Prospective Quantitative and Phenotypic Analysis of Platelet-Derived Extracellular Vesicles and Its Clinical Relevance in Ischemic Stroke Patients
Abstract
1. Introduction
2. Results
2.1. Microvesiculation after Stroke
2.2. Release of pEVs from Non-Stimulated Platelets and Platelets Activated with Agonists in Healthy Donors
2.3. Release of pEVs from Non-Stimulated Platelets and Platelets Activated with Agonists in Patients after Ischemic Stroke
2.4. Clinical Implications
2.4.1. Stroke Etiology
2.4.2. Clinical Outcome, Stroke Lesion Volume, and Treatment
3. Discussion
4. Materials and Methods
4.1. Studied Populations
4.2. Labeling of pEVs and Flow Cytometry Analysis
4.2.1. Blood Samples
4.2.2. Preparation and Labeling of Platelet-Derived Extracellular Vesicles
4.2.3. Flow Cytometric Analysis
4.2.4. Analysis of Large EVs Derived from Platelets Stimulated with ADP, TRAP, and Arachidonic Acid in Stroke Patients and Healthy Controls
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Badimon, L.; Suades, R.; Arderiu, G.; Peña, E.; Chiva-Blanch, G.; Padro, T. Microvesicles in Atherosclerosis and Angiogenesis: From Bench to Bedside and Reverse. Front. Cardiovasc. Med. 2017, 4, 77. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wei, J.; Zhang, C.; Li, X.; Meng, W.; Mo, X.; Zhang, Q.; Liu, Q.; Ren, K.; Du, R.; et al. Cell-Derived Microparticles in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Cell Physiol. Biochem. 2016, 39, 2439–2450. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S. Microparticle and Atherothrombotic Diseases. J. Atheroscler. Thromb. 2016, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zhao, W.B.; Chen, Y.; Hu, H.Y. Higher Plasma Concentrations of Platelet Microparticles in Patients With Acute Coronary Syndrome: A Systematic Review and Meta-analysis. Can. J. Cardiol. 2016, 32, 1325. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Cai, W.; Zhang, Z.; Zhang, H.; Tang, K.; Zhang, Q.; Wang, X. Circulating microparticles in patients after ischemic stroke: A systematic review and meta-analysis. Rev. Neurosci. 2018, 32, 1–10. [Google Scholar] [CrossRef]
- Forlow, S.B.; McEver, R.P.; Nollert, M.U. Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood 2000, 95, 1317–1323. [Google Scholar] [CrossRef]
- Prasad, K.S.; Andre, P.; He, M.; Bao, M.; Manganello, J.; Phillips, D.R. Soluble CD40 ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc. Natl. Acad. Sci. USA 2003, 100, 12367–12371. [Google Scholar] [CrossRef]
- Inwald, D.P.; McDowall, A.; Peters, M.J.; Callard, R.E.; Klein, N.J. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ. Res. 2003, 92, 1041–1048. [Google Scholar] [CrossRef]
- Frey, B.; Gaipl, U.S. The immune functions of phosphatidylserine in membranes of dying cells and microvesicles. Semin. Immunopathol. 2011, 33, 497–516. [Google Scholar] [CrossRef]
