Characteristics of the (Auto)Reactive T Cells in Rheumatoid Arthritis According to the Immune Epitope Database
Abstract
:1. Introduction
2. Immune Epitope Database
2.1. Data Extraction from IEDB
2.2. T Cell Activation
2.3. T Cell Antigen Specificity
2.4. T Cell Receptor Sequencing
3. CD8+ T Cell Expansion
3.1. CD8 Resident Memory T Cell Inflation
3.2. CD8+ T Cells Immunosenescence
3.3. CD8+ Cryptic-Apoptosis Autoreactive T Cells
4. Immunodominant DRB1-SE Antigens
4.1. DRB1-SE
4.2. DRB1-SE Restricted Immunodominant Peptides
4.2.1. DRB1-SE and Heat Shock Proteins
4.2.2. DRB1-SE Synovial Native Antigens and Degradation Products
4.2.3. DRB1-SE Restricted Antigens and Post-Translational Modifications
5. Autoreactive CD4+ T Cells
5.1. Phenotype (Multimers)
5.2. DRB1-SE Peptide Repertoire
5.3. T and B Cell Epitopes
5.4. Therapeutic Peptides
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 2018, 4, 18001. [Google Scholar] [CrossRef]
- Arleevskaya, M.; Takha, E.; Petrov, S.; Kazarian, G.; Novikov, A.; Larionova, R.; Valeeva, A.; Shuralev, E.; Mukminov, M.; Bost, C.; et al. Causal risk and protective factors in rheumatoid arthritis: A genetic update. J. Transl. Autoimmun. 2021, 4, 100119. [Google Scholar] [CrossRef]
- Arleevskaya, M.; Takha, E.; Petrov, S.; Kazarian, G.; Renaudineau, Y.; Brooks, W.; Larionova, R.; Korovina, M.; Valeeva, A.; Shuralev, E.; et al. Interplay of Environmental, Individual and Genetic Factors in Rheumatoid Arthritis Provocation. Int. J. Mol. Sci. 2022, 23, 8140. [Google Scholar] [CrossRef]
- Arleevskaya, M.I.; Kravtsova, O.A.; Lemerle, J.; Renaudineau, Y.; Tsibulkin, A.P. How Rheumatoid Arthritis Can Result from Provocation of the Immune System by Microorganisms and Viruses. Front. Microbiol. 2016, 7, 1296. [Google Scholar] [CrossRef] [Green Version]
- Arleevskaya, M.I.; Larionova, R.V.; Brooks, W.H.; Bettacchioli, E.; Renaudineau, Y. Toll-Like Receptors, Infections, and Rheumatoid Arthritis. Clin. Rev. Allergy Immunol. 2020, 58, 172–181. [Google Scholar] [CrossRef]
- Brooks, W.H.; Le Dantec, C.; Pers, J.-O.; Youinou, P.; Renaudineau, Y. Epigenetics and autoimmunity. J. Autoimmun. 2010, 34, J207–J219. [Google Scholar] [CrossRef]
- Mikuls, T.R.; Payne, J.B.; Deane, K.D.; Thiele, G.M. Autoimmunity of the lung and oral mucosa in a multisystem inflammatory disease: The spark that lights the fire in rheumatoid arthritis? J. Allergy Clin. Immunol. 2016, 137, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Arleevskaya, M.I.; Boulygina, E.A.; Larionova, R.; Validov, S.; Kravtsova, O.; Shagimardanova, E.I.; Velo, L.; Hery-Arnaud, G.; Carlé, C.; Renaudineau, Y. Anti-Citrullinated Peptide Antibodies Control Oral Porphyromonas and Aggregatibacter species in Patients with Rheumatoid Arthritis. Int. J. Mol. Sci. 2022, 23, 12599. [Google Scholar] [CrossRef]
- Janssen, K.M.J.; de Smit, M.J.; Withaar, C.; Brouwer, E.; van Winkelhoff, A.J.; Vissink, A.; Westra, J. Autoantibodies against citrullinated histone H3 in rheumatoid arthritis and periodontitis patients. J. Clin. Periodontol. 2017, 44, 577–584. [Google Scholar] [CrossRef]
- Li, S.; Yu, Y.; Yue, Y.; Liao, H.; Xie, W.; Thai, J.; Mikuls, T.R.; Thiele, G.M.; Duryee, M.J.; Sayles, H.; et al. Autoantibodies From Single Circulating Plasmablasts React With Citrullinated Antigens and Porphyromonas gingivalis in Rheumatoid Arthritis. Arthritis Rheumatol. 2016, 68, 614–626. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, T.; Tahara, K.; Sawada, T. Detection of salivary citrullinated cytokeratin 13 in healthy individuals and patients with rheumatoid arthritis by proteomics analysis. PLoS ONE 2022, 17, e0265687. [Google Scholar] [CrossRef]
