Molecular Structure of Phosphoserine Aminotransferase from Saccharomyces cerevisiae
Abstract
:1. Introduction
2. Results
2.1. Overall Structure of ScPSAT
2.2. Structural Comparisons between ScPSAT and Its Homologs
2.3. Active Site
2.4. Gate-Keeping Loop
2.5. Putative Halide-Binding Site
3. Discussion
4. Materials and Methods
4.1. Preparation of PSAT Expression Constructs
4.2. Purification of Recombinant Proteins
4.3. Crystallization and Improvements
4.4. Data Collection and Structure Determination
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hester, G.; Stark, W.; Moser, M.; Kallen, J.; Marković-Housley, Z.; Jansonius, J.N. Crystal structure of phosphoserine aminotransferase from Escherichia coli at 2.3 A resolution: Comparison of the unligated enzyme and a complex with alpha-methyl-l-glutamate. J. Mol. Biol. 1999, 286, 829–850. [Google Scholar] [CrossRef] [PubMed]
- Kalhan, S.C.; Hanson, R.W. Resurgence of Serine: An Often Neglected but Indispensable Amino Acid. J. Biol. Chem. 2012, 287, 19786–19791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holeček, M. Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid. Nutrients 2022, 14, 1987. [Google Scholar] [CrossRef] [PubMed]
- Amelio, I.; Cutruzzolá, F.; Antonov, A.; Agostini, M.; Melino, G. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 2014, 39, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Sekula, B.; Ruszkowski, M.; Dauter, Z. Structural Analysis of Phosphoserine Aminotransferase (Isoform 1) From Arabidopsis thaliana—The Enzyme Involved in the Phosphorylated Pathway of Serine Biosynthesis. Front. Plant Sci. 2018, 9, 876. [Google Scholar] [CrossRef]
- Shuvalov, O.; Petukhov, A.; Daks, A.; Fedorova, O.; Vasileva, E.; Barlev, N.A. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 2017, 8, 23955–23977. [Google Scholar] [CrossRef] [Green Version]
- Rütti, M.F.; Penno, A.; von Eckardstein, A.; Hornemann, T. An improved method to determine serine palmitoyltransferase activity. J. Lipid Res. 2009, 50, 1237–1244. [Google Scholar] [CrossRef] [Green Version]
- Vance, J.E.; Tasseva, G. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2013, 1831, 543–554. [Google Scholar] [CrossRef]
- Cascales-Miñana, B.; Muñoz-Bertomeu, J.; Flores-Tornero, M.; Anoman, A.D.; Pertusa, J.; Alaiz, M.; Osorio, S.; Fernie, A.R.; Segura, J.; Ros, R. The Phosphorylated Pathway of Serine Biosynthesis Is Essential Both for Male Gametophyte and Embryo Development and for Root Growth in Arabidopsis. Plant Cell 2013, 25, 2084–2101. [Google Scholar] [CrossRef] [Green Version]
- Ros, R.; Muñoz-Bertomeu, J.; Krueger, S. Serine in plants: Biosynthesis, metabolism, and functions. Trends Plant Sci. 2014, 19, 564–569. [Google Scholar] [CrossRef]
- Mattaini, K.R.; Sullivan, M.R.; Vander Heiden, M.G. The importance of serine metabolism in cancer. J. Cell Biol. 2016, 214, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Pizer, L.I. The pathway and control of serine biosynthesis in Escherichia coli. J. Biol. Chem. 1963, 238, 3934–3944. [Google Scholar] [CrossRef]
- Snell, K. Enzymes of serine metabolism in normal, developing and neoplastic rat tissues. Adv. Enzym. Regul. 1984, 22, 325–400. [Google Scholar] [CrossRef]