- Chiva-Blanch, G.; Suades, R.; Crespo, J.; Peña, E.; Padró, T.; Jiménez-Xarrié, E.; Martí-Fàbregas, J.; Badimon, L. Microparticle Shedding from Neural Progenitor Cells and Vascular Compartment Cells Is Increased in Ischemic Stroke. PLoS ONE 2016, 11, e0148176. [Google Scholar] [CrossRef]
- Agouni, A.; Parray, A.S.; Akhtar, N.; Mir, F.A.; Bourke, P.J.; Joseph, S.; Morgan, D.M.; Santos, M.D.; Wadiwala, M.F.; Kamran, S.; et al. There Is Selective Increase in Pro-thrombotic Circulating Extracellular Vesicles in Acute Ischemic Stroke and Transient Ischemic Attack: A Study of Patients From the Middle East and Southeast Asia. Front. Neurol. 2019, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Carandina, A.; Favero, C.; Sacco, R.M.; Hoxha, M.; Torgano, G.; Montano, N.; Bollati, V.; Tobaldini, E. The Role of Extracellular Vesicles in Ischemic Stroke Severity. Biology 2022, 11, 1489. [Google Scholar] [CrossRef] [PubMed]
- Lundström, A.; Mobarrez, F.; Rooth, E.; Thålin, C.; von Arbin, M.; Henriksson, P.; Gigante, B.; Laska, A.-C.; Wallén, H. Prognostic Value of Circulating Microvesicle Subpopulations in Ischemic Stroke and TIA. Transl. Stroke Res. 2020, 11, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Wang, L.; Wu, X.; Zhao, L.; Chi, C.; Guo, L.; Tong, D.; Yang, X.; Dong, Z.; Deng, R.; et al. Enhanced Procoagulant Activity on Blood Cells after Acute Ischemic Stroke. Transl. Stroke Res. 2017, 8, 83–91. [Google Scholar] [CrossRef]
- Rosińska, J.; Ambrosius, W.; Maciejewska, J.; Narożny, R.; Kozubski, W.; Łukasik, M. Association of Platelet-Derived Microvesicles and Their Phenotypes with Carotid Atherosclerosis and Recurrent Vascular Events in Patients after Ischemic Stroke. Thromb. Res. 2019, 176, 18–26. [Google Scholar] [CrossRef]
- Connor, D.E.; Exner, T.; Ma, D.D.; Joseph, J.E. Detection of the procoagulant activity of microparticle-associated phosphatidylserine using XACT. Blood Coagul. Fibrinolysis 2009, 20, 558–564. [Google Scholar] [CrossRef]
- Arraud, N.; Linares, R.; Tan, S.; Gounou, C.; Pasquet, J.; Mornet, S.; Brisson, A.R. Extracellular vesicles from blood plasma: Determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost. 2014, 12, 614–627. [Google Scholar] [CrossRef]
- Connor, D.E.; Exner, T.; Ma, D.D.; Joseph, J.E. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb. Haemost. 2010, 103, 1044–1052. [Google Scholar]
- Rosinska, J.; Maciejewska, J.; Narożny, R.; Osztynowicz, K.; Raczak, B.; Michalak, S.; Watała, C.; Kozubski, W.; Łukasik, M. Effect of acetylsalicylic acid intake on platelet derived microvesicles in healthy subjects. Platelets 2020, 31, 206–214. [Google Scholar] [CrossRef]
- Jackson, C.W.; Jennings, L.K. Heterogeneity of fibrinogen receptor expression on platelets activated in normal plasma with ADP: Analysis by flow cytometry. Br. J. Haemat. 1989, 72, 407–414. [Google Scholar] [CrossRef]