- Bukhari, M.; Lunt, M.; Harrison, B.J.; Scott, D.G.I.; Symmons, D.P.M.; Silman, A.J. Rheumatoid factor is the major predictor of increasing severity of radiographic erosions in rheumatoid arthritis: Results from the Norfolk Arthritis Register Study, a large inception cohort. Arthritis Rheum. 2002, 46, 906–912. [Google Scholar] [CrossRef]
- Renaudineau, Y.; Jamin, C.; Saraux, A.; Youinou, P. Rheumatoid factor on a daily basis. Autoimmunity 2005, 38, 11–16. [Google Scholar] [CrossRef]
- Zhang, F.; Wei, K.; Slowikowski, K.; Fonseka, C.Y.; Rao, D.A.; Kelly, S.; Goodman, S.M.; Tabechian, D.; Hughes, L.B.; Salomon-Escoto, K.; et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 2019, 20, 928–942. [Google Scholar] [CrossRef]
- Miltenburg, A.M.; van Laar, J.M.; de Kuiper, R.; Daha, M.R.; Breedveld, F.C. T cells cloned from human rheumatoid synovial membrane functionally represent the Th1 subset. Scand. J. Immunol. 1992, 35, 603–610. [Google Scholar] [CrossRef]
- Boissier, M.C.; Chiocchia, G.; Bessis, N.; Hajnal, J.; Garotta, G.; Nicoletti, F.; Fournier, C. Biphasic effect of interferon-gamma in murine collagen-induced arthritis. Eur. J. Immunol. 1995, 25, 1184–1190. [Google Scholar] [CrossRef]
- Brennan, F.M.; Chantry, D.; Jackson, A.M.; Maini, R.N.; Feldmann, M. Cytokine production in culture by cells isolated from the synovial membrane. J. Autoimmun. 1989, 2 (Suppl. 1), 177–186. [Google Scholar] [CrossRef]
- Chiang, E.Y.; Kolumam, G.A.; Yu, X.; Francesco, M.; Ivelja, S.; Peng, I.; Gribling, P.; Shu, J.; Lee, W.P.; Refino, C.J.; et al. Targeted depletion of lymphotoxin-alpha-expressing TH1 and TH17 cells inhibits autoimmune disease. Nat. Med. 2009, 15, 766–773. [Google Scholar] [CrossRef]
- Kobezda, T.; Ghassemi-Nejad, S.; Mikecz, K.; Glant, T.T.; Szekanecz, Z. Of mice and men: How animal models advance our understanding of T-cell function in RA. Nat. Rev. Rheumatol. 2014, 10, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Rao, D.A.; Gurish, M.F.; Marshall, J.L.; Slowikowski, K.; Fonseka, C.Y.; Liu, Y.; Donlin, L.T.; Henderson, L.A.; Wei, K.; Mizoguchi, F.; et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 2017, 542, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Webber, C.; Poole, A.R. The induction of arthritis in mice by the cartilage proteoglycan aggrecan: Roles of CD4+ and CD8+ T cells. Cell. Immunol. 1992, 144, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Hanyecz, A.; Bárdos, T.; Berlo, S.E.; Buzás, E.; Nesterovitch, A.B.; Mikecz, K.; Glant, T.T. Induction of arthritis in SCID mice by T cells specific for the “shared epitope” sequence in the G3 domain of human cartilage proteoglycan. Arthritis Rheum. 2003, 48, 2959–2973. [Google Scholar] [CrossRef] [PubMed]
- Chronister, W.; Sette, A.; Peters, B. Epitope-Specific T Cell Receptor Data and Tools in the Immune Epitope Database. Methods Mol. Biol. 2022, 2574, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, B.D.; Johnson, R.K.; Bingel, C.; Lothaller, C.; Howe, C.L. Preservation of antigen-specific responses in cryopreserved CD4+ and CD8+ T cells expanded with IL-2 and IL-7. J. Transl. Autoimmun. 2022, 5, 100173. [Google Scholar] [CrossRef]
