The Transcription Factor StuA Regulates Oxidative Stress-Responsive Genes in Trichophyton rubrum
Abstract
1. Introduction
2. Results
2.1. Identification of Genes in T. rubrum Homologous to Oxidative Stress-Related Genes in Other Trichophyton Species
2.2. The Transcription Factor StuA Regulates Genes Related to Oxidative Stress Pathways in T. rubrum
2.3. Transcript Levels of Glutathione S-Transferase and a Catalase-like Gene Are Reduced in the Mutant Strain
2.4. The Transcription Factor StuA as a Consensus-Binding Site for a Gene Encoding a Glutathione S-Transferase in T. rubrum
2.5. Evaluation of the Intracellular Catalase Activity of ΔstuA Strain
2.6. Evaluation of Glutathione S-Transferase Activity of the ΔstuA Mutant During Cultivation in Medium Supplemented with Keratin and Under Hydrogen Peroxide Exposure
2.7. Transcriptional Regulation of Genes Involved in Iron Metabolism When the ΔstuA Strain Is Exposed to Different Culture Conditions
2.8. The Intracellular Iron Content in the ΔstuA Strain During Exposure to Hydrogen Peroxide and Growth in Minimal Media Supplemented with Keratin
3. Discussion
4. Materials and Methods
4.1. Search for Oxidative Stress-Related Gene Homologs in T. rubrum CBS118892
4.2. Fungal Strains and Culture Conditions
4.3. Oxidative Stress Induction with Hydrogen Peroxide
4.4. RNA Extraction and cDNA Synthesis
4.5. Reverse Transcription–Quantitative Polymerase Chain Reaction Analyses
4.6. Metabolic Assays
4.6.1. Catalase Activity Assay
4.6.2. Intracellular Iron Assay
4.6.3. Identification of Consensus-Binding Sites for StuA
4.6.4. GST Enzymatic Activity Assay
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciesielska, A.; Kawa, A.; Kanarek, K.; Sobon, A.; Szewczyk, R. Metabolomic Analysis of Trichophyton rubrum and Microsporum canis During Keratin Degradation. Sci. Rep. 2021, 11, 3959. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Rossi, N.M.; Peres, N.T.A.; Bitencourt, T.A.; Martins, M.P.; Rossi, A. State-of-the-Art Dermatophyte Infections: Epidemiology Aspects, Pathophysiology, and Resistance Mechanisms. J. Fungi 2021, 7, 629. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Rossi, N.M.; Bitencourt, T.A.; Peres, N.T.A.; Lang, E.A.S.; Gomes, E.V.; Quaresemin, N.R.; Martins, M.P.; Lopes, L.; Rossi, A. Dermatophyte Resistance to Antifungal Drugs: Mechanisms and Prospectus. Front. Microbiol. 2018, 9, 1108. [Google Scholar] [CrossRef] [PubMed]
- Yaakoub, H.; Mina, S.; Calenda, A.; Bouchara, J.-P.; Papon, N. Oxidative Stress Response Pathways in Fungi. Cell. Mol. Life Sci. 2022, 79, 333. [Google Scholar] [CrossRef] [PubMed]
- Zadrąg-Tęcza, R.; Maślanka, R.; Bednarska, S.; Kwolek-Mirek, M. Response Mechanisms to Oxidative Stress in Yeast and Filamentous Fungi. In Stress Response Mechanisms in Fungi: Theoretical and Practical Aspects; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–34. [Google Scholar]
- Berndt, C.; Lillig, C.H. Glutathione, Glutaredoxins, and Iron. Antioxid. Redox Signal. 2017, 27, 1235–1251. [Google Scholar] [CrossRef] [PubMed]
