammatory Effect without Gastric Damage in Rats. Biol. Pharm. Bull. 2019, 42, 1120–1127. [Google Scholar] [CrossRef]
- Fuccelli, R.; Fabiani, R.; Rosignoli, P. Hydroxytyrosol Exerts Anti-Inflammatory and Anti-Oxidant Activities in a Mouse Model of Systemic Inflammation. Molecules 2018, 23, 3212. [Google Scholar] [CrossRef]
- Gai, Z.; Hu, S.; Gong, G.; Zhao, J. Recent Advances in Understanding Dietary Polyphenols Protecting against Hypertension. Trends Food Sci. Technol. 2023, 138, 685–696. [Google Scholar] [CrossRef]
- Han, J.; Hong, J.; Lee, H.; Choi, S.; Shin, K.; Gu, M.; Kim, S.-H. Advances in Polyphenol-Based Carbon Dots for Biomedical Engineering Applications. Eur. Polym. J. 2023, 197, 112354. [Google Scholar] [CrossRef]
- Bonura, A.; Vlah, S.; Longo, A.; Bulati, M.; Melis, M.R.; Cibella, F.; Colombo, P. Hydroxytyrosol Modulates Par j 1-Induced IL-10 Production by PBMCs in Healthy Subjects. Immunobiology 2016, 221, 1374–1377. [Google Scholar] [CrossRef]
- Noguera-Navarro, C.; Montoro-García, S.; Orenes-Piñero, E. Hydroxytyrosol: Its Role in the Prevention of Cardiovascular Diseases. Heliyon 2023, 9, e12963. [Google Scholar] [CrossRef]
- Katogiannis, K.; Ikonomidis, I.; Chania, C.; Tsoumani, M.; Brinia, E.; Pavlidis, G.; Thymis, J.; Tsilivarakis, D.; Kountouri, A.; Korakas, E.; et al. Olive Extract Enriched with Hydroxytyrosol Improves Cardiac and Vascular Function in Patients with Stable Coronary Artery Disease: A Double-Blind, Placebo-Controlled Trial. Eur. Heart J. 2023, 44, ehad655. [Google Scholar] [CrossRef]
- Iakovis, N.; Ikonomidis, I.; Andreadou, I.; Xanthopoulos, A.; Chamaidi, A.; Chrysakis, N.; Giamouzis, G.; Skoularigis, J.; Tseti, I.; Triposkiadis, F. The Short-Term Effect of Olive Oil Extract Enriched with Hydroxytyrosol on Cardiovascular Function. J. Med. Food 2023, 26, 939–942. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Katogiannis, K.; Chania, C.; Iakovis, N.; Tsoumani, M.; Christodoulou, A.; Brinia, E.; Pavlidis, G.; Thymis, J.; Tsilivarakis, D.; et al. Association of Hydroxytyrosol Enriched Olive Oil with Vascular Function in Chronic Coronary Disease. Eur. J. Clin. Investig. 2023, 53, e13983. [Google Scholar] [CrossRef] [PubMed]
- Khymenets, O.; Fitó, M.; Touriño, S.; Muñoz-Aguayo, D.; Pujadas, M.; Torres, J.L.; Joglar, J.; Farré, M.; Covas, M.-I.; De La Torre, R. Antioxidant Activities of Hydroxytyrosol Main Metabolites Do Not Contribute to Beneficial Health Effects after Olive Oil Ingestion. Drug Metab. Dispos. 2010, 38, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Ai, Q.; Wei, Y. Potential Role of Hydroxytyrosol in Neuroprotection. J. Funct. Foods 2021, 82, 104506. [Google Scholar] [CrossRef]
- Leri, M.; Stefani, M.; Bucciantini, M. EVOO Polyphenols Can Relieve Autophagy Dysregulation in Alzheimer’s Disease: Molecular and Cell Biology/Neurodegeneration and Neuroprotection. Alzheimer’s Dement. 2020, 16, e040348. [Google Scholar] [CrossRef]