- Barturen, G.; Babaei, S.; Català-Moll, F.; Martínez-Bueno, M.; Makowska, Z.; Martorell-Marugán, J.; Carmona-Sáez, P.; Toro-Domínguez, D.; Carnero-Montoro, E.; Teruel, M.; et al. Integrative Analysis Reveals a Molecular Stratification of Systemic Autoimmune Diseases. Arthritis Rheumatol. 2021, 73, 1073–1085. [Google Scholar] [CrossRef]
- Simon, Q.; Grasseau, A.; Boudigou, M.; Le Pottier, L.; Bettachioli, E.; Cornec, D.; Rouvière, B.; Jamin, C.; Le Lann, L.; PRECISESADS Clinical Consortium; et al. A Proinflammatory Cytokine Network Profile in Th1/Type 1 Effector B Cells Delineates a Common Group of Patients in Four Systemic Autoimmune Diseases. Arthritis Rheumatol. 2021, 73, 1550–1561. [Google Scholar] [CrossRef]
- Fazou, C.; Yang, H.; McMichael, A.J.; Callan, M.F. Epitope specificity of clonally expanded populations of CD8+ T cells found within the joints of patients with inflammatory arthritis. Arthritis Rheum. 2001, 44, 2038–2045. [Google Scholar] [CrossRef]
- Ishigaki, K.; Shoda, H.; Kochi, Y.; Yasui, T.; Kadono, Y.; Tanaka, S.; Fujio, K.; Yamamoto, K. Quantitative and qualitative characterization of expanded CD4+ T cell clones in rheumatoid arthritis patients. Sci. Rep. 2015, 5, 12937. [Google Scholar] [CrossRef] [Green Version]
- Turcinov, S.; Af Klint, E.; Van Schoubroeck, B.; Kouwenhoven, A.; Mia, S.; Chemin, K.; Wils, H.; Van Hove, C.; De Bondt, A.; Keustermans, K.; et al. The T cell receptor repertoire and antigen specificities in small joints of early rheumatoid arthritis—Diversity and clonality. Arthritis Rheumatol. 2022. [Google Scholar] [CrossRef]
- Almanzar, G.; Schmalzing, M.; Trippen, R.; Höfner, K.; Weißbrich, B.; Geissinger, E.; Meyer, T.; Liese, J.; Tony, H.-P.; Prelog, M. Significant IFNγ responses of CD8+ T cells in CMV-seropositive individuals with autoimmune arthritis. J. Clin. Virol. 2016, 77, 77–84. [Google Scholar] [CrossRef]
- Rothe, K.; Quandt, D.; Schubert, K.; Rossol, M.; Klingner, M.; Jasinski-Bergner, S.; Scholz, R.; Seliger, B.; Pierer, M.; Baerwald, C.; et al. Latent Cytomegalovirus Infection in Rheumatoid Arthritis and Increased Frequencies of Cytolytic LIR-1+CD8+ T Cells. Arthritis Rheumatol. 2016, 68, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Scotet, E.; Peyrat, M.A.; Saulquin, X.; Retiere, C.; Couedel, C.; Davodeau, F.; Dulphy, N.; Toubert, A.; Bignon, J.D.; Lim, A.; et al. Frequent enrichment for CD8 T cells reactive against common herpes viruses in chronic inflammatory lesions: Towards a reassessment of the physiopathological significance of T cell clonal expansions found in autoimmune inflammatory processes. Eur. J. Immunol. 1999, 29, 973–985. [Google Scholar] [CrossRef]
- Tan, L.C.; Mowat, A.G.; Fazou, C.; Rostron, T.; Roskell, H.; Dunbar, P.R.; Tournay, C.; Romagné, F.; Peyrat, M.A.; Houssaint, E.; et al. Specificity of T cells in synovial fluid: High frequencies of CD8(+) T cells that are specific for certain viral epitopes. Arthritis Res. 2000, 2, 154–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scotet, E.; David-Ameline, J.; Peyrat, M.A.; Moreau-Aubry, A.; Pinczon, D.; Lim, A.; Even, J.; Semana, G.; Berthelot, J.M.; Breathnach, R.; et al. T cell response to Epstein-Barr virus transactivators in chronic rheumatoid arthritis. J. Exp. Med. 1996, 184, 1791–1800. [Google Scholar] [CrossRef]
- Cammarata, I.; Martire, C.; Citro, A.; Raimondo, D.; Fruci, D.; Melaiu, O.; D’Oria, V.; Carone, C.; Peruzzi, G.; Cerboni, C.; et al. Counter-regulation of regulatory T cells by autoreactive CD8+ T cells in rheumatoid arthritis. J. Autoimmun. 2019, 99, 81–97. [Google Scholar] [CrossRef]
