Molecular Physiological Evidence for the Role of Na+-Cl− Co-Transporter in Branchial Na+ Uptake in Freshwater Teleosts
Abstract
1. Introduction
2. Results
2.1. Branchial NCC Ionocytes Are a Specific Subtype of Ionocytes
2.2. Low-Na+ FW Increased the Branchial Protein Expression of Ncc2 but Did Not Affect Its mRNA Expression
2.3. Low-Na+ FW Increased the Number of NCC Ionocytes and the Ncc2 Protein Expression of Individual NCC Ionocytes in the Gills
2.4. Low-Na+ FW Elevated Branchial Na+ Uptake
2.5. Cl−-Free FW Decreased Na+ Uptake in the Gills Acclimated to Low-Na+ FW
2.6. Ncc Inhibitor Impaired Na+ Uptake in the Gills Acclimated to Low-Na+ FW
2.7. Nhe Inhibitor Impaired Na+ Uptake in the Gills Acclimated to Low-Na+ FW
3. Discussion
4. Materials and Methods
4.1. Experimental Animals
4.2. Single-Cell RNA Sequencing (scRNA-Seq)
4.3. Low-Na+ Acclimation Experiment
4.4. Preparation of Complementary DNA
4.5. Quantitative Real-time Polymerase Chain Reaction (qRT-PCR)
4.6. Immunofluorescence (IF)
4.7. Western Blot
4.8. Scanning Ion-Selective Electrode Technique (SIET)
4.9. Pharmacological Treatments
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Asic | Acid-sensing ion channel |
| CD | Collecting duct |
| DCT | Distal convoluted tubule |
| dpf | Day(s) post-fertilization |
| Ecac | Epithelial Ca2+ channel |
| EIPA | 5-(N-ethyl-N-isopropyl)-amiloride |
| Enac | Epithelial Na+ channel |
| FW | Freshwater |
| GFR | Glomerular filtration rate |
| HR | VHa-rich |
| IF | Immunofluorescence |
| KO | Knockout |
| NaR | Nka-rich |
| Ncc | Na+-Cl− co-transporter |
| Nhe | Na+/H+ exchanger |
| Nka | Na+/K+ ATPase |
| PCT | Proximal convoluted tubule |
| qRT-PCR | Quantitative real-time polymerase chain reaction |
| scRNA-Seq | Single-cell RNA sequencing |
| SIET | Scanning ion-selective electrode technique |
| SW | Seawater |
| VHa | Vascular-type H+ ATPase |
References
- Hwang, P.P.; Lee, T.H.; Lin, L.Y. Ion regulation in fish gills: Recent progress in the cellular and molecular mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, 28–47. [Google Scholar] [CrossRef]
- Evans, D.H.; Piermarini, P.M.; Choe, K.P. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol. Rev. 2005, 85, 97–177. [Google Scholar] [CrossRef]
- Shih, S.W.; Hwang, P.P. Mechanisms of ion transport in freshwater fishes. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Zimmer, A.M.; Dymowska, A.K.; Kumai, Y.; Goss, G.G.; Perry, S.F.; Kwong, R.W. Assessing the role of the acid-sensing ion channel ASIC4b in sodium uptake by larval zebrafish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2018, 226, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dymowska, A.K.; Boyle, D.; Schultz, A.G.; Goss, G.G. The role of acid-sensing ion channels in epithelial Na+ uptake in adult zebrafish (Danio rerio). J. Exp. Biol. 2015, 218, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Dymowska, A.K.; Schultz, A.G.; Blair, S.D.; Chamot, D.; Goss, G.G. Acid-sensing ion channels are involved in epithelial Na+ uptake in the rainbow trout Oncorhynchus mykiss. Am. J. Physiol. Cell Physiol. 2014, 307, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Clifford, A.M.; Tresguerres, M.; Goss, G.G.; Wood, C.M. A novel K+-dependent Na+ uptake mechanism during low pH exposure in adult zebrafish (Danio rerio): New tricks for old dogma. Acta Physiol. 2022, 234, 13777. [Google Scholar] [CrossRef]
- Yan, J.J.; Hwang, P.P. Novel discoveries in acid-base regulation and osmoregulation: A review of selected hormonal actions in zebrafish and medaka. Gen. Comp. Endocrinol. 2019, 277, 20–29. [Google Scholar] [CrossRef]