- Melcher, K.; Entian, K.-D. Genetic analysis of serine biosynthesis and glucose repression in yeast. Curr. Genet. 1992, 21, 295–300. [Google Scholar] [CrossRef]
- Achouri, Y.; Rider, M.H.; Van Schaftingen, E.; Robbi, M. Cloning, sequencing and expression of rat liver 3-phosphoglycerate dehydrogenase. Biochem. J. 1997, 323, 365–370. [Google Scholar] [CrossRef]
- Dey, S.; Hu, Z.; Xu, X.L.; Sacchettini, J.C.; Grant, G.A. D-3-Phosphoglycerate Dehydrogenase from Mycobacterium tuberculosis Is a Link between the Escherichia coli and Mammalian enzymes. J. Biol. Chem. 2005, 280, 14884–14891. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, K.; Furuya, S.; Osuka, S.; Mitoma, J.; Shinoda, Y.; Watanabe, M.; Azuma, N.; Tanaka, H.; Hashikawa, T.; Itohara, S.; et al. Targeted Disruption of the Mouse 3-Phosphoglycerate Dehydrogenase Gene Causes Severe Neurodevelopmental Defects and Results in Embryonic Lethality. J. Biol. Chem. 2004, 279, 3573–3577. [Google Scholar] [CrossRef] [Green Version]
- van der Crabben, S.N.; Verhoeven-Duif, N.M.; Brilstra, E.H.; Van Maldergem, L.; Coskun, T.; Rubio-Gozalbo, E.; Berger, R.; de Koning, T.J. An update on serine deficiency disorders. J. Inherit. Metab. Dis. 2013, 36, 613–619. [Google Scholar] [CrossRef]
- Eliot, A.C.; Kirsch, J.F. Pyridoxal Phosphate Enzymes: Mechanistic, Structural, and Evolutionary Considerations. Annu. Rev. Biochem. 2004, 73, 383–415. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Tomar, P.; Dharavath, S.; Kumar, S.; Gourinath, S. N-terminal residues are crucial for quaternary structure and active site conformation for the phosphoserine aminotransferase from enteric human parasite E. histolytica. Int. J. Biol. Macromol. 2019, 132, 1012–1023. [Google Scholar] [CrossRef]
- Vié, N.; Copois, V.; Bascoul-Mollevi, C.; Denis, V.; Bec, N.; Robert, B.; Fraslon, C.; Conseiller, E.; Molina, F.; Larroque, C.; et al. Overexpression of phosphoserine aminotransferase PSAT1 stimulates cell growth and increases chemoresistance of colon cancer cells. Mol. Cancer 2008, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, J.Y.; Jun, Y.; Taub, D.; Kim, Y.H. Characterization of human phosphoserine aminotransferase involved in the phosphorylated pathway of l-serine biosynthesis. Biochem. J. 2003, 373, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melcher, K.; Rose, M.; Braus, G.; Entian, K.-D. Molecular analysis of the yeast SER1 gene encoding 3-phosphoserine aminotransferase: Regulation by general control and serine repression. Curr. Genet. 1995, 27, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, J.; Sasaki, D.; Hara, K.Y.; Hasunuma, T.; Kondo, A. Metabolic engineering of the l-serine biosynthetic pathway improves glutathione production in Saccharomyces cerevisiae. Microb. Cell Factories 2022, 21, 153. [Google Scholar] [CrossRef] [PubMed]
- Hara, K.Y.; Aoki, N.; Kobayashi, J.; Kiriyama, K.; Nishida, K.; Araki, M.; Kondo, A. Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2015, 99, 9771–9778. [Google Scholar] [CrossRef]
- Kiriyama, K.; Hara, K.Y.; Kondo, A. Oxidized glutathione fermentation using Saccharomyces cerevisiae engineered for glutathione metabolism. Appl. Microbiol. Biotechnol. 2013, 97, 7399–7404. [Google Scholar] [CrossRef]