- Citro, A.; Scrivo, R.; Martini, H.; Martire, C.; De Marzio, P.; Vestri, A.R.; Sidney, J.; Sette, A.; Barnaba, V.; Valesini, G. CD8+ T Cells Specific to Apoptosis-Associated Antigens Predict the Response to Tumor Necrosis Factor Inhibitor Therapy in Rheumatoid Arthritis. PLoS ONE 2015, 10, e0128607. [Google Scholar] [CrossRef]
- Kohem, C.L.; Brezinschek, R.I.; Wisbey, H.; Tortorella, C.; Lipsky, P.E.; Oppenheimer-Marks, N. Enrichment of differentiated CD45RBdim, CD27- memory T cells in the peripheral blood, synovial fluid, and synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 1996, 39, 844–854. [Google Scholar] [CrossRef]
- Argyriou, A.; Wadsworth, M.H.; Lendvai, A.; Christensen, S.M.; Hensvold, A.H.; Gerstner, C.; van Vollenhoven, A.; Kravarik, K.; Winkler, A.; Malmström, V.; et al. Single cell sequencing identifies clonally expanded synovial CD4+ TPH cells expressing GPR56 in rheumatoid arthritis. Nat. Commun. 2022, 13, 4046. [Google Scholar] [CrossRef]
- Chang, M.H.; Levescot, A.; Nelson-Maney, N.; Blaustein, R.B.; Winden, K.D.; Morris, A.; Wactor, A.; Balu, S.; Grieshaber-Bouyer, R.; Wei, K.; et al. Arthritis flares mediated by tissue-resident memory T cells in the joint. Cell. Rep. 2021, 37, 109902. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, B.; Li, S.; Yang, L.; Zhu, D.; Wang, Y.; Wang, H.; Wang, T.; Shi, B.; Gai, Z.; et al. Detection and characterization of bacterial nucleic acids in culture-negative synovial tissue and fluid samples from rheumatoid arthritis or osteoarthritis patients. Sci. Rep. 2018, 8, 14305. [Google Scholar] [CrossRef] [Green Version]
- Berthelot, J.-M.; Saulquin, X.; Coste-Burel, M.; Peyrat, M.A.; Echasserieau, K.; Bonneville, M.; Houssaint, E. Search for correlation of CD8 T cell response to Epstein-Barr virus with clinical status in rheumatoid arthritis: A 15 month followup pilot study. J. Rheumatol. 2003, 30, 1673–1679. [Google Scholar]
- Kudaeva, F.M.; Speechley, M.R.; Pope, J.E. A systematic review of viral exposures as a risk for rheumatoid arthritis. Semin. Arthritis Rheum. 2019, 48, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Arleevskaya, M.I.; Albina, S.; Larionova, R.V.; Gabdoulkhakova, A.G.; Lemerle, J.; Renaudineau, Y. Prevalence and Incidence of Upper Respiratory Tract Infection Events Are Elevated Prior to the Development of Rheumatoid Arthritis in First-Degree Relatives. Front. Immunol. 2018, 9, 2771. [Google Scholar] [CrossRef] [PubMed]
- Larionova, R.V.; Arleevskaya, M.I.; Kravtsova, O.A.; Validov, S.; Renaudineau, Y. In seroconverted rheumatoid arthritis patients a multi-reactive anti-herpes IgM profile is associated with disease activity. Clin. Immunol. 2019, 200, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Marra, F.; Lo, E.; Kalashnikov, V.; Richardson, K. Risk of Herpes Zoster in Individuals on Biologics, Disease-Modifying Antirheumatic Drugs, and/or Corticosteroids for Autoimmune Diseases: A Systematic Review and Meta-Analysis. Open Forum Infect. Dis. 2016, 3, ofw205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murayama, T.; Tsuchiya, N.; Jisaki, F.; Ozaki, M.; Sakamuro, D.; Hirai, K.; Shimizu, S.; Ito, K.; Matsushima, K.; Furukawa, T. Elevated cytokine levels in synovial fluid of rheumatoid arthritis correlates with the presence of cytomegalovirus genome. Autoimmunity 1994, 17, 333–337. [Google Scholar] [CrossRef]