- Chung, A.W.; Jurasz, P.; Hollenberg, M.D.; Radomski, M.W. Mechanisms of action of proteinase-activated receptor agonists on human platelets. Br. J. Pharmacol. 2002, 135, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Sanguigni, V.; Lenti, L.; Ferro, D.; Finocchi, A.; Rossi, P.; Violi, F. gp91phox-Dependent Expression of Platelet CD40 Ligand. Circulation 2004, 110, 1326–1329. [Google Scholar] [CrossRef] [PubMed]
- Rosińska, J.; Łukasik, M.; Kozubski, W. The Impact of Vascular Disease Treatment on Platelet-Derived Microvesicles. Cardiovasc. Drugs Ther. 2017, 31, 627–644. [Google Scholar] [CrossRef] [PubMed]
- McCabe, D.J.H.; Harrison, P.; Mackie, I.J.; Sidhu, P.S.; Purdy, G.; Lawrie, A.S.; Watt, H.; Brown, M.M.; Machin, S.J. Platelet degranulation and monocyte-platelet complex formation are increased in the acute and convalescent phases after ischaemic stroke or transient ischaemic attack. Br. J. Haematol. 2004, 125, 777–787. [Google Scholar] [CrossRef]
- Rozalski, M.; Luzak, B.; Michalak, S.; Kozubski, W.; Watala, C.; Lukasik, M. Platelet activation and reactivity in the convalescent phase of ischaemic stroke. Thromb. Haemost. 2010, 103, 644–650. [Google Scholar] [CrossRef]
- Brass, L.F. Thrombin and platelet activation. Chest 2003, 124, 18S–25S. [Google Scholar] [CrossRef]
- Otterdal, K.; Pedersen, T.M.; Solum, N.O. Platelet shape change induced by the peptide YFLLRNP. Thromb. Res. 2001, 103, 411–420. [Google Scholar] [CrossRef]
- Offermanns, S. Activation of platelet function through G protein-coupled receptors. Circ. Res. 2006, 99, 1293–1304. [Google Scholar] [CrossRef]
- Michalak, S.; Dworacki, G.; Siewiera, K.; Kaczmarek, M.; Watala, C.; Kozubski, W.; Lukasik, M. Reactive leptin resistance and the profile of platelet activation in acute ischaemic stroke patients. Thromb. Haemost. 2012, 108, 107–118. [Google Scholar] [CrossRef]
- Lenart-Migdalska, A.; Drabik, L.; Kaźnica-Wiatr, M.; Tomkiewicz-Pająk, L.; Podolec, P.; Olszowska, M. Increased Levels of Platelets and Endothelial-Derived Microparticles in Patients with Non-Valvular Atrial Fibrillation During Rivaroxaban Therapy. Clin. Appl. Thromb. Hemost. 2021, 27, 10760296211019465. [Google Scholar] [CrossRef]
- Weiss, L.; Keaney, J.; Szklanna, P.B.; Prendiville, T.; Uhrig, W.; Wynne, K.; Kelliher, S.; Ewins, K.; Comer, S.P.; Egan, K.; et al. Nonvalvular atrial fibrillation patients anticoagulated with rivaroxaban compared with warfarin exhibit reduced circulating extracellular vesicles with attenuated pro-inflammatory protein signatures. J. Thromb. Haemost. 2021, 19, 2583–2595. [Google Scholar] [CrossRef] [PubMed]
