Identification of Gene Expression Signatures for Phenotype-Specific Drug Targeting of Cardiac Fibrosis
Abstract
1. Introduction
2. Results
2.1. Induction of CR Was Accompanied by the Development of MF
2.2. Analysis and Summary of RNA-Seq Data Quality
2.3. Global Gene Expression Changes in the Myocardium in Distinct Myocardial Fibrosis Models
2.4. Comparison of Transcriptional Profiles Indicate Pathological Phenotype of CR
2.5. Pathway Activation Differs between the Experimental Models
2.6. Transcriptomics Signature of Animal Models of MF Related to Drug Prediction
3. Discussion
4. Materials and Methods
4.1. Animal Study Design
4.2. RNA Isolation
4.3. RNA Sequencing
4.4. Drug Prediction Using Reverse Transcriptomics Signature Approach
4.5. Histology and Picrosirius Staining
4.6. Statistics
5. Conclusions
6. Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gyöngyösi, M.; Pavo, N.; Lukovic, D.; Zlabinger, K.; Spannbauer, A.; Traxler, D.; Goliasch, G.; Mandic, L.; Bergler-Klein, J.; Gugerell, A.; et al. Porcine Model of Progressive Cardiac Hypertrophy and Fibrosis with Secondary Postcapillary Pulmonary Hypertension. J. Transl. Med. 2017, 15, 502. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gyöngyösi, M.; Lukovic, D.; Zlabinger, K.; Spannbauer, A.; Gugerell, A.; Pavo, N.; Traxler, D.; Pils, D.; Maurer, G.; Jakab, A.; et al. Liposomal Doxorubicin Attenuates Cardiotoxicity via Induction of Interferon-Related DNA Damage Resistance. Cardiovasc. Res. 2020, 116, 970–982. [Google Scholar] [CrossRef] [PubMed]
- Schirone, L.; Forte, M.; Palmerio, S.; Yee, D.; Nocella, C.; Angelini, F.; Pagano, F.; Schiavon, S.; Bordin, A.; Carrizzo, A.; et al. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxid. Med. Cell. Longev. 2017, 2017, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Metra, M.; Teerlink, J.R. Heart Failure. Lancet 2017, 390, 1981–1995. [Google Scholar] [CrossRef] [PubMed]
- Igawa, A.; Nozawa, T.; Fujii, N.; Kato, B.; Asanoi, H.; Inoue, H. Long-Term Treatment with Low-Dose, but Not High-Dose, Guanethidine Improves Ventricular Function and Survival of Rats with Heart Failure after Myocardial Infarction. J. Am. Coll. Cardiol. 2003, 42, 541–548. [Google Scholar] [CrossRef][Green Version]
- Yang, J.; Feng, X.; Zhou, Q.; Cheng, W.; Shang, C.; Han, P.; Lin, C.-H.; Chen, H.-S.V.; Quertermous, T.; Chang, C.-P. Pathological Ace2-to-Ace Enzyme Switch in the Stressed Heart Is Transcriptionally Controlled by the Endothelial Brg1–FoxM1 Complex. Proc. Natl. Acad. Sci. USA 2016, 113, E5628–E5635. [Google Scholar] [CrossRef][Green Version]
- Xu, D.; Wu, Y.; Liao, Z.-X.; Wang, H. Protective Effect of Verapamil on Multiple Hepatotoxic Factors-Induced Liver Fibrosis in Rats. Pharm. Res. 2007, 55, 280–286. [Google Scholar] [CrossRef]
- Sandmann, S.; Bohle, R.M.; Dreyer, T.; Unger, T. The T-Type Calcium Channel Blocker Mibefradil Reduced Interstitial and Perivascular Fibrosis and Improved Hemodynamic Parameters in Myocardial Infarction-Induced Cardiac Failure in Rats. Virchows Arch. 2000, 436, 147–157. [Google Scholar] [CrossRef]
- Hinderer, S.; Schenke-Layland, K. Cardiac Fibrosis—A Short Review of Causes and Therapeutic Strategies. Adv. Drug Deliv. Rev. 2019, 146, 77–82. [Google Scholar] [CrossRef]
- López, B.; Ravassa, S.; Moreno, M.U.; José, G.S.; Beaumont, J.; González, A.; Díez, J. Diffuse Myocardial Fibrosis: Mechanisms, Diagnosis and Therapeutic Approaches. Nat. Rev. Cardiol. 2021, 18, 479–498. [Google Scholar] [CrossRef]
- Mewton, N.; Liu, C.Y.; Croisille, P.; Bluemke, D.; Lima, J.A.C. Assessment of Myocardial Fibrosis With Cardiovascular Magnetic Resonance. J. Am. Coll. Cardiol. 2011, 57, 891–903. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Batkai, S.; Genschel, C.; Viereck, J.; Rump, S.; Bär, C.; Borchert, T.; Traxler, D.; Riesenhuber, M.; Spannbauer, A.; Lukovic, D.; et al. CDR132L Improves Systolic and Diastolic Function in a Large Animal Model of Chronic Heart Failure. Eur. Heart J. 2021, 42, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic. Acids Res. 2022, 50, D988–D995. [Google Scholar] [CrossRef]