- Nardiello, P.; Pantano, D.; Lapucci, A.; Stefani, M.; Casamenti, F. Diet Supplementation with Hydroxytyrosol Ameliorates Brain Pathology and Restores Cognitive Functions in a Mouse Model of Amyloid-β Deposition. J. Alzheimer’s Dis. 2018, 63, 1161–1172. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, B.; Paul, K.; Bakshi, P.; Bajaj, P.; Kumar, M.; Dhiman, S.; Jasrotia, S.; Kumar, P.; Dutta, R. Hydroxytyrosol in Cancer Research: Recent and Historical Insights on Discoveries and Mechanisms of Action. Future J. Pharm. Sci. 2024, 10, 129. [Google Scholar] [CrossRef]
- Zhen, Y.; Liu, Z.; Yang, X.; Liu, L.; Ahn, K.S. An Updated Review on the Potential Antineoplastic Actions of Oleuropein. Phytother. Res. 2022, 36, 365–379. [Google Scholar] [CrossRef]
- El-azem, N.; Pulido-Moran, M.; Ramirez-Tortosa, C.L.; Quiles, J.L.; Cara, F.E.; Sanchez-Rovira, P.; Granados-Principal, S.; Ramirez-Tortosa, M. Modulation by Hydroxytyrosol of Oxidative Stress and Antitumor Activities of Paclitaxel in Breast Cancer. Eur. J. Nutr. 2019, 58, 1203–1211. [Google Scholar] [CrossRef]
- Sirangelo, I.; Liccardo, M.; Iannuzzi, C. Hydroxytyrosol Prevents Doxorubicin-Induced Oxidative Stress and Apoptosis in Cardiomyocytes. Antioxidants 2022, 11, 1087. [Google Scholar] [CrossRef]
- Wu, Y.; Pu, X.; Wang, X.; Xu, M. Reprogramming of Lipid Metabolism in the Tumor Microenvironment: A Strategy for Tumor Immunotherapy. Lipids Health Dis. 2024, 23, 35. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Yan, X.; Takenaka, M.; Sekiya, K.; Nagata, T. Determination of Synthetic Hydroxytyrosol in Rat Plasma by GC-MS. J. Agric. Food Chem. 1998, 46, 3998–4001. [Google Scholar] [CrossRef]
- Tuck, K.L.; Freeman, M.P.; Hayball, P.J.; Stretch, G.L.; Stupans, I. The In Vivo Fate of Hydroxytyrosol and Tyrosol, Antioxidant Phenolic Constituents of Olive Oil, after Intravenous and Oral Dosing of Labeled Compounds to Rats. J. Nutr. 2001, 131, 1993–1996. [Google Scholar] [CrossRef] [PubMed]
- Serra, A.; Rubió, L.; Borràs, X.; Macià, A.; Romero, M.; Motilva, M. Distribution of Olive Oil Phenolic Compounds in Rat Tissues after Administration of a Phenolic Extract from Olive Cake. Mol. Nutr. Food Res. 2012, 56, 486–496. [Google Scholar] [CrossRef]
- Lopez-Huertas, E.; Fonolla, J. Hydroxytyrosol Supplementation Increases Vitamin C Levels in Vivo. A Human Volunteer Trial. Redox Biol. 2017, 11, 384–389. [Google Scholar] [CrossRef]
- González-Santiago, M.; Fonollá, J.; Lopez-Huertas, E. Human Absorption of a Supplement Containing Purified Hydroxytyrosol, a Natural Antioxidant from Olive Oil, and Evidence for Its Transient Association with Low-Density Lipoproteins. Pharmacol. Res. 2010, 61, 364–370. [Google Scholar] [CrossRef]
- Del Saz-Lara, A.; López De Las Hazas, M.; Tomé-Carneiro, J.; Ávila-Gálvez, M.; Crespo, M.C.; Mazarío-Gárgoles, C.; Chapado, L.A.; Daimiel, L.; Visioli, F.; Martín-Santiago, V.; et al. Hydroxytyrosol Enhances Plasma Extracellular Vesicle Secretion, Modulates Their miRNAs Cargo, and Reduces LDL Oxidation in Humans: Postprandial and 1-Week Effects. Mol. Nutr. Food Res. 2025, e70039. [Google Scholar] [CrossRef]