- Gasecka, A.; Nieuwland, R.; Budnik, M.; Dignat-George, F.; Eyileten, C.; Harrison, P.; Lacroix, R.; Leroyer, A.; Opolski, G.; Pluta, K.; et al. Ticagrelor attenuates the increase of extracellular vesicle concentrations in plasma after acute myocardial infarction compared to clopidogrel. J. Thromb. Haemost. 2020, 18, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Gąsecka, A.; Rogula, S.; Eyileten, C.; Postuła, M.; Jaguszewski, M.J.; Kochman, J.; Mazurek, T.; Nieuwland, R.; Filipiak, K.J. Role of P2Y Receptors in Platelet Extracellular Vesicle Release. Int. J. Mol. Sci. 2020, 21, 6065. [Google Scholar] [CrossRef] [PubMed]
- Rosińska, J.; Maciejewska, J.; Narożny, R.; Kozubski, W.; Łukasik, M. Association of platelet-derived microvesicles with high on-treatment platelet reactivity in convalescent ischemic stroke patients treated with acetylsalicylic acid. Wiadomosci Lek. 2019, 72, 1426–1436. [Google Scholar] [CrossRef]
- Berckmans, R.J.; Lacroix, R.; Hau, C.M.; Sturk, A.; Nieuwland, R. Extracellular vesicles and coagulation in blood from healthy humans revisited. J. Extracell. Vesicles 2019, 8, 1688936. [Google Scholar] [CrossRef]
- Adams, H.P., Jr.; Bendixen, B.H.; Kappelle, L.J.; Biller, J.; Love, B.B.; Gordon, D.L.; Marsh, E.E., 3rd. Classification of subtype of acute ischaemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef]
- Lukasik, M.; Telec, M.; Kazmierski, R.; Wojtasz, I.; Andrzejewska-Gorczyńska, N.; Kociemba, W.; Dworacki, G.; Kozubski, W.P.; Frydrychowicz, M. Temporal changes in regulatory T cell subsets defined by the transcription factor Helios in stroke and their potential role in stroke-associated infection: A prospective case-control study. J. Neuroinflamm. 2023, 20, 275. [Google Scholar] [CrossRef]
- Coumans, F.A.W.; Brisson, A.R.; Buzas, E.I.; Dignat-George, F.; Drees, E.E.E.; El-Andaloussi, S.; Emanueli, C.; Gasecka, A.; Hendrix, A.; Hill, A.F.; et al. Methodological Guidelines to Study Extracellular Vesicles. Circ. Res. 2017, 120, 1632–1648. [Google Scholar] [CrossRef]
- Montoro-García, S.; Shantsila, E.; Orenes-Piñero, E.; Lozano, M.L.; Lip, G.Y.H. An innovative flow cytometric approach for small-size platelet microparticles: Influence of calcium. Thromb Haemost. 2012, 108, 373–383. [Google Scholar] [CrossRef]
pEV 0 | +ADP | p pEV 0 vs. +ADP | +TRAP | p pEV 0 vs. +TRAP | +AA | p pEV 0 vs. +AA | |
---|---|---|---|---|---|---|---|
HCs n = 21 | |||||||
pEVs [n/μL] | 128 (83–411) | 440 (262–4853) | <0.0001 | 457 (371–1939) | <0.0001 | 1354 (68–2639) | <0.0001 |
PS+ pEVs [n/μL] | 9 (7–24) | 20 (13–274) | <0.0001 | 26 (20–96) | <0.0001 | 123 (7–240) | <0.0001 |
%PS+ pEVs [%] | 8 (5–9) | 5 (3–6) | ns | 5 (4–7) | ns | 7 (7–9) | ns |
pEVs CD62P+ [n/μL] | 10 (8–12) | 9 (8–11) | ns | 14 (10–15) | 0.004 | 26 (13–38) | 0.005 |
pEVs PAC-1+ [n/μL] | 8 (7–8) | 15 (11–26) | <0.0001 | 12 (9–13) | 0.0007 | 15 (15–16) | 0.005 |
pEVs CD40L+ [n/μL] | 10 (7–11) | 9 (6–13) | ns | 13 (12–38) | 0.0007 | 10 (6–13) | 0.04 |
pEVs CD31+ [n/μL] | 8 (7–15) | 9 (8–52) | ns | 11 (6–12) | ns | 16 (15–17) | 0.005 |
D1 n = 33 | |||||||
pEVs [n/μL] | 344 (225–416) | 1113 (900–1708) | 0.0007 | 574 (485–1993) | 0.0005 | 475 (395–488) | 0.001 |