- Mancilla, T.R.; Iskra, B.; Aune, G.J. Doxorubicin-Induced Cardiomyopathy in Children. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Bergler-Klein, J. Myocardial Damage in Anthracyclines and Breast Cancer: Take a Look at the Bull’s Eye. Eur. Heart J. Cardiovasc. Imaging. 2021, 22, 416–417. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Chen, C.; Cheng, J. The Role and Molecular Mechanism of FoxO1 in Mediating Cardiac Hypertrophy. ESC Heart Fail. 2020, 7, 3497–3504. [Google Scholar] [CrossRef]
- Duan, P.; Wang, J.; Li, Y.; Wei, S.; Su, F.; Zhang, S.; Duan, Y.; Wang, L.; Zhu, Q. Opening of MitoKATP Improves Cardiac Function and Inhibits Apoptosis via the AKT-Foxo1 Signaling Pathway in Diabetic Cardiomyopathy. Int. J. Mol. Med. 2018, 42, 2709–2719. [Google Scholar] [CrossRef][Green Version]
- Du, Y.; Zhao, E.; Zhang, Y. Identification of Feature Autophagy-Related Genes in Patients with Acute Myocardial Infarction Based on Bioinformatics Analyses. Biosci Rep. 2020, 40, 790. [Google Scholar] [CrossRef]
- Ciulla, M.M.; Paliotti, R.; Esposito, A.; Cuspidi, C.; Muiesan, M.L.; Rosei, E.A.; Magrini, F.; Zanchetti, A. Effects of Antihypertensive Treatment on Ultrasound Measures of Myocardial Fibrosis in Hypertensive Patients with Left Ventricular Hypertrophy: Results of a Randomized Trial Comparing the Angiotensin Receptor Antagonist, Candesartan and the Angiotensin-Converting Enzyme Inhibitor, Enalapril. J. Hypertens. 2009, 27, 626–632. [Google Scholar] [CrossRef]
- Katsiki, N.; Doumas, M.; Mikhailidis, D.P. Lipids, Statins and Heart Failure: An Update. Curr. Pharm. Des. 2016, 22, 4796–4806. [Google Scholar] [CrossRef]
- Brown, N.J. Contribution of Aldosterone to Cardiovascular and Renal Inflammation and Fibrosis. Nat. Rev. Nephrol. 2013, 9, 459–469. [Google Scholar] [CrossRef]
- López, B.; Querejeta, R.; González, A.; Sánchez, E.; Larman, M.; Díez, J. Effects of Loop Diuretics on Myocardial Fibrosis and Collagen Type I Turnover in Chronic Heart Failure. J. Am. Coll. Cardiol. 2004, 43, 2028–2035. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gosse, P.; Sheridan, D.J.; Zannad, F.; Dubourg, O.; Guéret, P.; Karpov, Y.; de Leeuw, P.W.; Palma-Gamiz, J.-L.; Pessina, A.; Motz, W.; et al. Regression of Left Ventricular Hypertrophy in Hypertensive Patients Treated with Indapamide SR 1.5 Mg versus Enalapril 20 Mg. J. Hypertens. 2000, 18, 1465–1475. [Google Scholar] [CrossRef] [PubMed]
- Pacca, S.R.M.C.; de Azevedo, A.P.; de Oliveira, C.F.; de Luca, I.M.S.; de Nucci, G.; Antunes, E. Attenuation of Hypertension, Cardiomyocyte Hypertrophy, and Myocardial Fibrosis by β-Adrenoceptor Blockers in Rats Under Long-Term Blockade of Nitric Oxide Synthesis. J. Cardiovasc. Pharm. 2002, 39, 201–207. [Google Scholar] [CrossRef]
- Gulati, G.; Heck, S.L.; Røsjø, H.; Ree, A.H.; Hoffmann, P.; Hagve, T.; Norseth, J.; Gravdehaug, B.; Steine, K.; Geisler, J.; et al. Neurohormonal Blockade and Circulating Cardiovascular Biomarkers During Anthracycline Therapy in Breast Cancer Patients: Results From the PRADA (Prevention of Cardiac Dysfunction During Adjuvant Breast Cancer Therapy) Study. J. Am. Heart Assoc. 2017, 6, e006513. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ciulla, M.M.; Paliotti, R.; Esposito, A.; Dìez, J.; López, B.; Dahlöf, B.; Nicholls, M.G.; Smith, R.D.; Gilles, L.; Magrini, F.; et al. Different Effects of Antihypertensive Therapies Based on Losartan or Atenolol on Ultrasound and Biochemical Markers of Myocardial Fibrosis. Circulation 2004, 110, 552–557. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Okishio, S.; Yamaguchi, K.; Ishiba, H.; Tochiki, N.; Yano, K.; Takahashi, A.; Kataoka, S.; Okuda, K.; Seko, Y.; Liu, Y.; et al. PPARα Agonist and Metformin Co-Treatment Ameliorates NASH in Mice Induced by a Choline-Deficient, Amino Acid-Defined Diet with 45% Fat. Sci. Rep. 2020, 10, 19578. [Google Scholar] [CrossRef]