- Shih, S.W.; Yan, J.J.; Chou, M.Y.; Hwang, P.P. Recent progress and debates in molecular physiology of Na+ uptake in teleosts. Front. Mar. Sci. 2023, 10, 1066929. [Google Scholar] [CrossRef]
- Tseng, Y.C.; Yan, J.J.; Furukawa, F.; Hwang, P.P. Did acidic stress resistance in vertebrates evolve as Na+/H+ exchanger-mediated ammonia excretion in fish? Bioessays 2020, 42, 1900161. [Google Scholar] [CrossRef]
- Wichmann, L.; Althaus, M. Evolution of epithelial sodium channels: Current concepts and hypotheses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 319, 387–400. [Google Scholar] [CrossRef]
- Yoder, N.; Yoshioka, C.; Gouaux, E. Gating mechanisms of acid-sensing ion channels. Nature 2018, 555, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Gründer, S.; Pusch, M. Biophysical properties of acid-sensing ion channels (ASICs). Neuropharmacology 2015, 94, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.; Kwong, R.W. Zebrafish as a model system for investigating the compensatory regulation of ionic balance during metabolic acidosis. Int. J. Mol. Sci. 2018, 19, 1087. [Google Scholar] [CrossRef] [PubMed]
- Inokuchi, M.; Hiroi, J.; Kaneko, T. Why can Mozambique tilapia acclimate to both freshwater and seawater? Insights from the plasticity of ionocyte functions in the euryhaline teleost. Front. Physiol. 2022, 13, 914277. [Google Scholar] [CrossRef]
- Inokuchi, M.; Nakamura, M.; Miyanishi, H.; Hiroi, J.; Kaneko, T. Functional classification of gill ionocytes and spatiotemporal changes in their distribution after transfer from seawater to freshwater in Japanese seabass. J. Exp. Biol. 2017, 220, 4720–4732. [Google Scholar] [CrossRef]
- Guh, Y.J.; Hwang, P.P. Insights into molecular and cellular mechanisms of hormonal actions on fish ion regulation derived from the zebrafish model. Gen. Comp. Endocrinol. 2017, 251, 12–20. [Google Scholar] [CrossRef]
- Hsu, H.H.; Lin, L.Y.; Tseng, Y.C.; Horng, J.L.; Hwang, P.P. A new model for fish ion regulation: Identification of ionocytes in freshwater-and seawater-acclimated medaka (Oryzias latipes). Cell Tissue Res. 2014, 357, 225–243. [Google Scholar] [CrossRef]
- Horng, J.L.; Lin, L.Y.; Huang, C.J.; Katoh, F.; Kaneko, T.; Hwang, P.P. Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, 2068–2076. [Google Scholar] [CrossRef]
- Esaki, M.; Hoshijima, K.; Kobayashi, S.; Fukuda, H.; Kawakami, K.; Hirose, S. Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, 470–480. [Google Scholar] [CrossRef]
- Wang, Y.F.; Tseng, Y.C.; Yan, J.J.; Hiroi, J.; Hwang, P.P. Role of SLC12A10. 2, a Na-Cl cotransporter-like protein, in a Cl uptake mechanism in zebrafish (Danio rerio). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, 1650–1660. [Google Scholar] [CrossRef]
- Chang, W.J.; Wang, Y.F.; Hu, H.J.; Wang, J.H.; Lee, T.H.; Hwang, P.P. Compensatory regulation of Na+ absorption by Na+/H+ exchanger and Na+-Cl− cotransporter in zebrafish (Danio rerio). Front. Zool. 2013, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Inokuchi, M.; Hiroi, J.; Watanabe, S.; Hwang, P.P.; Kaneko, T. Morphological and functional classification of ion-absorbing mitochondria-rich cells in the gills of Mozambique tilapia. J. Exp. Biol. 2009, 212, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, A.M.; Shir-Mohammadi, K.; Kwong, R.W.; Perry, S.F. Reassessing the contribution of the Na+/H+ exchanger Nhe3b to Na+ uptake in zebrafish (Danio rerio) using CRISPR/Cas9 gene editing. J. Exp. Biol. 2020, 22, 215111. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Hu, H.J.; Hwang, P.P. Cortisol regulates sodium homeostasis by stimulating the transcription of sodium-chloride transporter (NCC) in zebrafish (Danio rerio). Mol. Cell. Endocrinol. 2016, 422, 93–102. [Google Scholar] [CrossRef]