- Auñon-Calles, D.; Canut, L.; Visioli, F. Toxicological Evaluation of Pure Hydroxytyrosol. Food Chem. Toxicol. 2013, 55, 498–504. [Google Scholar] [CrossRef]
- Auñon-Calles, D.; Giordano, E.; Bohnenberger, S.; Visioli, F. Hydroxytyrosol Is Not Genotoxic in Vitro. Pharmacol. Res. 2013, 74, 87–93. [Google Scholar] [CrossRef]
- Acín, S.; Navarro, M.A.; Arbonés-Mainar, J.M.; Guillén, N.; Sarría, A.J.; Carnicer, R.; Surra, J.C.; Orman, I.; Segovia, J.C.; Torre, R.D.L.; et al. Hydroxytyrosol Administration Enhances Atherosclerotic Lesion Development in Apo E Deficient Mice. J. Biochem. 2006, 140, 383–391. [Google Scholar] [CrossRef]
- López De Las Hazas, M.; Del Saz-Lara, A.; Cedó, L.; Crespo, M.C.; Tomé-Carneiro, J.; Chapado, L.A.; Macià, A.; Visioli, F.; Escola-Gil, J.C.; Dávalos, A. Hydroxytyrosol Induces Dyslipidemia in an ApoB100 Humanized Mouse Model. Mol. Nutr. Food Res. 2024, 68, 2300508. [Google Scholar] [CrossRef] [PubMed]
- González-Santiago, M.; Martín-Bautista, E.; Carrero, J.J.; Fonollá, J.; Baró, L.; Bartolomé, M.V.; Gil-Loyzaga, P.; López-Huertas, E. One-Month Administration of Hydroxytyrosol, a Phenolic Antioxidant Present in Olive Oil, to Hyperlipemic Rabbits Improves Blood Lipid Profile, Antioxidant Status and Reduces Atherosclerosis Development. Atherosclerosis 2006, 188, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.; Paiva-Martins, F.; Corona, G.; Debnam, E.S.; Jose Oruna-Concha, M.; Vauzour, D.; Gordon, M.H.; Spencer, J.P.E. Absorption and Metabolism of Olive Oil Secoiridoids in the Small Intestine. Br. J. Nutr. 2011, 105, 1607–1618. [Google Scholar] [CrossRef]
- Mateos, R.; Goya, L.; Bravo, L. Metabolism of the Olive Oil Phenols Hydroxytyrosol, Tyrosol, and Hydroxytyrosyl Acetate by Human Hepatoma HepG2 Cells. J. Agric. Food Chem. 2005, 53, 9897–9905. [Google Scholar] [CrossRef]
- Bender, C.; Strassmann, S.; Golz, C. Oral Bioavailability and Metabolism of Hydroxytyrosol from Food Supplements. Nutrients 2023, 15, 325. [Google Scholar] [CrossRef]
- Mateos, R.; Pereira-Caro, G.; Saha, S.; Cert, R.; Redondo-Horcajo, M.; Bravo, L.; Kroon, P.A. Acetylation of Hydroxytyrosol Enhances Its Transport across Differentiated Caco-2 Cell Monolayers. Food Chem. 2011, 125, 865–872. [Google Scholar] [CrossRef]
- De Bock, M.; Thorstensen, E.B.; Derraik, J.G.B.; Henderson, H.V.; Hofman, P.L.; Cutfield, W.S. Human Absorption and Metabolism of Oleuropein and Hydroxytyrosol Ingested as Olive (Olea europaea L.) Leaf Extract. Mol. Nutr. Food Res. 2013, 57, 2079–2085. [Google Scholar] [CrossRef]
- Miro-Casas, E.; Covas, M.-I.; Farre, M.; Fito, M.; Ortuño, J.; Weinbrenner, T.; Roset, P.; De La Torre, R. Hydroxytyrosol Disposition in Humans. Clin. Chem. 2003, 49, 945–952. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. GRAS Notice 000600 Hydroxytyrosol; 21 CFR § 170.36; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2015.