- Umbarkar, P.; Singh, A.P.; Tousif, S.; Zhang, Q.; Sethu, P.; Lal, H. Repurposing Nintedanib for Pathological Cardiac Remodeling and Dysfunction. Pharm. Res. 2021, 169, 105605. [Google Scholar] [CrossRef]
- Bourgeois, A.; Lambert, C.; Habbout, K.; Ranchoux, B.; Paquet-Marceau, S.; Trinh, I.; Breuils-Bonnet, S.; Paradis, R.; Nadeau, V.; Paulin, R.; et al. FOXM1 Promotes Pulmonary Artery Smooth Muscle Cell Expansion in Pulmonary Arterial Hypertension. J. Mol. Med. 2018, 96, 223–235. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Tang, R.; Huang, Y.; He, T. FoxM1 Inhibition Ameliorates Renal Interstitial Fibrosis by Decreasing Extracellular Matrix and Epithelial–Mesenchymal Transition. J. Pharm. Sci. 2020, 143, 281–289. [Google Scholar] [CrossRef]
- Dobin, A.; Gingeras, T.R. Mapping RNA-seq Reads with STAR. Curr. Protoc. Bioinform. 2015, 51, 11.14.1–11.14.19. [Google Scholar] [CrossRef][Green Version]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—a Python Framework to Work with High-Throughput Sequencing Data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ge, S.X.; Son, E.W.; Yao, R. IDEP: An Integrated Web Application for Differential Expression and Pathway Analysis of RNA-Seq Data. BMC Bioinform. 2018, 19, 1–24. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Korotkevich, G.; Sukhov, V.; Budin, N.; Shpak, B.; Artyomov, M.N.; Sergushichev, A. Fast Gene Set Enrichment Analysis. bioRxiv 2021, 060012. [Google Scholar] [CrossRef][Green Version]
- Luo, W.; Brouwer, C. Pathview: An R/Bioconductor Package for Pathway-Based Data Integration and Visualization. Bioinformatics 2013, 29, 1830–1831. [Google Scholar] [CrossRef][Green Version]
- Edgar, R. Gene Expression Omnibus: NCBI Gene Expression and Hybridization Array Data Repository. Nucleic Acids. Res. 2002, 30, 207–210. [Google Scholar] [CrossRef][Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukovic, D.; Hasimbegovic, E.; Winkler, J.; Mester-Tonczar, J.; Müller-Zlabinger, K.; Han, E.; Spannbauer, A.; Traxler-Weidenauer, D.; Bergler-Klein, J.; Pavo, N.; et al. Identification of Gene Expression Signatures for Phenotype-Specific Drug Targeting of Cardiac Fibrosis. Int. J. Mol. Sci. 2023, 24, 7461. https://doi.org/10.3390/ijms24087461
Lukovic D, Hasimbegovic E, Winkler J, Mester-Tonczar J, Müller-Zlabinger K, Han E, Spannbauer A, Traxler-Weidenauer D, Bergler-Klein J, Pavo N, et al. Identification of Gene Expression Signatures for Phenotype-Specific Drug Targeting of Cardiac Fibrosis. International Journal of Molecular Sciences. 2023; 24(8):7461. https://doi.org/10.3390/ijms24087461
Chicago/Turabian StyleLukovic, Dominika, Ena Hasimbegovic, Johannes Winkler, Julia Mester-Tonczar, Katrin Müller-Zlabinger, Emilie Han, Andreas Spannbauer, Denise Traxler-Weidenauer, Jutta Bergler-Klein, Noemi Pavo, and et al. 2023. "Identification of Gene Expression Signatures for Phenotype-Specific Drug Targeting of Cardiac Fibrosis" International Journal of Molecular Sciences 24, no. 8: 7461. https://doi.org/10.3390/ijms24087461
APA StyleLukovic, D., Hasimbegovic, E., Winkler, J., Mester-Tonczar, J., Müller-Zlabinger, K., Han, E., Spannbauer, A., Traxler-Weidenauer, D., Bergler-Klein, J., Pavo, N., Goliasch, G., Batkai, S., Thum, T., Zannad, F., & Gyöngyösi, M. (2023). Identification of Gene Expression Signatures for Phenotype-Specific Drug Targeting of Cardiac Fibrosis. International Journal of Molecular Sciences, 24(8), 7461. https://doi.org/10.3390/ijms24087461