- Singh, R.K.; Mazumder, M.; Sharma, B.; Gourinath, S. Structural investigation and inhibitory response of halide on phosphoserine aminotransferase from Trichomonas vaginalis. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2016, 1860, 1508–1518. [Google Scholar] [CrossRef]
- Battula, P.; Dubnovitsky, A.P.; Papageorgiou, A.C. Structural basis of L-phosphoserine binding to Bacillus alcalophilus phosphoserine aminotransferase. Acta Crystallogr. D Biol. Crystallogr. 2013, 69 Pt 5, 804–811. [Google Scholar] [CrossRef]
- Coulibaly, F.; Lassalle, E.; Baker, H.M.; Baker, E.N. Structure of phosphoserine aminotransferase from Mycobacterium tuberculosis. Acta Crystallogr. Sect. D Biol. Crystallogr. 2012, 68, 553–563. [Google Scholar] [CrossRef]
- Holm, L. Benchmarking fold detection by DaliLite v.5. Bioinformatics 2019, 35, 5326–5327. [Google Scholar] [CrossRef]
- Mishra, V.; Kumar, A.; Ali, V.; Nozaki, T.; Zhang, K.Y.J.; Bhakuni, V. Role of conserved active site tryptophan-101 in functional activity and stability of phosphoserine aminotransferase from an enteric human parasite. Amino Acids 2011, 43, 483–491. [Google Scholar] [CrossRef]
- Masuyer, G.; Yates, C.J.; Sturrock, E.D.; Acharya, K.R. Angiotensin-I converting enzyme (ACE): Structure, biological roles, and molecular basis for chloride ion dependence. Biol. Chem. 2014, 395, 1135–1149. [Google Scholar] [CrossRef]
- Liang, J.; Han, Q.; Tan, Y.; Ding, H.; Li, J. Current Advances on Structure-Function Relationships of Pyridoxal 5′-Phosphate-Dependent Enzymes. Front. Mol. Biosci. 2019, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Percudani, R.; Peracchi, A. A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Rep. 2003, 4, 850–854. [Google Scholar] [CrossRef]
- Mueser, T.C.; Drago, V.; Kovalevsky, A.; Dajnowicz, S. Pyridoxal 5′-phosphate dependent reactions: Analyzing the mechanism of aspartate aminotransferase. Methods Enzymol. 2020, 634, 333–359. [Google Scholar] [CrossRef]
- Mishra, V.; Ali, V.; Nozaki, T.; Bhakuni, V. Entamoeba histolytica Phosphoserine aminotransferase (EhPSAT): Insights into the structure-function relationship. BMC Res. Notes 2010, 3, 52. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhao, Y.; Zhou, H.; Luo, H.B.; Zhan, C.G. Catalytic Roles of Coenzyme Pyridoxal-5′-phosphate (PLP) in PLP-dependent Enzymes: Reaction Pathway for Methionine-gamma-lyase-catalyzed L-methionine Depletion. ACS Catal. 2020, 10, 2198–2210. [Google Scholar] [CrossRef]
- Dubnovitsky, A.; Ravelli, R.B.; Popov, A.N.; Papageorgiou, A.C. Strain relief at the active site of phosphoserine aminotransferase induced by radiation damage. Protein Sci. 2009, 14, 1498–1507. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, E.F.; Cerqueira, N.M.F.S.A.; Fernandes, P.A.; Ramos, M.J. Mechanism of Formation of the Internal Aldimine in Pyridoxal 5′-Phosphate-Dependent Enzymes. J. Am. Chem. Soc. 2011, 133, 15496–15505. [Google Scholar] [CrossRef]
- Eseverri, Á.; Baysal, C.; Medina, V.; Capell, T.; Christou, P.; Rubio, L.M.; Caro, E. Transit Peptides from Photosynthesis-Related Proteins Mediate Import of a Marker Protein Into Different Plastid Types and Within Different Species. Front. Plant Sci. 2020, 11, 560701. [Google Scholar] [CrossRef]
