Ca2+ Dependent Formation/Collapse of Cylindrical Ca2+-ATPase Crystals in Scallop Sarcoplasmic Reticulum (SR) Vesicles: A Possible Dynamic Role of SR in Regulation of Muscle Contraction
Abstract
1. Introduction
2. Results
2.1. Calcium Dependence of the ATPase Crystallization and Elongation of SR Vesicles in the Presence of ATP
2.2. [Ca2+] Jump-Up and -Down
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SR | Sarcoplasmic reticulum |
EGTA | ethylenebis (oxyethylenenitrilo) tetraacetic acid |
TG | Thapsigargin |
DMSO | dimethylsulfoxide |
TEM | Transmission electron microscopy/microscope |
SD | Standard deviation |
References
- Nakamura, J.; Maruyama, Y.; Tajima, G.; Komeiji, Y.; Suwa, M.; Sato, C. Ca2+-ATPase molecules as a calcium-sensitive membrane-endoskeleton of sarcoplasmic reticulum. Int. J. Mol. Sci. 2021, 22, 2624. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Shirakata, Y.; Sato, D.; Konishi, K.; Watanabe, T.; Nakamura, J. Isolation and characteristics of scallop sarcoplasmic reticulum with calcium transport activity. J. Biochem. 1992, 112, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, J.; Maruyama, Y.; Tajima, G.; Suwa, M.; Sato, C. Elongation and contraction of scallop sarcoplasmic reticulum (SR): ATP stabilizes Ca2+-ATPase crystalline array elongation of SR vesicles. Int. J. Mol. Sci. 2022, 23, 3311. [Google Scholar] [CrossRef] [PubMed]
- Sagara, Y.; Wade, J.B.; Inesi, G. A conformational mechanism for formation of a dead-end complex by the sarcoplasmic reticulum ATPase with thapsigargin. J. Biol. Chem. 1992, 267, 1286–1292. [Google Scholar] [CrossRef]
- Sanger, J.W.; Sanger, J.M. Sarcoplasmic reticulum in the adductor muscle of a Bermuda scallop: Comparison of smooth versus cross-striated portions. Biol. Bull. 1985, 168, 447–460. [Google Scholar] [CrossRef]
- Loesser, K.E.; Castellani, L.; Franzini-Armstrong, C. Dispositions of junctional feet in muscles of invertebrates. J. Muscle Res. Cell Motil. 1992, 13, 161–173. [Google Scholar] [CrossRef]
- Quinn, K.E.; Castellani, L.; Ondrias, K.; Ehrlich, B.E. Characterization of the ryanodine receptor/channel of invertebrate muscle. Am. J. Physiol. 1998, 274, R494–R502. [Google Scholar] [CrossRef]
- Franzini-Armstrong, C. Studies of the triad: I. Structure of the junction in frog twitch fibers. J. Cell Biol. 1970, 47, 488–499. [Google Scholar] [CrossRef]
- Castellani, L.; Hardwicke, P.M.D.; Franzini-Armstrong, C. Effect of Ca2+ on the dimeric structure of scallop sarcoplasmic reticulum. J. Cell Biol. 1989, 108, 511–520. [Google Scholar] [CrossRef]
- Castellani, L.; Hardwicke, P.M.D. Crystalline structure of sarcoplasmic reticulum from scallop. J. Cell Biol. 1983, 97, 557–561. [Google Scholar] [CrossRef]
- Kalabokis, V.N.; Bozzola, J.J.; Castellani, L.; Hardwicke, P.M.D. A possible role for the dimer ribbon state of scallop sarcoplasmic reticulum. J. Biol. Chem. 1991, 266, 22044–22050. [Google Scholar] [CrossRef]