- Liao, B.K.; Chen, R.D.; Hwang, P.P. Expression regulation of Na+-K+-ATPase α1-subunit subtypes in zebrafish gill ionocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, 1897–1906. [Google Scholar] [CrossRef]
- Canfield, V.A.; Loppin, B.; Thisse, B.; Thisse, C.; Postlethwait, J.H.; Mohideen, M.A.; Rajarao, S.J.; Levenson, R. Na, K-ATPase α and β subunit genes exhibit unique expression patterns during zebrafish embryogenesis. Mech. Dev. 2002, 116, 51–59. [Google Scholar] [CrossRef]
- Hwang, P.P.; Chou, M.Y. Zebrafish as an animal model to study ion homeostasis. Pflug. Arch. 2013, 465, 1233–1247. [Google Scholar] [CrossRef]
- Liao, B.K.; Deng, A.N.; Chen, S.C.; Chou, M.Y.; Hwang, P.P. Expression and water calcium dependence of calcium transporter isoforms in zebrafish gill mitochondrion-rich cells. BMC Genom. 2007, 8, 1–13. [Google Scholar] [CrossRef]
- Shih, T.H.; Horng, J.L.; Liu, S.T.; Hwang, P.P.; Lin, L.Y. Rhcg1 and NHE3b are involved in ammonium-dependent sodium uptake by zebrafish larvae acclimated to low-sodium water. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, 84–93. [Google Scholar] [CrossRef]
- Yan, J.J.; Chou, M.Y.; Kaneko, T.; Hwang, P.P. Gene expression of Na+/H+ exchanger in zebrafish H+-ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am. J. Physiol. Cell Physiol. 2007, 293, 1814–1823. [Google Scholar] [CrossRef]
- Shir-Mohammadi, K.; Perry, S.F. Expression of ion transport genes in ionocytes isolated from larval zebrafish (Danio rerio) exposed to acidic or Na+-deficient water. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 319, 412–427. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Bueno, M.; Ellison, D.H.; Gamba, G. Molecular mechanisms for the modulation of blood pressure and potassium homeostasis by the distal convoluted tubule. EMBO Mol. Med. 2022, 14, 14273. [Google Scholar] [CrossRef]
- Rosenbaek, L.L.; Rizzo, F.; MacAulay, N.; Staub, O.; Fenton, R.A. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells. Am. J. Physiol. Ren. Physiol. 2017, 313, 495–504. [Google Scholar] [CrossRef]
- Chiga, M.; Rai, T.; Yang, S.S.; Ohta, A.; Takizawa, T.; Sasaki, S.; Uchida, S. Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int. 2008, 74, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Bueno, M.; Cervantes-Pérez, L.G.; Vázquez, N.; Uribe, N.; Kantesaria, S.; Morla, L.; Bobadilla, N.A.; Doucet, A.; Alessi, D.R.; Gamba, G. Activation of the renal Na+:Cl− cotransporter by angiotensin II is a WNK4-dependent process. Proc. Natl. Acad. Sci. USA 2012, 109, 7929–7934. [Google Scholar] [CrossRef] [PubMed]
- Horng, J.L.; Hwang, P.P.; Shih, T.H.; Wen, Z.H.; Lin, C.S.; Lin, L.Y. Chloride transport in mitochondrion-rich cells of euryhaline tilapia (Oreochromis mossambicus) larvae. Am. J. Physiol. Cell Physiol. 2009, 297, 845–854. [Google Scholar] [CrossRef]
- Fenton, R.A.; Poulsen, S.B.; de la Mora Chavez, S.; Soleimani, M.; Dominguez Rieg, J.A.; Rieg, T. Renal tubular NHE3 is required in the maintenance of water and sodium chloride homeostasis. Kidney Int. 2017, 92, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Udwan, K.; Abed, A.; Roth, I.; Dizin, E.; Maillard, M.; Bettoni, C.; Loffing, J.; Wagner, C.A.; Edwards, A.; Feraille, E. Dietary sodium induces a redistribution of the tubular metabolic workload. J. Physiol. 2017, 595, 6905–6922. [Google Scholar] [CrossRef]