- U.S. Food and Drug Administration. GRAS-Notice-GRN-876-Hydroxytyrosol; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2019.
- European Commission. Scientific Opinion on the Substantiation of Health Claims Related to Polyphenols in Olive and Protection of LDL Particles from Oxidative Damage (ID 1333, 1638, 1639, 1696, 2865), Maintenance of Normal Blood HDL-Cholesterol Concentrations (ID 1639), Maintenance of Normal Blood Pressure (ID 3781), “Anti-Inflammatory Properties” (ID 1882), “Contributes to the Upper Respiratory Tract Health” (ID 3468), “Can Help to Maintain a Normal Function of Gastrointestinal Tract” (3779), and “Contributes to Body Defences against External Agents” (ID 3467) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2033. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Turck, D.; Bresson, J.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; et al. Safety of Hydroxytyrosol as a Novel Food Pursuant to Regulation (EC) No 258/97. EFSA J. 2017, 15, e04728. [Google Scholar] [CrossRef]
- Gómez-Cruz, I.; Contreras, M.D.M.; Romero, I.; Ribeiro, B.; Roseiro, L.B.; Duarte, L.C.; Carvalheiro, F.; Castro, E. Strategies for the Purification of Hydroxytyrosol-Rich Extracts Obtained from Exhausted Olive Pomace. Sep. Purif. Technol. 2023, 325, 124664. [Google Scholar] [CrossRef]
- Hadrich, F.; Geißen, S.-U.; Chamkha, M.; Sayadi, S. Optimizing the Extraction Conditions of Hydroxytyrosol from Olive Leaves Using a Modified Spherical Activated Carbon: A New Experimental Design. BioMed Res. Int. 2022, 2022, 6199627. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Xia, M.; Ding, Z.; Rong, X.; Mei, X. Enhancing Physical and Chemical Stability of Hygroscopic Hydroxytyrosol by Cocrystal Formation. Int. J. Pharm. 2023, 646, 123470. [Google Scholar] [CrossRef] [PubMed]
Type | Name | Based on | Acts on | Characteristics | Citation |
---|---|---|---|---|---|
Non-engineered Enzyme | Yeast glucosidase | Glucosidase produced by Aspergillus niger | Rapeseed leaf extract and olive oil wastewater | Catalyzed the biotransformation of rapeseed leaf extract and olive oil wastewater, successfully extracting HT, with maximum concentrations of 1.1 and 0.5 g/L. By optimizing cultivation conditions, enzyme yield was increased, waste disposal was addressed, and the value of olive oil industry by-products was enhanced. | Hamza and Sayadi [26] |
Immobilized enzyme | Development of a potent biocatalyst by immobilizing β-glucosidase on chitosan-coated magnetic microparticles | Olive leaf extract | This catalyst treated olive leaf extract, achieving over 90% conversion of oleuropein and increasing HT concentration by 2.5 times. | Chatzikonstantinou [27] | |
Microwave treatment with enzyme extraction | Combination of microwave treatment and enzyme extraction techniques | Olive | Using pectinase, cellulase, and tannase combined with microwave treatment, the extraction conditions were more favorable for HT release, with a yield of 59.29 mg/kg from pomace. | Macedo [28] | |
Thermostable β-glucosidase | Partially purified thermostable β-glucosidase immobilized on a chitosan carrier | Oily leaf extract | This approach enabled the rapid conversion of oily leaf extract into highly purified HT (91–94% by weight) in 14–16 h. The enzyme uses significantly reduced microbial contamination risk and increased reaction speed, thereby improving production efficiency. | Briante [29] | |