- Jensen, A.-M.L.; Sørensen, T.L.-M.; Olesen, C.; Møller, J.V.; Nissen, P. Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J. 2006, 25, 2305–2314. [Google Scholar] [CrossRef]
- Patel, A.; Malinovska, L.; Saha, S.; Wang, J.; Alberti, S.; Krishnan, Y.; Hyman, A.A. ATP as a biological hydrotrope. Science 2017, 356, 753–756. [Google Scholar] [CrossRef]
- Komenami, T.; Yoshimura, A.; Matsuno, Y.; Sato, M.; Sato, C. Network of Palladium-Based Nanorings Synthesized by Liquid-Phase Reduction Using DMSO-H2O: In Situ Monitoring of Structure Formation and Drying Deformation by ASEM. Int. J. Mol. Sci. 2020, 21, 3271. [Google Scholar] [CrossRef]
- Nishiyama, H.; Suga, M.; Ogura, T.; Maruyama, Y.; Koizumi, M.; Mio, K.; Kitamura, S.; Sato, C. Atmospheric Scanning Electron Microscope Observes Cells and Tissues in Open Medium Through Silicon Nitride Film. J. Struct. Biol. 2010, 169, 438–449. [Google Scholar] [CrossRef]
- Sato, K.; Naya, M.; Hatano, Y.; Kondo, Y.; Sato, M.; Narita, Y.; Nagano, K.; Naito, M.; Nakayama, K.; Sato, C. Colony spreading of the gliding bacterium Flavobacterium johnsoniae in the absence of the motility adhesin SprB. Sci. Rep. 2021, 11, 697. [Google Scholar] [CrossRef]
- Sato, K.; Naya, M.; Hatano, Y.; Kondo, Y.; Sato, M.; Narita, Y.; Nagano, K.; Naito, M.; Sato, C. Biofilm spreading by the adhesin-dependent gliding motility of Flavobacterium johnsoniae. 1. Internal structure of the biofilm. Int. J. Mol. Sci. 2021, 22, 1894. [Google Scholar] [CrossRef]
- Naya, M.; Sato, C. Pyrene Excimer-Based Fluorescent Labeling of Neighboring Cysteines by Protein Dynamics: ASEM-Induced Thiol-Ene Click Reaction for High Spatial Resolution CLEM. Int. J. Mol. Sci. 2020, 21, 7550. [Google Scholar] [CrossRef]
- Lea, T.J.; Fenton, M.J.; Potter, J.D.; Ashley, C.C. Rapid activation by photolysis of nitr-5 in skinned fibers of the striated adductor muscle from the scallop. Biochim. Biophys. Acta 1990, 1034, 186–194. [Google Scholar] [CrossRef]
- Dux, L.; Taylor, K.A.; Ting-Beall, H.P.; Martonosi, A. Crystallization of the Ca2+-ATPase of sarcoplasmic reticulum by calcium and lanthanide ions. J. Biol. Chem. 1985, 260, 11730–11743. [Google Scholar] [CrossRef]
- Nakamura, J.; Tajima, G. Independence of two conformations of sarcoplasmic reticulum Ca2+-ATPase molecules in hydrolyzing acetyl phosphate. A two-pair model of the ATPase structural unit. J. Biol. Chem. 1997, 272, 19290–19294. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, J.; Tajima, G.; FuruKohri, T. Oligomer of Two Types of Conformational Variants of Sarcoplasmic Reticulum Ca2+-ATPase Molecules. In Na/K-ATPase and Related ATPases; Taniguchi, K., Kaya, S., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2000; pp. 373–379. [Google Scholar]
- Toyoshima, C.; Inesi, G. Structural basis of ion pumping by Ca2+-ATPase of the sarcoplasmic reticulum. Annu. Rev. Biochem. 2004, 73, 269–292. [Google Scholar] [CrossRef] [PubMed]