PS+ pEVs [n/μL] | 22 (17–86) | 26 (25–34) | ns | 38 (24–93) | 0.0006 | 29 (27–31) | 0.0007 |
%PS+ pEVs [%] | 13 (10–15) | 12 (10–16) | ns | 14 (11–17) | ns | 16 (14–17) | ns |
pEVs CD62P+ [n/μL] | 50 (40–66) | 39 (36–68) | ns | 38 (18–102) | ns | 68 (63–74) | 0.004 |
pEVs PAC-1+ [n/μL] | 77 (65–101) | 64 (44–65) | 0.002 | 43 (36–104) | ns | 82 (65–100) | ns |
pEVs CD40L+ [n/μL] | 48 (32–54) | 40 (35–43) | ns | 40 (24–76) | ns | 49 (37–50) | ns |
pEVs CD31+ [n/μL] | 39 (33–50) | 33 (32–44) | ns | 38 (32–62) | ns | 44 (22–46) | ns |
D3 n = 31 | |||||||
pEVs [n/μL] | 326 (316–358) | 537 (256–621) | ns | 701 (431–962) | 0.009 | 245 (225–680) | ns |
PS+ pEVs [n/μL] | 17 (9–73) | 30 (8–47) | ns | 25 (18–54) | 0.003 | 14 (12–38) | ns |
%PS+ pEVs [%] | 11 (8–13) | 7 (5–12) | ns | 14 (12–14) | ns | 15 (12–16) | ns |
pEVs CD62P+ [n/μL] | 45 (12–51) | 60 (35–67) | ns | 70 (45–79) | 0.007 | 52 (47–83) | 0.0007 |
pEVs PAC-1+ [n/μL] | 40 (32–63) | 62 (51–110) | ns | 54 (46–68) | <0.0001 | 62 (44–90) | 0.004 |
pEVs CD40L+ [n/μL] | 35 (11–42) | 36 (35–51) | ns | 64 (44–67) | <0.0001 | 44 (17–66) | 0.001 |
pEVs CD31+ [n/μL] | 38 (12–44) | 29 (27–52) | ns | 39 (22–62) | ns | 46 (22–69) | <0.0001 |
D10 n = 28 | |||||||
pEVs [n/μL] | 490 (322–742) | 1311 (641–2367) | 0.0001 | 1048 (540–1051) | <0.0001 | 488 (307–491) | ns |
PS+ pEVs [n/μL] | 41 (19–69) | 45 (30–59) | 0.01 | 45 (42–54) | 0.04 | 31 (29–33) | ns |
%PS+ pEVs [%] | 10 (8–17) | 6 (5–8) | 0.04 | 7 (7–9) | 0.04 | 8 (6–9) | ns |
pEVs CD62P+ [n/μL] | 37 (29–46) | 68 (54–84) | <0.0001 | 64 (55–73) | 0.0002 | 64 (57–84) | 0.0002 |
pEVs PAC-1+ [n/μL] | 40 (37–44) | 76 (72–80) | 0.0001 | 68 (63–100) | 0.0002 | 71 (53–95) | <0.0001 |
pEVs CD40L+ [n/μL] | 29 (25–47) | 64 (52–74) | 0.0002 | 41 (35–46) | 0.0002 | 40 (28–55) | ns |
pEVs CD31+ [n/μL] | 30 (27–45) | 55 (52–70) | <0.0001 | 61 (50–66) | 0.0006 | 45 (40–61) | ns |
Ischemic Stroke Patients D1 N = 168 | Control Group with Vascular Disease Risk Factors (DC) N = 63 | Healthy Control Group (HC) N = 21 | p Value Stroke D1 vs. DC | |
---|---|---|---|---|
Age, years | 69 ± 12 | 67 ± 13 | 44 ± 10 | 0.87 |
BMI, kg/m2 | 25.4 (23.6-28.4) | 27.0 (24.9–30.6) | 20.3 ± 0.8 | 0.76 |
Female sex, n (%) | 76 (48.1%) | 27 (42.2%) | 9 (42.8%) | 0.74 |
Total cholesterol, mM/L (D1) | 8.2 ± 1.4 | 9.8 ± 1.7 | 4.8 ± 0.3 | 0.39 |
Triglycerides, mM/L (D1) | 8.8 ± 1.7 | 9.6 ± 2.1 | 1.5 ± 0.2 | 0.12 |
Glucose, mM/L (D1) | 7.2 ±2.6 | 6.7 ± 1.8 | 4.6 ± 0.9 | 0.09 |
Platelets, T/µL (D1) | 236 ± 73 | 245 ± 67 | 210 ± 21 | 0.13 |
SBP, mmHg (D1) | 143 ± 21 | 137 ± 19 | 123 ± 14 | 0.11 |
DBP, mmHg (D1) | 83 ± 11 | 80 ± 10 | 71 ± 8 | 0.07 |
Arterial hypertension, n (%) | 126 (75.8) | 47 (74.6) | - | 0.95 |
Diabetes mellitus, n (%) | 38 (22.6) | 12 (19.0) | - | 0.56 |
Coronary heart disease, n (%) | 54 (32.1) | 26 (41.2) | - | 0.14 |
