Closing Editorial: Immunophenotyping in Autoimmune Diseases and Cancer 3.0
- Future Perspectives
Funding
Conflicts of Interest
List of Contributions
- Farago, A.; Zvara, A.; Tiszlavicz, L.; Hunyadi-Gulyas, E.; Darula, Z.; Hegedus, Z.; Szabo, E.; Surguta, S.E.; Tovari, J.; Puskas, L.G., et al. Lectin-Based Immunophenotyping and Whole Proteomic Profiling of CT-26 Colon Carcinoma Murine Model. Int. J. Mol. Sci. 2024, 25, 4022. https://doi.org/10.3390/ijms25074022.
- Liu, J.; Niu, Y.; Zhang, B.; Sun, Q.; Li, H.; Bai, L.; Su, Z. Different Expression Pattern of G Protein-Coupled Estrogen Receptor GPER1 in Esophageal Squamous Cell Carcinoma and Adenocarcinoma. Int. J. Mol. Sci. 2023, 24, 14055. https://doi.org/10.3390/ijms241814055.
- Lu, H.; Liang, J.; He, X.; Ye, H.; Ruan, C.; Shao, H.; Zhang, R.; Li, Y. A Novel Oncogenic Role of FDX1 in Human Melanoma Related to PD-L1 Immune Checkpoint. Int. J. Mol. Sci. 2023, 24, 9182. https://doi.org/10.3390/ijms24119182.
- Murthy, D.; Attri, K.S. PTGES Expression Is Associated with Metabolic and Immune Reprogramming in Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2023, 24, 7304. https://doi.org/10.3390/ijms24087304.
- Zhu, M.; Chen, D.; Ruan, C.; Yang, P.; Zhu, J.; Zhang, R.; Li, Y. CircRNAs: A Promising Star for Treatment and Prognosis in Oral Squamous Cell Carcinoma. Int. J. Mol. Sci. 2023, 24, 14194. https://doi.org/10.3390/ijms241814194.
- Fraticelli, S.; Lucioni, M.; Neri, G.; Marchiori, D.; Cristinelli, C.; Merli, M.; Monaco, R.; Borra, T.; Lazzaro, A.; Uccella, S., et al. T-Cells Subsets in Castleman Disease: Analysis of 28 Cases Including Unicentric, Multicentric and HHV8-Related Clinical Forms. Int. J. Mol. Sci. 2023, 24, 7813. https://doi.org/10.3390/ijms24097813.
- Hansen, M.; Cheever, A.; Weber, K.S.; O’Neill, K.L. Characterizing the Interplay of Lymphocytes in Graves’ Disease. Int. J. Mol. Sci. 2023, 24, 6835. https://doi.org/10.3390/ijms24076835.
- Dai, Z.; Zhang, J.; Xu, W.; Du, P.; Wang, Z.; Liu, Y. Single-Cell Sequencing-Based Validation of T Cell-Associated Diagnostic Model Genes and Drug Response in Crohn’s Disease. Int. J. Mol. Sci. 2023, 24, 6054. https://10.3390/ijms24076054.
- Liu, G.; Wang, K.; Yang, Z.; Tang, X.; Chang, Y.F.; Dai, K.; Tang, X.; Hu, B.; Zhang, Y.; Cao, S., et al. Identification of a Novel Linear B-Cell Epitope of HbpA Protein from Glaesserella parasuis Using Monoclonal Antibody. Int. J. Mol. Sci. 2023, 24, 8638. https://doi.org/10.3390/ijms24108638.