- Wangsanut, T.; Pongpom, M. The Role of the Glutathione System in Stress Adaptation, Morphogenesis and Virulence of Pathogenic Fungi. Int. J. Mol. Sci. 2022, 23, 10645. [Google Scholar] [CrossRef] [PubMed]
- Weidemller, P.; Kholmatov, M.; Petsalaki, E.; Zaugg, J.B. Transcription Factors: Bridge Between Cell Signaling and Gene Regulation. Proteomics 2021, 21, 2000034. [Google Scholar] [CrossRef] [PubMed]
- Shelest, E. Transcription Factors in Fungi. FEMS Microbiol. Lett. 2008, 286, 145–151. [Google Scholar] [CrossRef]
- Mulford, K.E.; Fassler, J.S. Association of the Skn7 and Yap1 Transcription Factors in the Saccharomyces cerevisiae Oxidative Stress Response. Eukaryot. Cell 2011, 10, 761–769. [Google Scholar] [CrossRef]
- Bitencourt, T.A.; Neves-Da-Rocha, J.; Martins, M.P.; Sanches, P.R.; Lang, E.A.S.; Bortolossi, J.C.; Rossi, A.; Martinez-Rossi, N.M. StuA-Regulated Processes in the Dermatophyte Trichophyton rubrum: Transcription Profile, Cell-Cell Adhesion, and Immunomodulation. Front. Cell. Infect. Microbiol. 2021, 11, 643659. [Google Scholar] [CrossRef]
- Sheppard, D.C.; Doedt, T.; Chiang, L.Y.; Kim, H.S.; Chen, D.; Nierman, W.C.; Filler, S.G. The Aspergillus fumigatus StuA Protein Governs the Up-Regulation of a Discrete Transcriptional Program During the Acquisition of Developmental Competence. Mol. Biol. Cell 2005, 16, 5866–5879. [Google Scholar] [CrossRef] [PubMed]
- Lang, E.A.S.; Bitencourt, T.A.; Peres, N.T.A.; Lopes, L.; Silva, L.G.; Cazzaniga, R.A.; Rossi, A.; Martinez-Rossi, N.M. The stuA Gene Controls Development, Adaptation, Stress Tolerance, and Virulence of the dermatophyte Trichophyton rubrum. Microbiol. Res. 2020, 241, 126592. [Google Scholar] [CrossRef]
- Martins-Santana, L.; Petrucelli, M.F.; Sanches, P.R.; Almeida, F.; Martinez-Rossi, N.M.; Rossi, A. The StuA Transcription Factor and Alternative Splicing Mechanisms Drive the Levels of MAPK Hog1 Transcripts in the Dermatophyte Trichophyton rubrum. Mycopathologia 2024, 189, 37. [Google Scholar] [CrossRef]
- Liao, B.; Ye, X.; Chen, X.; Zhou, Y.; Cheng, L.; Zhou, X.; Ren, B. The Two-Component Signal Transduction System and its Regulation in Candida albicans. Virulence 2021, 12, 1884–1899. [Google Scholar] [CrossRef] [PubMed]
- Yaakoub, H.; Sanchez, N.S.; Ongay-Larios, L.; Courdavault, V.; Calenda, A.; Bouchara, J.; Coria, R.; Papon, N. The High Osmolarity Glycerol (HOG) Pathway in Fungi. Crit. Rev. Microbiol. 2022, 48, 657–695. [Google Scholar] [CrossRef] [PubMed]
- Sieńko, M.; Natorff, R.; Skoneczny, M.; Kruszewska, J.; Paszewski, A.; Brzywczy, J. Regulatory mutations affecting sulfur metabolism induce environmental stress response in Aspergillus nidulans. Fungal Genet. Biol. 2014, 65, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Martínez, A.E.; Cano-Domínguez, N.; Aguirre, J. Yap1 Homologs Mediate More than the Redox Regulation of the Antioxidant Response in Filamentous Fungi. Fungal Biol. 2020, 124, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Peres, N.T.A.; Lang, E.A.; Bitencourt, T.A.; Oliveira, V.M.; Fachin, A.L.; Rossi, A.; Martinez-Rossi, N.M. The bZIP Ap1 Transcription Factor is a Negative Regulator of Virulence Attributes of the Anthropophilic Dermatophyte Trichophyton rubrum. Curr. Res. Microb. Sci. 2022, 3, 100132. [Google Scholar] [CrossRef]