- Waldmann, R.; Lazdunski, M. H+-gated cation channels: Neuronal acid sensors in the NaC/DEG family of ion channels. Curr. Opin. Neurobiol. 1998, 8, 418–424. [Google Scholar] [CrossRef]
- Tseng, Y.C.; Yan, J.J.; Furukawa, F.; Chen, R.D.; Lee, J.R.; Tsou, Y.L.; Liu, T.Y.; Tang, Y.H.; Hwang, P.P. Teleostean fishes may have developed an efficient Na+ uptake for adaptation to the freshwater system. Front. Physiol. 2022, 13, 947958. [Google Scholar] [CrossRef]
- Wu, S.C.; Horng, J.L.; Liu, S.T.; Hwang, P.P.; Wen, Z.H.; Lin, C.S.; Lin, L.Y. Ammonium-dependent sodium uptake in mitochondrion-rich cells of medaka (Oryzias latipes) larvae. Am. J. Physiol. Cell Physiol. 2010, 298, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, A.M. Sodium and chloride transport: Proximal nephron. In Seldin and Giebisch’s The Kidney: Physiology and Pathophysiology, 4th ed.; Alpern, R.J., Hebert, S.C., Eds.; Academic Press: Burlington, MA, USA, 2008; Volume 1, pp. 793–847. [Google Scholar] [CrossRef]
- Reeves, W.B.; Andreoli, T.E. Sodium chloride transport in the loop of Henle, distal convoluted tubule, and collecting duct. In Seldin and Giebisch’s The Kidney: Physiology and Pathophysiology, 4th ed.; Alpern, R.J., Hebert, S.C., Eds.; Academic Press: Burlington, MA, USA, 2008; Volume 1, pp. 849–887. [Google Scholar] [CrossRef]
- Palmer, L.G.; Schnermann, J. Integrated control of Na transport along the nephron. Clin. J. Am. Soc. Nephrol. 2015, 10, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Bueno, M.; Vázquez, N.; Bustos-Jaimes, I.; Hernández, D.; Rodríguez-Lobato, E.; Pacheco-Alvarez, D.; Cariño-Cortés, R.; Moreno, E.; Bobadilla, N.A.; Gamba, G. A single residue in transmembrane domain 11 defines the different affinity for thiazides between the mammalian and flounder NaCl transporters. Am. J. Physiol. Ren. Physiol. 2010, 299, 1111–1119. [Google Scholar] [CrossRef]
- Moreno, E.; Cristóbal, P.S.; Rivera, M.; Vázquez, N.; Bobadilla, N.A.; Gamba, G. Affinity-defining domains in the Na-Cl cotransporter: A different location for Cl− and thiazide binding. J. Biol. Chem. 2006, 281, 17266–17275. [Google Scholar] [CrossRef]
- Moreno, E.; Plata, C.; Rodríguez-Gama, A.; Argaiz, E.R.; Vázquez, N.; Leyva-Ríos, K.; Islas, L.; Cutler, C.; Pacheco-Alvarez, D.; Mercado, A.; et al. The European eel NCCβ gene encodes a thiazide-resistant Na-Cl cotransporter. J. Biol. Chem. 2016, 291, 22472–22481. [Google Scholar] [CrossRef] [PubMed]
- Moreno, E.; Plata, C.; Vázquez, N.; Oropeza-Viveros, D.M.; Pacheco-Alvarez, D.; Rojas-Vega, L.; Olin-Sandoval, V.; Gamba, G. The European and Japanese eel NaCl cotransporters β exhibit chloride currents and are resistant to thiazide type diuretics. Am. J. Physiol. Cell Physiol. 2022, 323, 385–399. [Google Scholar] [CrossRef]
- Ito, Y.; Kato, A.; Hirata, T.; Hirose, S.; Romero, M.F. Na+/H+ and Na+/NH4+ exchange activities of zebrafish NHE3b expressed in Xenopus oocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 306, 315–327. [Google Scholar] [CrossRef]
- Esbaugh, A.J.; Brix, K.V.; Grosell, M. Na+ K+ ATPase isoform switching in zebrafish during transition to dilute freshwater habitats. Proc. Biol. Sci. 2019, 286, 20190630. [Google Scholar] [CrossRef]
- Mobasheri, A.; Avila, J.; Cózar-Castellano, I.; Brownleader, M.D.; Trevan, M.; Francis, M.J.; Lamb, J.F.; Martín-Vasallo, P. Na+, K+-ATPase isozyme diversity; Comparative biochemistry and physiological implications of novel functional interactions. Biosci. Rep. 2000, 20, 51–91. [Google Scholar] [CrossRef]