References
- Herold, N.C.; Mitra, P. Immunophenotyping. In StatPearls; Ineligible Companies: Treasure Island, FL, USA, 2024. [Google Scholar]
- Balog, J.A.; Zvara, A.; Bukovinszki, V.; Puskas, L.G.; Balog, A.; Szebeni, G.J. Comparative single-cell multiplex immunophenotyping of therapy-naive patients with rheumatoid arthritis, systemic sclerosis, and systemic lupus erythematosus shed light on disease-specific composition of the peripheral immune system. Front. Immunol. 2024, 15, 1376933. [Google Scholar] [CrossRef] [PubMed]
- Gemes, N.; Balog, J.A.; Neuperger, P.; Schlegl, E.; Barta, I.; Fillinger, J.; Antus, B.; Zvara, A.; Hegedus, Z.; Czimmerer, Z.; et al. Single-cell immunophenotyping revealed the association of CD4+ central and CD4+ effector memory T cells linking exacerbating chronic obstructive pulmonary disease and NSCLC. Front. Immunol. 2023, 14, 1297577. [Google Scholar] [CrossRef] [PubMed]
- Neuperger, P.; Szalontai, K.; Gemes, N.; Balog, J.A.; Tiszlavicz, L.; Furak, J.; Lazar, G.; Puskas, L.G.; Szebeni, G.J. Single-cell mass cytometric analysis of peripheral immunity and multiplex plasma marker profiling of non-small cell lung cancer patients receiving PD-1 targeting immune checkpoint inhibitors in comparison with platinum-based chemotherapy. Front. Immunol. 2023, 14, 1243233. [Google Scholar] [CrossRef] [PubMed]
- Schulz, A.R.; Rademacher, J.; Bockhorn, V.; Mei, H.E. Harmonized analysis of PBMC by mass cytometry. Methods Cell Biol. 2024, 186, 107–130. [Google Scholar] [CrossRef] [PubMed]
- Nolan, J.P. The evolution of spectral flow cytometry. Cytometry A 2022, 101, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Sahir, F.; Mateo, J.M.; Steinhoff, M.; Siveen, K.S. Development of a 43 color panel for the characterization of conventional and unconventional T-cell subsets, B cells, NK cells, monocytes, dendritic cells, and innate lymphoid cells using spectral flow cytometry. Cytometry A 2020, 105, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Preglej, T.; Brinkmann, M.; Steiner, G.; Aletaha, D.; Goschl, L.; Bonelli, M. Advanced immunophenotyping: A powerful tool for immune profiling, drug screening, and a personalized treatment approach. Front. Immunol. 2023, 14, 1096096. [Google Scholar] [CrossRef] [PubMed]
- Melsen, J.E.; van Ostaijen-Ten Dam, M.M.; Lankester, A.C.; Schilham, M.W.; van den Akker, E.B. A Comprehensive Workflow for Applying Single-Cell Clustering and Pseudotime Analysis to Flow Cytometry Data. J. Immunol. 2020, 205, 864–871. [Google Scholar] [CrossRef] [PubMed]
- den Braanker, H.; Bongenaar, M.; Lubberts, E. How to Prepare Spectral Flow Cytometry Datasets for High Dimensional Data Analysis: A Practical Workflow. Front. Immunol. 2021, 12, 768113. [Google Scholar] [CrossRef] [PubMed]
- Spasic, M.; Ogayo, E.R.; Parsons, A.M.; Mittendorf, E.A.; van Galen, P.; McAllister, S.S. Spectral Flow Cytometry Methods and Pipelines for Comprehensive Immunoprofiling of Human Peripheral Blood and Bone Marrow. Cancer Res. Commun. 2024, 4, 895–910. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.P.; Ostafe, R.; Iyengar, S.N.; Rajwa, B.; Fischer, R. Flow Cytometry: The Next Revolution. Cells 2023, 12, 1775. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szebeni, G.J.; Balog, A. Closing Editorial: Immunophenotyping in Autoimmune Diseases and Cancer 3.0. Int. J. Mol. Sci. 2024, 25, 6311. https://doi.org/10.3390/ijms25126311
Szebeni GJ, Balog A. Closing Editorial: Immunophenotyping in Autoimmune Diseases and Cancer 3.0. International Journal of Molecular Sciences. 2024; 25(12):6311. https://doi.org/10.3390/ijms25126311
Chicago/Turabian StyleSzebeni, Gábor J., and Attila Balog. 2024. "Closing Editorial: Immunophenotyping in Autoimmune Diseases and Cancer 3.0" International Journal of Molecular Sciences 25, no. 12: 6311. https://doi.org/10.3390/ijms25126311
APA StyleSzebeni, G. J., & Balog, A. (2024). Closing Editorial: Immunophenotyping in Autoimmune Diseases and Cancer 3.0. International Journal of Molecular Sciences, 25(12), 6311. https://doi.org/10.3390/ijms25126311