- Olesen, C.; Picard, M.; Winther, A.-M.L.; Gyrup, C.; Morth, J.P.; Oxvig, C.; Møller, J.V.; Nissen, P. The structural basis of calcium transport by the calcium pump. Nature 2007, 450, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Rios, E.; Ma, J.; Gonzales, A. The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle. J. Musc. Res. Cell Motil. 1991, 12, 127–135. [Google Scholar] [CrossRef]
- Ferguson, D.G.; Schwartz, H.W.; Franzini-Armstrong, C. Subunit structure of junctional feet in triads of skeletal muscle: A freeze-drying, rotary-shadowing study. J. Cell Biol. 1984, 99, 1735–1742. [Google Scholar] [CrossRef]
- Wagenknecht, T.; Hsieh, C.-E.; Rath, B.; Fleischer, S.; Marko, M. Electron Tomography of Frozen-Hydrated Isolated Triad Junctions. Biophys. J. 2002, 83, 2491–2501. [Google Scholar] [CrossRef]
- Wagenknecht, T.; Hsieh, C.; Marko, M. Skeletal muscle triad junction ultrastructure by focused-ion-beam milling of muscle and cryo-electron tomography. Eur. J. Transl. Myol. Basic Appl. Myol. 2015, 25, 49–56. [Google Scholar] [CrossRef]
- Asghari, P.; Scriven, D.R.L.; Ng, M.; Panwar, P.; Chou, K.C.C.; van Petegem, F.; Moore, E.D.W. Cardiac ryanodine receptor distribution is dynamic and changed by auxiliary proteins and post-translational modification. eLife 2020, 9, e51602. [Google Scholar] [CrossRef]
- Merton, P.A. Problems of muscle fatigue. Brit. Med. Bull. 1956, 12, 219–221. [Google Scholar] [CrossRef]
- Peachey, L.D. The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius. J. Cell Biol. 1965, 25, 209–231. [Google Scholar] [CrossRef]
- Porter, K.R.; Palade, G.E. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J. Biophys. Biochem. Cytol. 1957, 3, 269–300. [Google Scholar] [CrossRef]
- Ogata, T.; Yamasaki, Y. Scanning electron-microscopic studied on the three-dimensional structure of sarcoplasmic reticulum in the mammalian red, white and intermediate muscle fibers. Cell Tissue Res. 1985, 242, 461–467. [Google Scholar] [CrossRef]
- Song, C.; Satoh, T.; Sekiguchi, T.; Kato, K.; Murata, K. Structural fluctuations of the human proteasome α7 homo-tetradecamer double ring imply the proteasomal α-ring assembly mechanism. Int. J. Mol. Sci. 2021, 22, 4519. [Google Scholar] [CrossRef]
- Sato, C.; Ueno, Y.; Asai, K.; Takahashi, K.; Sato, M.; Engel, A.; Fujiyoshi, Y. The voltage-sensitive sodium channel is a bell-shaped molecule with several cavities. Nature 2001, 409, 1047–1051. [Google Scholar] [CrossRef]
Calcium Concentration (µM) | |||||||||
---|---|---|---|---|---|---|---|---|---|
0.002 | 0.03 | 0.12 | 0.6 | 1.4 | 18 | 59 | |||
elongated vesicles | 32 (5.0%) | 45 (9.0%) | 68 (16.2%) | 48 (11.4%) | 30 (3.8%) | 8 (1.3%) | 5 (1.0%) | ||
tightly elongated | 11 (1.7) | 38 (7.6) | 41 (9.8) | 28 (6.7) | 26 (3.3) | 3 (0.5) | 2 (0.4) | ||
with crystal-array | 8 (1.2) | 30 (6.0) | 27 (6.4) | 20 (4.8) | 19 (2.4) | 1 (0.2) | 0 | ||