Marine α-glucosidase | Use of marine α-glucosidase with commercial tyrosinase | Tyrosine glycoside derivatives | Synthesized novel HT monomer and dimer derivatives from tyrosine glycoside derivatives, with final concentrations of 9.35 and 10.8 g/L, respectively. | Trincone [30] | |
Engineered Enzyme | Protein engineering | Protein engineering and statistical modeling | Toluene monooxygenase | Enhanced substrate specificity and oxidative activity of toluene monooxygenase, enabling efficient synthesis of HT. | Brouk [31] |
Recombinant enzyme application | Biotransformation of non-traditional substrates (e.g., 2-phenylethanol, phthalates, and 2-indanol) | Escherichia coli | Recombinant toluene-o-dimethoxybenzene monooxygenase expressed in Escherichia coli cells successfully generated six hydroxylated derivatives, including HT. | Donadio [32] |
Biological Name | Substrate | Features | Conclusion | Citation |
---|---|---|---|---|
Serratia marcescens | p-Coumaric alcohol | Optimized growth conditions and p-coumaric alcohol concentration during the growth of Serratia marcescens, significantly increasing HT yield. | Serratia marcescens demonstrates high efficiency in converting p-coumaric alcohol to HT, laying a foundation for similar strains to produce HT. | Allouche and Sayadi [33] |
Pseudomonas aeruginosa | Tyrosol | Used immobilized resting cells of Pseudomonas aeruginosa within calcium alginate beads to enhance HT production. | Provides a novel, cost-effective biocatalysis-based method for producing HT, applicable to various microbial systems. | Bouallagui and Sayadi [34] |
Rhodobacter sphaeroides | Olive mill wastewater | Utilized residual wastewater as raw material, with Rhodobacter sphaeroides strain S16-FVPT5 producing a HT-rich mixture. | Addresses the olive mill wastewater issue while transforming waste into the more economically valuable HT. | Carlozzi [35] |
Yeast Strain | Tyrosine | Found that the use of yeast strains, combined with an optimized fermentation process, significantly improved HT yield. | Screening identified that commercial yeast strains are the most effective for HT production, revealing the link between microbial metabolism and product yield. | Rebollo Romero [36] |
Rhodococcus pyridinivorans | Tyrosol or L-Tyrosine | Both wild-type and chemically induced mutant strains utilize tyrosol or L-tyrosine to produce HT, with mutants showing slightly higher yields. | Demonstrates the potential of R. pyridinivorans in HT production and highlights the feasibility of non-genetic methods for improving microbial strains. | Anissi [37] |
Organism | Substrate | Experimental Process | Reference |
---|---|---|---|
Escherichia coli | L-Tyrosine | Introduced an artificial pathway into E. coli by using mammalian tyrosine hydroxylase (TH) and the endogenous cofactor (MH4) to oxidize L-tyrosine. Endogenous aromatic aldehyde oxidase was also knocked out. | Satoh [38] |
Tyrosine | Developed a hybrid hydroxylase (HpaBC) for production purposes through protein engineering and a directed evolution strategy. | Chen, W. [39] | |
Tyrosine | Designed the VanR regulatory protein as a HT biosensor using protein engineering and in vivo optimization. Replaced mammalian tyrosine hydroxylase with E. coli’s HpaBC. | Yao, J. [40] | |
