Quantum-Chemical Prediction of Molecular and Electronic Structure of Carbon-Nitrogen Chemical Compound with Unusual Ratio Atoms: C(N20)
Abstract
:1. Introduction
2. Results and Discussion
3. Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ringer, A.L.; Sherrill, C.D.; King, R.A.; Crawford, T.D. Low-lying singlet excited states of isocyanogen. Int. J. Quantum Chem. 2008, 106, 1137–1140. [Google Scholar] [CrossRef]
- Brotherton, T.K.; Lynn, J.W. The Synthesis and Chemistry of Cyanogen. Chem. Revs. 1959, 59, 841–883. [Google Scholar] [CrossRef]
- Bircumshaw, L.L.; Tayler, F.M.; Whiffen, D.H. Paracyanogen: Its formation and properties. Part I. J. Chem. Soc. 1954, 931–935. [Google Scholar] [CrossRef]
- Franklin, E.C. The Ammono Carbonic Acids. J. Am. Chem. Soc. 1922, 44, 486–509. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Cohen, M.L. Prediction of new low compressibility solids. Science 1989, 245, 841–843. [Google Scholar] [CrossRef] [Green Version]
- Pozdnyakov, O.F.; Blinov, L.N.; Arif, M.; Pozdnyakov, A.O.; Filippov, S.N.; Semencha, A.V. Mass spectrometry of carbon nitride C3N4. Tech. Phys. Lett. 2005, 31, 1001–1003. [Google Scholar] [CrossRef]
- Arif, M.; Blinov, L.N.; Lappalainen, R.; Filippov, S.N. Preparation of powdered carbon nitride C3N4. Glass Phys. Chem. 2004, 30, 573–575. [Google Scholar] [CrossRef]
- Cao, C.-B.; Lv, Q.; Zhu, H.-S. Carbon nitride prepared by solvothermal method. Diam. Relat. Mater. 2003, 12, 1070–1074. [Google Scholar] [CrossRef]
- Holst, J.R.; Gillan, E.G. From Triazines to Heptazines: Deciphering the Local Structure of Amorphous Nitrogen-Rich Carbon Nitride Materials. J. Am. Chem. Soc. 2008, 130, 7373–7379. [Google Scholar] [CrossRef] [PubMed]
- Mansor, N.; Belen Jorge, A.; Corà, F.; Gibbs, C.; Jervis, R.; McMillan, P.F.; Wang, X.; Brett, D.J.L. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells. J. Phys. Chem. C 2014, 118, 6831–6838. [Google Scholar] [CrossRef]
- Fina, F.; Callear, S.K.; Carins, G.M.; Irvine, J.T.S. Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction. Chem. Mater. 2015, 27, 2612–2618. [Google Scholar] [CrossRef] [Green Version]
- Korsunskii, B.L.; Pepekin, V.I. On the way to carbon nitride. Russ. Chem. Rev. 1997, 66, 901–912. [Google Scholar] [CrossRef]
- Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J.M. Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908. [Google Scholar] [CrossRef] [Green Version]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, J.; Li, B.; Sun, H.; Wang, S. Engineered Graphitic Carbon Nitride-Based Photocatalysts for Visible-Light-Driven Water Splitting: A Review. Energy Fuels 2021, 35, 6504–6526. [Google Scholar] [CrossRef]
- Nuber, B.; Hirsch, A. A new route to nitrogen heterofullerenes and the first synthesis of (C69N)2. Chem. Commun. 1996, 1421–1422. [Google Scholar] [CrossRef]