- Reid, S.D.; Hawkings, G.S.; Galvez, F.; Goss, G.G. Localization and characterization of phenamil-sensitive Na+ influx in isolated rainbow trout gill epithelial cells. J. Exp. Biol. 2003, 206, 551–559. [Google Scholar] [CrossRef]
- Fenwick, J.C.; Wendelaar Bonga, S.E.; Flik, G. In vivo bafilomycin-sensitive Na+ uptake in young freshwater fish. J. Exp. Biol. 1999, 202, 3659–3666. [Google Scholar] [CrossRef] [PubMed]
- Levic, D.S.; Ryan, S.; Marjoram, L.; Honeycutt, J.; Bagwell, J.; Bagnat, M. Distinct roles for luminal acidification in apical protein sorting and trafficking in zebrafish. J. Cell Biol. 2020, 219, 201908225. [Google Scholar] [CrossRef] [PubMed]
- Yoshimori, T.; Yamamoto, A.; Moriyama, Y.; Futai, M.; Tashiro, Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 1991, 266, 17707–17712. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Jiang, K.; Liu, P.; Zhang, X.; Dong, X.; Gao, J.; Liu, Q.; Barr, M.P.; Zhang, Q.; Hou, X.; et al. Bafilomycin A1 induces caspase-independent cell death in hepatocellular carcinoma cells via targeting of autophagy and MAPK pathways. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Eaton, A.F.; Merkulova, M.; Brown, D. The H+-ATPase (V-ATPase): From proton pump to signaling complex in health and disease. Am. J. Physiol. Cell Physiol. 2021, 320, 392–414. [Google Scholar] [CrossRef]
- Chuang, H.J.; Chiu, L.; Yan, J.J.; Chang, C.Y.; Tang, Y.H.; Chou, M.Y.; Yu, H.T.; Hwang, P.P. Responses of medaka (Oryzias latipes) ammonia production and excretion to overcome acidified environments. J. Hazard. Mater. 2023, 445, 130539. [Google Scholar] [CrossRef]
- Liu, S.T.; Horng, J.L.; Chen, P.Y.; Hwang, P.P.; Lin, L.Y. Salt secretion is linked to acid-base regulation of ionocytes in seawater-acclimated medaka: New insights into the salt-secreting mechanism. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Shih, S.W.; Yan, J.J.; Tsou, Y.L.; Lu, S.W.; Wang, M.C.; Chou, M.Y.; Hwang, P.P. In vivo functional assay in fish gills: Exploring branchial acid-excreting mechanisms in zebrafish. Int. J. Mol. Sci. 2022, 23, 4419. [Google Scholar] [CrossRef]
- Shen, W.P.; Horng, J.L.; Lin, L.Y. Functional plasticity of mitochondrion-rich cells in the skin of euryhaline medaka larvae (Oryzias latipes) subjected to salinity changes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, 858–868. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shih, S.-W.; Yan, J.-J.; Lu, S.-W.; Chuang, Y.-T.; Lin, H.-W.; Chou, M.-Y.; Hwang, P.-P. Molecular Physiological Evidence for the Role of Na+-Cl− Co-Transporter in Branchial Na+ Uptake in Freshwater Teleosts. Int. J. Mol. Sci. 2023, 24, 6597. https://doi.org/10.3390/ijms24076597
Shih S-W, Yan J-J, Lu S-W, Chuang Y-T, Lin H-W, Chou M-Y, Hwang P-P. Molecular Physiological Evidence for the Role of Na+-Cl− Co-Transporter in Branchial Na+ Uptake in Freshwater Teleosts. International Journal of Molecular Sciences. 2023; 24(7):6597. https://doi.org/10.3390/ijms24076597
Chicago/Turabian StyleShih, Shang-Wu, Jia-Jiun Yan, Shao-Wei Lu, Ya-Ting Chuang, How-Wei Lin, Ming-Yi Chou, and Pung-Pung Hwang. 2023. "Molecular Physiological Evidence for the Role of Na+-Cl− Co-Transporter in Branchial Na+ Uptake in Freshwater Teleosts" International Journal of Molecular Sciences 24, no. 7: 6597. https://doi.org/10.3390/ijms24076597
APA StyleShih, S.-W., Yan, J.-J., Lu, S.-W., Chuang, Y.-T., Lin, H.-W., Chou, M.-Y., & Hwang, P.-P. (2023). Molecular Physiological Evidence for the Role of Na+-Cl− Co-Transporter in Branchial Na+ Uptake in Freshwater Teleosts. International Journal of Molecular Sciences, 24(7), 6597. https://doi.org/10.3390/ijms24076597