- Korolev, S.; Ikeguchi, Y.; Skarina, T.; Beasley, S.; Arrowsmith, C.; Edwards, A.; Joachimiak, A.; Pegg, A.E.; Savchenko, A. The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat. Struct. Biol. 2001, 9, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Šečkutė, J.; McCloskey, D.E.; Thomas, H.J.; Secrist, J.A.; Pegg, A.E.; Ealick, S.E. Binding and inhibition of human spermidine synthase by decarboxylated S-adenosylhomocysteine. Protein Sci. 2011, 20, 1836–1844. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chua, T.K.; Tkaczuk, K.L.; Bujnicki, J.M.; Sivaraman, J. The crystal structure of Escherichia coli spermidine synthase SpeE reveals a unique substrate-binding pocket. J. Struct. Biol. 2010, 169, 277–285. [Google Scholar] [CrossRef] [PubMed]
- John, R.A. Pyridoxal phosphate-dependent enzymes. Biochim. Biophys. Acta 1995, 1248, 81–96. [Google Scholar] [CrossRef]
- Dubnovitsky, A.P.; Kapetaniou, E.; Papageorgiou, A. Enzyme adaptation to alkaline pH: Atomic resolution (1.08 A) structure of phosphoserine aminotransferase from Bacillus alcalophilus. Protein Sci. 2005, 14, 97–110. [Google Scholar] [CrossRef] [Green Version]
Species | Z-Score | RMSD (Å) | Identity (%) | Cα | PDB Code |
---|---|---|---|---|---|
Homo sapiens | 35.4 | 1.7 | 42 | 362 | 3E77 |
Pseudomonas aeruginosa | 35.5 | 1.6 | 41 | 355 | 4XK1 |
Arabidopsis thaliana | 35.5 | 1.7 | 41 | 361 | 6CZX |
Alkalihalobacillus alcalophilus | 34.5 | 1.9 | 38 | 360 | 1W23 |
Escherichia coli | 34.1 | 2.3 | 37 | 360 | 1BJO |
Statistics | ScPSAT |
---|---|
Data collection | |
Space group | P3121 |
a, b, c (Å) | 132.28, 132.28, 141.62 |
α, β, γ (°) | 90, 90, 120 |
Resolution range (Å) a | 48.3–2.8 (2.87–2.80) |
No. of total reflections | 478,593 |
No. of unique reflections | 68,146 |
Completeness (%) | 100 (100) |
I/σ (I) | 33.6 (6.9) |
Rmerge (%) b | 13.4 |
CC1/2 | 0.999(0.948) |
Structure refinement | |
Resolution range (Å) | 48.3–2.8 |
No. of reflections | 35,712 |
Rwork c/Rfree d | 22.8/26.8 |
R.M.S. deviation | |
Bond lengths (Å) | 0.010 |
Bond angles (°) | 1.094 |
Average B-factor (Å2) | |
Protein | 62.12 |
Solvent | 52.41 |
Ramachandran plot e | |
Most favored (%) | 91.2 |
Additional allowed (%) | 8.1 |
Disallowed (%) | 0.7 |
PDB code | 8I28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.; Chang, J.H. Molecular Structure of Phosphoserine Aminotransferase from Saccharomyces cerevisiae. Int. J. Mol. Sci. 2023, 24, 5139. https://doi.org/10.3390/ijms24065139
Jang J, Chang JH. Molecular Structure of Phosphoserine Aminotransferase from Saccharomyces cerevisiae. International Journal of Molecular Sciences. 2023; 24(6):5139. https://doi.org/10.3390/ijms24065139
Chicago/Turabian StyleJang, Jiyeon, and Jeong Ho Chang. 2023. "Molecular Structure of Phosphoserine Aminotransferase from Saccharomyces cerevisiae" International Journal of Molecular Sciences 24, no. 6: 5139. https://doi.org/10.3390/ijms24065139
APA StyleJang, J., & Chang, J. H. (2023). Molecular Structure of Phosphoserine Aminotransferase from Saccharomyces cerevisiae. International Journal of Molecular Sciences, 24(6), 5139. https://doi.org/10.3390/ijms24065139