- Banert, K.; Joo, Y.-H.; Ruffer, T.; Walfort, B.; Lang, H. The Exciting Chemistry of Tetraazidomethane. Angew. Chem. Int. Ed. 2007, 46, 1168–1171. [Google Scholar] [CrossRef]
- Chachkov, D.V.; Mikhailov, O.V. A new chemical compound with an unusual ratio of number of carbon and nitrogen atoms–C(N12): Quantum-chemical modelling. RSC Adv. 2021, 11, 35974–35981. [Google Scholar] [CrossRef]
- Forquet, V.; Miró Sabaté, C.; Chermette, H.; Jacob, G.; Labarthe, É.; Delalu, H.; Darwich, C. Energetic Properties of Rocket Propellants Evaluated through the Computational Determination of Heats of Formation of Nitrogen-Rich Compounds. Chem. Asian J. 2016, 11, 730–744. [Google Scholar] [CrossRef]
- Dhenain, A.; Darwich, C.; Miró Sabaté, C.; Le, D.-M.; Bougrine, A.-J.; Delalu, H.; Lacôte, E.; Payen, L.; Guitton, J.; Labarthe, E.; et al. (E)-1,1,4,4-Tetramethyl-2-tetrazene (TMTZ): A Prospective Alternative to Hydrazines in Rocket Propulsion. Chem. Eur. J. 2017, 23, 9897–9907. [Google Scholar] [CrossRef]
- Yungman, V.S. (Ed.) Thermal Constants of Substances; Wiley: New York, NY, USA, 1999; Volume 1–8. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medvedev, M.G.; Bushmarinov, I.S.; Sun, J.; Perdew, J.P.; Lyssenko, K.A. Density functional theory is straying from the path toward the exact functional. Science 2017, 355, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Chachkov, D.V.; Mikhailov, O.V. Structure of (5656)macrotetracyclic chelates in the ternary systems M(II)-ethanedithioamide-acetone (M = Mn, Fe, Co, Ni, Cu, Zn) according to DFT calculations. Russ. J. Inorg. Chem. 2013, 58, 1073–1078. [Google Scholar] [CrossRef]
- Chachkov, D.V.; Mikhailov, O.V. Quantum-chemical calculation of molecular structures of (5656)macrotetracyclic 3d-metal complexes self-assembled inquaternary systems M(II) ion-ethanedithioamide-formaldehyde-ammonia by the density functional theory method. Russ. J. Inorg. Chem. 2014, 59, 218–223. [Google Scholar] [CrossRef]
- Mikhailov, O.V.; Chachkov, D.V. DFT Quantum-Chemical Modeling Molecular Structures of Cobalt Macrocyclic Complexes with Porphyrazine or Its Benzo-Derivatives and Two Oxygen Acido Ligands. Int. J. Mol. Sci. 2020, 21, 9085. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef] [Green Version]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision A.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Møller, C.; Plesset, M.S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 0618–0622. [Google Scholar] [CrossRef] [Green Version]
- Head-Gordon, M.; Pople, J.A.; Frisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988, 153, 503–506. [Google Scholar] [CrossRef]
- Pople, J.A.; Seeger, R.; Krishnan, R. Variational Configuration Interaction Methods and Comparison with Perturbation Theory. Int. J. Quant. Chem. 1977, S11, 149–163. [Google Scholar] [CrossRef]
- Weinhold, F.; Landis, C.R.; Glendening, E.D. What is NBO analysis and how is it useful? Int. Revs. Phys. Chem. 2016, 35, 399–440. [Google Scholar] [CrossRef]