without crystal-array | 3 (0.5) | 8 (1.6) | 14 (3.3) | 8 (1.9) | 7 (0.9) | 2 (0.3) | 2 (0.4) | ||
crookedly elongated | 21 (3.3) | 7 (1.4) | 27 (6.4) | 20 (4.8) | 4 (0.5) | 5 (0.8) | 3 (0.6) | ||
round vesicles | 612 (95.0) | 456 (91.0) | 352 (83.8) | 373 (88.6) | 767 (96.2) | 618 (98.7) | 515 (99.0) | ||
total | 644 | 501 | 420 | 421 | 797 | 626 | 520 |
A: [Ca2+] Jump-Up | Control 0.003 → 0.003 | 0.003 → 1.1 µM | 0.003 → 9.8 µM | ||
---|---|---|---|---|---|
elongated vesicles | 20 (9.8%) | 13 (9.0%) | 11 (1.9%) | ||
tightly elongated | 20 (9.8) | 13 (9.0) | 7 (1.2) | ||
with crystal-array | 6 (2.9) | 5 (3.4) | 0 | ||
without crystal-array | 14 (6.9) | 8 (5.5) | 7 (1.2) | ||
crookedly elongated | 0 | 0 | 4 (0.7) | ||
with crystal-array | 0 | 0 | 0 | ||
without crystal-array | 0 | 0 | 4 (0.7) | ||
round vesicles | 184 (90.2) | 132 (91.0) | 550 (98.0) | ||
with crystal-array | 2 (1.0) | 2 (1.4) | 0 | ||
without crystal-array | 182 (89.2) | 130 (89.7) | 550 (98.0) | ||
total | 204 (100) | 145 (100) | 561 (100) | ||
B: [Ca2+] Jump-Down | Control 16 → 15 µM | 16 → 0.003 µM | |||
elongated vesicles | 5 (2.1%) | 20 (14.2%) | |||
with crystal-array | 0 | 3 (2.1) | |||
without crystal-array | 5 (2.1) | 17 (12.1) | |||
round vesicles | 233 (97.9) | 121 (85.8) | |||
with crystal-array | 0 | 1 (0.7) | |||
without crystal-array | 233 (97.9) | 120 (85.1) | |||
total | 238 (100) | 141 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, J.; Maruyama, Y.; Tajima, G.; Hayakawa, S.; Suwa, M.; Sato, C. Ca2+ Dependent Formation/Collapse of Cylindrical Ca2+-ATPase Crystals in Scallop Sarcoplasmic Reticulum (SR) Vesicles: A Possible Dynamic Role of SR in Regulation of Muscle Contraction. Int. J. Mol. Sci. 2023, 24, 7080. https://doi.org/10.3390/ijms24087080
Nakamura J, Maruyama Y, Tajima G, Hayakawa S, Suwa M, Sato C. Ca2+ Dependent Formation/Collapse of Cylindrical Ca2+-ATPase Crystals in Scallop Sarcoplasmic Reticulum (SR) Vesicles: A Possible Dynamic Role of SR in Regulation of Muscle Contraction. International Journal of Molecular Sciences. 2023; 24(8):7080. https://doi.org/10.3390/ijms24087080
Chicago/Turabian StyleNakamura, Jun, Yuusuke Maruyama, Genichi Tajima, Satoshi Hayakawa, Makiko Suwa, and Chikara Sato. 2023. "Ca2+ Dependent Formation/Collapse of Cylindrical Ca2+-ATPase Crystals in Scallop Sarcoplasmic Reticulum (SR) Vesicles: A Possible Dynamic Role of SR in Regulation of Muscle Contraction" International Journal of Molecular Sciences 24, no. 8: 7080. https://doi.org/10.3390/ijms24087080
APA StyleNakamura, J., Maruyama, Y., Tajima, G., Hayakawa, S., Suwa, M., & Sato, C. (2023). Ca2+ Dependent Formation/Collapse of Cylindrical Ca2+-ATPase Crystals in Scallop Sarcoplasmic Reticulum (SR) Vesicles: A Possible Dynamic Role of SR in Regulation of Muscle Contraction. International Journal of Molecular Sciences, 24(8), 7080. https://doi.org/10.3390/ijms24087080