Special Issue “Advances in Molecular Research on Autoimmune Diseases”
Conflicts of Interest
References
- Ren, R.; Jiang, J.; Li, X.; Zhang, G. Research progress of autoimmune diseases based on induced pluripotent stem cells. Front. Immunol. 2024, 15, 1349138. [Google Scholar] [CrossRef]
- Vivas, A.J.; Boumediene, S.; Tobon, G.J. Predicting autoimmune diseases: A comprehensive review of classic biomarkers and advances in artificial intelligence. Autoimmun. Rev. 2024, 23, 103611. [Google Scholar] [CrossRef] [PubMed]
- Harroud, A.; Hafler, D.A. Common genetic factors among autoimmune diseases. Science 2023, 380, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Wang, H. Environmental Exposures and Autoimmune Diseases: Contribution of Gut Microbiome. Front. Immunol. 2019, 10, 3094. [Google Scholar] [CrossRef] [PubMed]
- Lagattuta, K.A.; Park, H.L.; Rumker, L.; Ishigaki, K.; Nathan, A.; Raychaudhuri, S. The genetic basis of autoimmunity seen through the lens of T cell functional traits. Nat. Commun. 2024, 15, 1204. [Google Scholar] [CrossRef] [PubMed]
- Hocking, A.M.; Buckner, J.H. Genetic basis of defects in immune tolerance underlying the development of autoimmunity. Front. Immunol. 2022, 13, 972121. [Google Scholar] [CrossRef]
- Sfriso, P.; Ghirardello, A.; Botsios, C.; Tonon, M.; Zen, M.; Bassi, N.; Bassetto, F.; Doria, A. Infections and autoimmunity: The multifaceted relationship. J. Leukoc. Biol. 2010, 87, 385–395. [Google Scholar] [CrossRef]
- Pisetsky, D.S. Pathogenesis of autoimmune disease. Nat. Rev. Nephrol. 2023, 19, 509–524. [Google Scholar] [CrossRef]
- Lee, B.H.; Gauna, A.E.; Pauley, K.M.; Park, Y.J.; Cha, S. Animal models in autoimmune diseases: Lessons learned from mouse models for Sjogren’s syndrome. Clin. Rev. Allergy Immunol. 2012, 42, 35–44. [Google Scholar] [CrossRef]
- Jia, S.; Kim, J.; Esser-Kahn, A.P.; Deak, P. High-throughput screening identification of novel immunomodulatory combinations for the generation of tolerogenic dendritic cells. Front. Med. 2023, 10, 1298424. [Google Scholar] [CrossRef]
- Robinson, A.P.; Harp, C.T.; Noronha, A.; Miller, S.D. The experimental autoimmune encephalomyelitis (EAE) model of MS: Utility for understanding disease pathophysiology and treatment. Handb. Clin. Neurol. 2014, 122, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Van Langelaar, J.; Rijvers, L.; Smolders, J.; van Luijn, M.M. B and T Cells Driving Multiple Sclerosis: Identity, Mechanisms and Potential Triggers. Front. Immunol. 2020, 11, 760. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Ling, G.S.; Cao, X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target. J. Autoimmun. 2022, 132, 102861. [Google Scholar] [CrossRef] [PubMed]
- Dema, B.; Charles, N. Autoantibodies in SLE: Specificities, Isotypes and Receptors. Antibodies 2016, 5, 2. [Google Scholar] [CrossRef]
- Weetman, A.P. An update on the pathogenesis of Hashimoto’s thyroiditis. J. Endocrinol. Investig. 2021, 44, 883–890. [Google Scholar] [CrossRef]
- Hoi, A.; Igel, T.; Mok, C.C.; Arnaud, L. Systemic lupus erythematosus. Lancet 2024, 403, 2326–2338. [Google Scholar] [CrossRef]
- Tanaka, A.; Ma, X.; Takahashi, A.; Vierling, J.M. Primary biliary cholangitis. Lancet 2024, 404, 1053–1066. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kuwana, M.; Fujii, T.; Kameda, H.; Muro, Y.; Fujio, K.; Itoh, Y.; Yasuoka, H.; Fukaya, S.; Ashihara, K.; et al. 2019 Diagnostic criteria for mixed connective tissue disease (MCTD): From the Japan research committee of the ministry of health, labor, and welfare for systemic autoimmune diseases. Mod. Rheumatol. 2021, 31, 29–33. [Google Scholar] [CrossRef]
- Zivkovic, A.; Trifunovic, S.; Savic, D.; Milosevic, K.; Lavrnja, I. Experimental Autoimmune Encephalomyelitis Influences GH-Axis in Female Rats. Int. J. Mol. Sci. 2024, 25, 5837. [Google Scholar] [CrossRef]
- Schiffmann, D.; Lampkemeyer, V.; Lindner, M.; Fleck, A.K.; Koch, K.; Eschborn, M.; Liebmann, M.; Strecker, J.K.; Minnerup, J.; Wiendl, H.; et al. Endurance Exercise Attenuates Established Progressive Experimental Autoimmune Encephalomyelitis and Is Associated with an Amelioration of Innate Immune Responses in NOD Mice. Int. J. Mol. Sci. 2023, 24, 15798. [Google Scholar] [CrossRef]
- Cossu, D.; Tomizawa, Y.; Sechi, L.A.; Hattori, N. Epstein-Barr Virus and Human Endogenous Retrovirus in Japanese Patients with Autoimmune Demyelinating Disorders. Int. J. Mol. Sci. 2023, 24, 17151. [Google Scholar] [CrossRef] [PubMed]