- Ochterski, J.W. Thermochemistry in Gaussian; Gaussian, Inc.: Wallingford, CT, USA, 2000. [Google Scholar]
Structural Parameter | Calculated by | |||||
---|---|---|---|---|---|---|
DFT B3PW91/ TZVP | DFT B3PW91/ Def2TZVP | DFT M06/ TZVP | DFT M06/ Def2TZVP | MP2/ TZVP | MP3/ TZVP | |
Bond lengths | ||||||
C–N bond lengths, pm | ||||||
C1N1 | 144.9 | 145.0 | 144.4 | 144.5 | 144.1 | 144.4 |
C1N2 | 144.9 | 145.0 | 144.4 | 144.5 | 144.1 | 144.4 |
C1N3 | 144.9 | 145.0 | 144.4 | 144.5 | 144.1 | 144.4 |
C1N4 | 144.9 | 145.0 | 144.4 | 144.5 | 144.1 | 144.4 |
N–N bond lengths, pm | ||||||
N1N5 | 133.1 | 132.7 | 133.1 | 132.7 | 133.4 | 132.8 |
N5N14 | 127.5 | 127.5 | 127.0 | 127.0 | 131.2 | 127.5 |
N14N13 | 136.0 | 136.5 | 136.5 | 136.2 | 135.3 | 136.5 |
N13N7 | 127.5 | 127.5 | 127.0 | 127.0 | 131.2 | 127.6 |
N7N1 | 133.1 | 132.7 | 133.1 | 132.7 | 133.5 | 132.8 |
N2N6 | 133.1 | 132.7 | 133.1 | 132.7 | 133.5 | 132.8 |
N6N15 | 127.5 | 127.5 | 127.0 | 127.0 | 131.2 | 127.5 |
N15N16 | 136.0 | 136.5 | 136.5 | 136.2 | 135.3 | 136.5 |
N16N12 | 127.5 | 127.5 | 127.0 | 127.0 | 131.2 | 127.6 |
N12N2 | 133.1 | 132.7 | 133.1 | 132.7 | 133.4 | 132.8 |
N3N10 | 133.1 | 132.7 | 133.1 | 132.7 | 133.4 | 132.8 |
N10N18 | 127.5 | 127.5 | 127.0 | 127.0 | 131.2 | 127.5 |
N18N17 | 136.0 | 136.5 | 136.5 | 136.2 | 135.3 | 136.5 |
N17N11 | 127.5 | 127.5 | 127.0 | 127.0 | 131.2 | 127.6 |
N11N3 | 133.1 | 132.7 | 133.1 | 132.7 | 133.5 | 132.8 |
N4N8 | 133.1 | 132.7 | 133.1 | 132.7 | 133.4 | 132.8 |
N8N20 | 127.5 | 127.5 | 127.0 | 127.0 | 131.2 | 127.5 |
N20N19 | 136.0 | 136.5 | 136.5 | 136.2 | 135.3 | 136.5 |
N19N9 | 127.5 | 127.5 | 127.0 | 127.0 | 131.2 | 127.6 |
N9N4 | 133.1 | 132.7 | 133.1 | 132.7 | 133.5 | 132.8 |
Bond angles | ||||||
Bond angles in the 5-numbered ring (N1N5N14N13N7), deg | ||||||
N1N5N14 | 104.6 | 104.7 | 104.7 | 104.8 | 103.4 | 104.5 |
N5N14N13 | 109.4 | 109.3 | 109.3 | 109.2 | 109.6 | 109.3 |
N14N13N7 | 109.4 | 109.4 | 109.4 | 109.3 | 109.8 | 109.3 |
N13N7N1 | 104.5 | 104.6 | 104.6 | 104.8 | 103.3 | 104.5 |
N7N1N5 | 112.1 | 112.0 | 112.0 | 111.9 | 113.9 | 112.4 |
Bond angles sum (BAS1), deg | 540.0 | 540.0 | 540.0 | 540.0 | 540.0 | 540.0 |
Bond angles in the 5-numbered ring (N2N6N15N16N12), deg | ||||||
N2N6N15 | 104.5 | 104.6 | 104.6 | 104.8 | 103.3 | 104.5 |
N6N15N16 | 109.5 | 109.4 | 109.4 | 109.3 | 109.8 | 109.3 |
N15N16N12 | 109.4 | 109.3 | 109.3 | 109.2 | 109.6 | 109.3 |
N16N12N2 | 104.5 | 104.7 | 104.7 | 104.8 | 103.4 | 104.5 |
N12N2N6 | 112.1 | 112.0 | 112.0 | 111.9 | 113.9 | 112.4 |
Bond angles sum (BAS2), deg | 540.0 | 540.0 | 540.0 | 540.0 | 540.0 | 540.0 |
Bond angles in the 5-numbered ring (N3N10N18N17N11), deg | ||||||
N3N10N18 | 104.6 | 104.7 | 104.7 | 104.8 | 103.4 | 104.5 |
N10N18N17 | 109.4 | 109.3 | 109.3 | 109.2 | 109.6 | 109.3 |
N18N17N11 | 109.4 | 109.4 | 109.4 | 109.3 | 109.8 | 109.3 |
N17N11N3 | 104.5 | 104.6 | 104.6 | 104.8 | 103.3 | 104.5 |