- Freitas, F.Z.; Virgilio, S.; Cupertino, F.B.; Kowbel, D.J.; Fioramonte, M.; Gozzo, F.C.; Glass, L.; Bertoloni, M.C. The SEB-1 Transcription Factor Binds to the STRE Motif in Neurospora crassa and Regulates a Variety of Cellular Processes Including the Stress Response and Reserve Carbohydrate Metabolism. G3 Genes Genomes Genet. 2016, 6, 1327–1343. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, L.; Yin, Z.; Feng, H.; Huang, L. Transcription Factor VmSeb1 is Required for the Growth, Development, and Virulence in Valsa mali. Microb. Pathog. 2018, 123, 132–138. [Google Scholar] [CrossRef]
- Scherer, M.; Wei, H.; Liese, R.; Fischer, R. Aspergillus nidulans Catalase-Peroxidase Gene (cpeA) is Transcriptionally Induced During Sexual Development Through the Transcription Factor StuA. Eukaryot. Cell 2002, 1, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.R.; Reindl, K.M. Glutathione S-Transferases in Cancer. Antioxidants 2021, 10, 701. [Google Scholar] [CrossRef] [PubMed]
- Fraser, J.A.; Davis, M.A.; Hynes, M.J. A Gene from Aspergillus nidulans With Similarity to URE2 of Saccharomyces cerevisiae Encodes a Glutathione S-transferase Which Contributes to Heavy Metal and Xenobiotic Resistance. Appl. Environ. Microbiol. 2002, 68, 2802–2808. [Google Scholar] [CrossRef]
- Lok, H.C.; Richardson, V.; Kalinowski, D.S.; Kovacevic, Z.; Lane, D.J.R.; Richardson, D.R. Glutathione S-transferase and MRP1 Form an Integrated System Involved in the Storage and Transport of Dinitrosyl–dithiolato Iron Complexes in Cells. Free Radic. Biol. Med. 2014, 75, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Hu, W.; Qian, D.; Bai, X.; He, H.; Li, L.; Sun, S. The Mechanisms of Ferroptosis Under Hypoxia. Cell. Mol. Neurobiol. 2023, 43, 3329–3341. [Google Scholar] [CrossRef]
- Stelitano, G.; Cocorullo, M.; Mori, M.; Villa, S.; Meneghetti, F.; Chiarelli, L.R. Iron Acquisition and Metabolism as a Promising Target for Antimicrobials (Bottlenecks and Opportunities): Where Do We Stand? Int. J. Mol. Sci. 2023, 24, 6181. [Google Scholar] [CrossRef] [PubMed]
- Kröber, A.; Scherlach, K.; Hortschansky, P.; Shelest, E.; Staib, P.; Kniemeyer, O.; Brakhage, A.A. HapX Mediates Iron Homeostasis in the Pathogenic Dermatophyte Arthroderma benhamiae but Is Dispensable for Virulence. PLoS ONE 2016, 11, e0150701. [Google Scholar] [CrossRef]
- Pradhan, A.; Herrero-de-Dios, C.; Belmonte, R.; Budge, S.; Garcia, A.L.; Kolmogorova, A.; Lee, K.K.; Martin, B.D.; Ribeiro, A.; Bebes, A.; et al. Elevated Catalase Expression in a Fungal Pathogen is a Double-Edged Sword of Iron. PLoS Pathog. 2017, 13, e1006405. [Google Scholar] [CrossRef]
- Cove, D.J. The Induction and Repression of Nitrate Reductase in the Fungus Aspergillus nidulans. Biochim. Biophys. Acta (BBA)—Enzymol. Biol. Oxid. 1966, 113, 51–56. [Google Scholar] [CrossRef]