- Frappier, L. The Epstein-Barr Virus EBNA1 Protein. Scientifica 2012, 2012, 438204. [Google Scholar] [CrossRef] [PubMed]
- Bjornevik, K.; Munz, C.; Cohen, J.I.; Ascherio, A. Epstein-Barr virus as a leading cause of multiple sclerosis: Mechanisms and implications. Nat. Rev. Neurol. 2023, 19, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Dolei, A. The aliens inside us: HERV-W endogenous retroviruses and multiple sclerosis. Mult. Scler. 2018, 24, 42–47. [Google Scholar] [CrossRef]
- Censi, S.T.; Mariani-Costantini, R.; Granzotto, A.; Tomassini, V.; Sensi, S.L. Endogenous retroviruses in multiple sclerosis: A network-based etiopathogenic model. Ageing Res. Rev. 2024, 99, 102392. [Google Scholar] [CrossRef]
- Perez-Perez, M.E.; Nieto-Torres, E.; Bollain, Y.G.J.J.; Delgadillo-Ruiz, L. Protein Citrullination by Peptidyl Arginine Deiminase/Arginine Deiminase Homologs in Members of the Human Microbiota and Its Recognition by Anti-Citrullinated Protein Antibodies. Int. J. Mol. Sci. 2024, 25, 5192. [Google Scholar] [CrossRef]
- Liu, J.; Gao, J.; Wu, Z.; Mi, L.; Li, N.; Wang, Y.; Peng, X.; Xu, K.; Wu, F.; Zhang, L. Anti-citrullinated Protein Antibody Generation, Pathogenesis, Clinical Application, and Prospects. Front. Med. 2021, 8, 802934. [Google Scholar] [CrossRef]
- Carini, M.; Fredi, M.; Cavazzana, I.; Bresciani, R.; Ferrari, F.; Monti, E.; Franceschini, F.; Biasiotto, G. Frequency Evaluation of the Interleukin-6 -174G>C Polymorphism and Homeostatic Iron Regulator (HFE) Mutations as Disease Modifiers in Patients Affected by Systemic Lupus Erythematosus and Rheumatoid Arthritis. Int. J. Mol. Sci. 2023, 24, 16300. [Google Scholar] [CrossRef]
- Hanson, E.H.; Imperatore, G.; Burke, W. HFE gene and hereditary hemochromatosis: A HuGE review. Human Genome Epidemiology. Am. J. Epidemiol. 2001, 154, 193–206. [Google Scholar] [CrossRef]
- Li, Q.; Yang, W.; Li, J.; Shan, Z. Emerging trends and hot spots in autoimmune thyroiditis research from 2000 to 2022: A bibliometric analysis. Front. Immunol. 2022, 13, 953465. [Google Scholar] [CrossRef]
- Lacka, K.; Maciejewski, A.; Jarecki, P.; Herman, W.; Lacki, J.K.; Zaba, R.; Kowalczyk, M.J. Is There a Link between Thyroid Peroxidase Gene Promoter Polymorphisms and Autoimmune Thyroiditis in the Polish Population? Int. J. Mol. Sci. 2024, 25, 3312. [Google Scholar] [CrossRef] [PubMed]
- Narumi, S.; Muroya, K.; Asakura, Y.; Aachi, M.; Hasegawa, T. Molecular basis of thyroid dyshormonogenesis: Genetic screening in population-based Japanese patients. J. Clin. Endocrinol. Metab. 2011, 96, E1838–E1842. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.; Rawa, T. Circulating Monocyte Chemoattractant Protein-1 (MCP-1) in Patients with Primary Biliary Cholangitis. Int. J. Mol. Sci. 2024, 25, 1333. [Google Scholar] [CrossRef] [PubMed]
- Carnero-Montoro, E.; Barturen, G.; Povedano, E.; Kerick, M.; Martinez-Bueno, M.; Consortium, P.C.; Ballestar, E.; Martin, J.; Teruel, M.; Alarcon-Riquelme, M.E. Epigenome-Wide Comparative Study Reveals Key Differences Between Mixed Connective Tissue Disease and Related Systemic Autoimmune Diseases. Front. Immunol. 2019, 10, 1880. [Google Scholar] [CrossRef]
- Filipowicz, G.; Wajda, A.; Stypinska, B.; Kmiolek, T.; Felis-Giemza, A.; Stanczyk, S.; Czuszynska, Z.; Walczyk, M.; Olesinska, M.; Paradowska-Gorycka, A. Mixed Connective Tissue Disease as Different Entity: Global Methylation Aspect. Int. J. Mol. Sci. 2023, 24, 15495. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cossu, D. Special Issue “Advances in Molecular Research on Autoimmune Diseases”. Int. J. Mol. Sci. 2024, 25, 11487. https://doi.org/10.3390/ijms252111487
Cossu D. Special Issue “Advances in Molecular Research on Autoimmune Diseases”. International Journal of Molecular Sciences. 2024; 25(21):11487. https://doi.org/10.3390/ijms252111487
Chicago/Turabian StyleCossu, Davide. 2024. "Special Issue “Advances in Molecular Research on Autoimmune Diseases”" International Journal of Molecular Sciences 25, no. 21: 11487. https://doi.org/10.3390/ijms252111487
APA StyleCossu, D. (2024). Special Issue “Advances in Molecular Research on Autoimmune Diseases”. International Journal of Molecular Sciences, 25(21), 11487. https://doi.org/10.3390/ijms252111487