N11N3N10 | 112.1 | 112.0 | 112.0 | 111.9 | 113.9 | 112.4 |
Bond angles sum (BAS3), deg | 540.0 | 540.0 | 540.0 | 540.0 | 540.0 | 540.0 |
Bond angles in the 5-numbered ring (N4N8N20N19N9), deg | ||||||
N4N8N20 | 104.6 | 104.7 | 104.7 | 104.8 | 103.4 | 104.5 |
N8N20N19 | 109.4 | 109.3 | 109.3 | 109.2 | 109.6 | 109.3 |
N20N19N9 | 109.4 | 109.4 | 109.4 | 109.3 | 109.8 | 109.3 |
N19N9N4 | 104.5 | 104.6 | 104.6 | 104.8 | 103.3 | 104.5 |
N9N4N8 | 112.1 | 112.0 | 112.0 | 111.9 | 113.9 | 112.4 |
Bond angles sum (BAS4), deg | 540.0 | 540.0 | 540.0 | 540.0 | 540.0 | 540.0 |
(NCN) bond angles between carbon and two nitrogen atoms, deg | ||||||
N1C1N2 | 110.1 | 110.2 | 110.0 | 110.1 | 110.1 | 108.1 |
N1C1N3 | 110.1 | 110.2 | 110.0 | 110.1 | 110.1 | 108.1 |
N1C1N4 | 110.1 | 110.2 | 110.0 | 110.1 | 110.1 | 110.2 |
N2C1N3 | 110.1 | 110.2 | 110.0 | 110.1 | 110.1 | 110.2 |
N2C1N4 | 108.2 | 108.0 | 108.3 | 108.2 | 108.2 | 108.1 |
N3C1N4 | 108.2 | 108.0 | 108.3 | 108.2 | 108.2 | 110.2 |
Calculation Method | Effective Charge on Atom, in Elementary Charge Units | |||||
---|---|---|---|---|---|---|
C1 | N1, N2, N3, N4 | N5, N8, N10, N12 | N6, N7, N9, N11 | N13, N15, N17, N19 | N14, N16, N18, N20 | |
B3PW91/TZVP | +0.55 | −0.06 | −0.00 | −0.01 | −0.03 | −0.03 |
B3PW91/Def2TZVP | +0.56 | −0.06 | −0.00 | −0.01 | −0.03 | −0.03 |
M06/TZVP | +0.57 | −0.07 | +0.00 | −0.00 | −0.03 | −0.03 |
M06/Def2TZVP | +0.59 | −0.07 | +0.00 | −0.01 | −0.03 | −0.03 |
MP2/TZVP | +0.68 | −0.12 | +0.02 | +0.02 | −0.04 | −0.04 |
MP3/TZVP | +0.68 | −0.13 | +0.02 | +0.02 | −0.04 | −0.04 |
Calculation Method | ∆fH0, kJ/mol | S0, J/mol∙K | ∆fG0, kJ/mol |
---|---|---|---|
B3PW91/TZVP | 2213.5 | 551.5 | 2616.0 |
G4 | 2052.1 | 559.8 | 2452.2 |
Calculation Method | Reaction | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) * | (4) * | |||||
∆rH0, kJ | ∆rS0, J∙K−1 | ∆rH0, kJ | ∆rS0, J∙K−1 | ∆rH0, kJ | ∆rS0, J∙K−1 | ∆rH0, kJ | ∆rS0, J∙K−1 | |
B3PW91/ TZVP | −2288.3 | 1347.1 | −1196.4 | 1520.2 | −1913.2 | 1368.0 | −1911.4 | 1364.6 |
G4 | −2459.0 | 1378.5 | −1344.5 | 1513.0 | −2061.2 | 1360.8 | −2059.4 | 1357.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailov, O.V.; Chachkov, D.V. Quantum-Chemical Prediction of Molecular and Electronic Structure of Carbon-Nitrogen Chemical Compound with Unusual Ratio Atoms: C(N20). Int. J. Mol. Sci. 2023, 24, 5172. https://doi.org/10.3390/ijms24065172
Mikhailov OV, Chachkov DV. Quantum-Chemical Prediction of Molecular and Electronic Structure of Carbon-Nitrogen Chemical Compound with Unusual Ratio Atoms: C(N20). International Journal of Molecular Sciences. 2023; 24(6):5172. https://doi.org/10.3390/ijms24065172
Chicago/Turabian StyleMikhailov, Oleg V., and Denis V. Chachkov. 2023. "Quantum-Chemical Prediction of Molecular and Electronic Structure of Carbon-Nitrogen Chemical Compound with Unusual Ratio Atoms: C(N20)" International Journal of Molecular Sciences 24, no. 6: 5172. https://doi.org/10.3390/ijms24065172