L-Tyrosine | Engineered a multi-enzyme cascade reaction with HpaBC from E. coli, L-amino acid deaminase (LAAD) from Aspergillus oryzae, α-ketoacid decarboxylase (ARO10) from Saccharomyces cerevisiae, and PAR from Aspergillus fumigatus. | Zeng [41] | |
Phenol | Integrated the phenol hydroxylase genes (pheA1 and pheA2) from the thermophilic bacterium Geobacillus thermoglucosidasius into E. coli as a gene fragment. | Orenes-Piñero [42] | |
L-Tyrosine | By engineering Escherichia coli, two enzyme-coupled pathways, including the dopamine-mediated and keto acid-mediated pathways, were utilized to efficiently synthesize HT (HT) from bio-based L-tyrosine, achieving significant improvements in yield and conversion rate. | Wang, H [43] | |
Bacillus licheniformis | Glucose | Improved phosphoenolpyruvate (PEP) supply by engineering ketoacid decarboxylase, releasing feedback inhibition, and blocking competing pathways. | Zhan, Y. [44] |
Saccharomyces cerevisiae | Tyrosine or Tyrosol | Improved the ability of S. cerevisia to produce HT by heterologously expressing the E. coli HpaBC enzyme complex, which hydroxylates tyrosol to HT. | Muñiz-Calvo [45] |
Glucose | Integrated the HpaBC hydroxylase complex from E. coli into the genome of S. cerevisiae, redirecting metabolism toward tyrosol synthesis. | Bisquert, R. [46] | |
Glucose | Overexpressed phenol hydroxylase and employed multi-mode engineering methods to remove tyrosine feedback inhibition by integrating aro4(K229L) and aro7(G141S) into the genome. Constructed a tyrosine metabolic pathway with AAS enzymes, added Bbxfpk(op)(t) to enhance precursor supply, and regulated HT biosynthesis dynamically using the GAL system. | Liu, H. [47] | |
L-Tyrosine | Efficient HT biosynthesis from L-tyrosine or simple carbon sources was achieved by converting L-tyrosine to tyrosol via keto acid decarboxylase (e.g., Aro10 from S. cerevisiae) and alcohol dehydrogenase (ADH6), followed by HpaBC-mediated hydroxylation to HT, while feaB knockout minimized 4-HPA accumulation and ADH6 overexpression enhanced tyrosol production. | Liu, Y. [48] | |
Saccharomyces cerevisiae—Escherichia coli | Sucrose | Produced tyrosol de novo using the endogenous Ehrlich pathway in S. cerevisiae, which was then converted into HT via E. coli’s hydroxyphenylacetate 3-monooxygenase (EcHpaBC). | Liu, Y [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Lei, Z.; Zhang, H.; Liu, Z.; Chen, W.; Jia, Y.; Shi, R.; Wang, C. From Biosynthesis to Legislation: A Review of Hydroxytyrosol’s Biological Functions and Safety. Int. J. Mol. Sci. 2025, 26, 4470. https://doi.org/10.3390/ijms26104470
Wang Z, Lei Z, Zhang H, Liu Z, Chen W, Jia Y, Shi R, Wang C. From Biosynthesis to Legislation: A Review of Hydroxytyrosol’s Biological Functions and Safety. International Journal of Molecular Sciences. 2025; 26(10):4470. https://doi.org/10.3390/ijms26104470
Chicago/Turabian StyleWang, Zhong, Ziteng Lei, Haijing Zhang, Zheng Liu, Wei Chen, Yan Jia, Ruoyu Shi, and Chengtao Wang. 2025. "From Biosynthesis to Legislation: A Review of Hydroxytyrosol’s Biological Functions and Safety" International Journal of Molecular Sciences 26, no. 10: 4470. https://doi.org/10.3390/ijms26104470
APA StyleWang, Z., Lei, Z., Zhang, H., Liu, Z., Chen, W., Jia, Y., Shi, R., & Wang, C. (2025). From Biosynthesis to Legislation: A Review of Hydroxytyrosol’s Biological Functions and Safety. International Journal of Molecular Sciences, 26(10), 4470. https://doi.org/10.3390/ijms26104470