Atrial fibrillation, n (%) | 56 (33.5) | 23 (36.5) | - | 0.65 |
Dyslipidemia, n (%) | 55 (32.5) | 22 (34.9) | - | 0.76 |
Smoking, n (%) | 40 (23.8) | 14 (22.2) | - | 0.80 |
Previous stroke, n (%) | 31 (18.3) | - | - | - |
Thrombolysis, n (%) | 54 (32.1) | - | - | - |
ASA, n (%) | 166 (98.8) | 25 (39.7) | - | <0.01 |
ACE-I, n (%) | 53 (31.5) | 22 (30.1) | - | 0.32 |
Diuretics, n (%) | 40 (23.8) | 19 (39.7) | - | 0.08 |
β-blockers, n (%) | 63 (37.5) | 16 (25.4) | - | 0.13 |
Ca-channel blockers, n (%) | 28 (16.6) | 16 (37.2) | - | 0.89 |
ARB, n (%) | 17 (10.1) | 6 (9.5) | - | 0.89 |
Statins, n (%) | 161 (95.8) | 57 (90.4) | - | 0.11 |
Oral hypoglycemic, n (%) | 27 (16.1) | 7 (11.1) | - | 0.34 |
Insulin, n (%) | 12 (7.1) | 7 (11.1) | - | 0.33 |
Oral anticoagulants, n (%) | 2 (1.2) | 23 (36.5) | - | <0.001 |
Stroke Etiology (TOAST Classification), | n (%) |
LAA | 58 (34.5%) |
SVD | 43 (25.6%) |
CE | 50 (29.8%) |
OE | 0 |
UE | 17 (10.1%) |
Stroke lesion volume, | mL, median (IQR) |
Day 1 | 2.4 (0.5–11.5) |
Day 90 | 1.0 (0.1–6.0) |
NIHSS | score, median (IQR) |
NIHSS D1 | 4 (2–8) |
NIHSS D3 | 3 (1–9) |
NIHSS D10 | 2 (1–6) |
NIHSS D90 | 1 (0–4) |
mRS D3 | 1 (1–4) |
mRS D10 | 1 (1–4) |
mRS D90 | 0 (0–1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejewska-Renkowska, J.; Wachowiak, J.; Telec, M.; Kamieniarz-Mędrygał, M.; Michalak, S.; Kaźmierski, R.; Kociemba, W.; Kozubski, W.P.; Łukasik, M. Prospective Quantitative and Phenotypic Analysis of Platelet-Derived Extracellular Vesicles and Its Clinical Relevance in Ischemic Stroke Patients. Int. J. Mol. Sci. 2024, 25, 11219. https://doi.org/10.3390/ijms252011219
Maciejewska-Renkowska J, Wachowiak J, Telec M, Kamieniarz-Mędrygał M, Michalak S, Kaźmierski R, Kociemba W, Kozubski WP, Łukasik M. Prospective Quantitative and Phenotypic Analysis of Platelet-Derived Extracellular Vesicles and Its Clinical Relevance in Ischemic Stroke Patients. International Journal of Molecular Sciences. 2024; 25(20):11219. https://doi.org/10.3390/ijms252011219
Chicago/Turabian StyleMaciejewska-Renkowska, Joanna, Justyna Wachowiak, Magdalena Telec, Maria Kamieniarz-Mędrygał, Sławomir Michalak, Radosław Kaźmierski, Wojciech Kociemba, Wojciech P. Kozubski, and Maria Łukasik. 2024. "Prospective Quantitative and Phenotypic Analysis of Platelet-Derived Extracellular Vesicles and Its Clinical Relevance in Ischemic Stroke Patients" International Journal of Molecular Sciences 25, no. 20: 11219. https://doi.org/10.3390/ijms252011219
APA StyleMaciejewska-Renkowska, J., Wachowiak, J., Telec, M., Kamieniarz-Mędrygał, M., Michalak, S., Kaźmierski, R., Kociemba, W., Kozubski, W. P., & Łukasik, M. (2024). Prospective Quantitative and Phenotypic Analysis of Platelet-Derived Extracellular Vesicles and Its Clinical Relevance in Ischemic Stroke Patients. International Journal of Molecular Sciences, 25(20), 11219. https://doi.org/10.3390/ijms252011219