- Jacobson, L.S.; Mclntyre, L.; Mykusz, J. Assessment of Real-Time PCR Cycle Threshold Values in Microsporum canis Culture-Positive and Culture-Negative Cats in an Animal Shelter: A Field Study. J. Feline Med. Surg. 2018, 20, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Jacob, T.R.; Peres, N.T.A.; Persinoti, G.F.; Silva, L.G.; Mazucato, M.; Rossi, A.; Martinez-Rossi, N.M. rpb2 is a Reliable Reference Gene for Quantitative Gene Expression Analysis in the Dermatophyte Trichophyton rubrum. Med. Mycol. 2012, 50, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Dutton, J.R.; Johns, S.; Miller, B.L. StuAp is a Sequence Specific Transcription Factor That Regulates Developmental Complexity in Aspergillus nidulans. EMBO J. 1997, 16, 5710–5721. [Google Scholar] [CrossRef] [PubMed]
- Lysoe, E.; Pasquali, M.; Breakspear, A.; Kistler, H.C. The Transcription Factor FgStuAp Influences Spore Development, Pathogenicity, and Secondary Metabolism in Fusarium graminearum. Mol. Plant-Microbe Interact. 2011, 24, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Swift, M.L. GraphPad Prism, Data Analysis, and Scientific Graphing. J. Chem. Inf. Comput. Sci. 1997, 37, 411–412. [Google Scholar] [CrossRef]
Gene ID | Gene Product Name | Homologous |
---|---|---|
TERG_01117 | Stress response transcription factor SrrA/Skn7 | ARB_07479 (Trichophyton benhamiae) |
TERG_06759 | C2H2 transcription factor (Seb1) | ARB_00366 (Trichophyton benhamiae) |
TERG_07131 | Phosphotransmitter protein Ypd1 | TEQG_03843 (Trichophyton equinum) |
TERG_07855 | Response regulator ssk1 | TRV_02413 (Trichophyton verrucosum) |
TERG_01685 | Glutathione S-transferase | ARB_02229 (Trichophyton benhamiae) |
TERG_02005 | Catalase | TESG_07337 (Trichophyton tonsurans) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazolin Petrucelli, M.; Martins-Santana, L.; Oliveira, V.M.; Sanches, P.R.; Rossi, A.; Martinez-Rossi, N.M. The Transcription Factor StuA Regulates Oxidative Stress-Responsive Genes in Trichophyton rubrum. Int. J. Mol. Sci. 2024, 25, 12959. https://doi.org/10.3390/ijms252312959
Fazolin Petrucelli M, Martins-Santana L, Oliveira VM, Sanches PR, Rossi A, Martinez-Rossi NM. The Transcription Factor StuA Regulates Oxidative Stress-Responsive Genes in Trichophyton rubrum. International Journal of Molecular Sciences. 2024; 25(23):12959. https://doi.org/10.3390/ijms252312959
Chicago/Turabian StyleFazolin Petrucelli, Monise, Leonardo Martins-Santana, Vanderci M. Oliveira, Pablo R. Sanches, Antonio Rossi, and Nilce M. Martinez-Rossi. 2024. "The Transcription Factor StuA Regulates Oxidative Stress-Responsive Genes in Trichophyton rubrum" International Journal of Molecular Sciences 25, no. 23: 12959. https://doi.org/10.3390/ijms252312959
APA StyleFazolin Petrucelli, M., Martins-Santana, L., Oliveira, V. M., Sanches, P. R., Rossi, A., & Martinez-Rossi, N. M. (2024). The Transcription Factor StuA Regulates Oxidative Stress-Responsive Genes in Trichophyton rubrum. International Journal of Molecular Sciences, 25(23), 12959. https://doi.org/10.3390/ijms252312959