- Gao, A.; Zhao, W.; Wu, R.; Su, R.; Jin, R.; Luo, J.; Gao, C.; Li, X.; Wang, C. Tissue-resident memory T cells: The key frontier in local synovitis memory of rheumatoid arthritis. J. Autoimmun. 2022, 133, 102950. [Google Scholar] [CrossRef] [PubMed]
- Cicin-Sain, L. Cytomegalovirus memory inflation and immune protection. Med. Microbiol. Immunol. 2019, 208, 339–347. [Google Scholar] [CrossRef]
- Nanki, T.; Imai, T.; Nagasaka, K.; Urasaki, Y.; Nonomura, Y.; Taniguchi, K.; Hayashida, K.; Hasegawa, J.; Yoshie, O.; Miyasaka, N. Migration of CX3CR1-positive T cells producing type 1 cytokines and cytotoxic molecules into the synovium of patients with rheumatoid arthritis. Arthritis Rheum. 2002, 46, 2878–2883. [Google Scholar] [CrossRef]
- Wahlin, B.; Fasth, A.E.R.; Karp, K.; Lejon, K.; Malmström, V.; Rahbar, A.; Wållberg-Jonsson, S.; Södergren, A. Atherosclerosis in rheumatoid arthritis: Associations between anti-cytomegalovirus IgG antibodies, CD4+CD28null T-cells, CD8+CD28null T-cells and intima-media thickness. Clin. Exp. Rheumatol. 2021, 39, 578–586. [Google Scholar] [CrossRef]
- Rawson, P.M.; Molette, C.; Videtta, M.; Altieri, L.; Franceschini, D.; Donato, T.; Finocchi, L.; Propato, A.; Paroli, M.; Meloni, F.; et al. Cross-presentation of caspase-cleaved apoptotic self antigens in HIV infection. Nat. Med. 2007, 13, 1431–1439. [Google Scholar] [CrossRef] [PubMed]
- Ting, Y.T.; Petersen, J.; Ramarathinam, S.H.; Scally, S.W.; Loh, K.L.; Thomas, R.; Suri, A.; Baker, D.G.; Purcell, A.W.; Reid, H.H.; et al. The interplay between citrullination and HLA-DRB1 polymorphism in shaping peptide binding hierarchies in rheumatoid arthritis. J. Biol. Chem. 2018, 293, 3236–3251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raychaudhuri, S.; Sandor, C.; Stahl, E.A.; Freudenberg, J.; Lee, H.-S.; Jia, X.; Alfredsson, L.; Padyukov, L.; Klareskog, L.; Worthington, J.; et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 2012, 44, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Balandraud, N.; Picard, C.; Reviron, D.; Landais, C.; Toussirot, E.; Lambert, N.; Telle, E.; Charpin, C.; Wendling, D.; Pardoux, E.; et al. HLA-DRB1 genotypes and the risk of developing anti citrullinated protein antibody (ACPA) positive rheumatoid arthritis. PLoS ONE 2013, 8, e64108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoda, H.; Fujio, K.; Sakurai, K.; Ishigaki, K.; Nagafuchi, Y.; Shibuya, M.; Sumitomo, S.; Okamura, T.; Yamamoto, K. Autoantigen BiP-Derived HLA-DR4 Epitopes Differentially Recognized by Effector and Regulatory T Cells in Rheumatoid Arthritis. Arthritis Rheumatol. 2015, 67, 1171–1181. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.A.; Watson, L.; Geursen, A.; Tan, P.L. Lymphocyte responses to DR1/4 restricted peptides in rheumatoid arthritis. Ann. Rheum. Dis. 1994, 53, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Tan, P.L.; Farmiloe, S.; Young, J.; Watson, J.D.; Skinner, M.A. Lymphocyte responses to DR4/1-restricted peptides in rheumatoid arthritis. The immunodominant T cell epitope on the 19-kd Mycobacterium tuberculosis protein. Arthritis Rheum. 1992, 35, 1419–1426. [Google Scholar] [CrossRef]
- Shoda, H.; Hanata, N.; Sumitomo, S.; Okamura, T.; Fujio, K.; Yamamoto, K. Immune responses to Mycobacterial heat shock protein 70 accompany self-reactivity to human BiP in rheumatoid arthritis. Sci. Rep. 2016, 6, 22486. [Google Scholar] [CrossRef] [Green Version]
- Gerstner, C.; Turcinov, S.; Hensvold, A.H.; Chemin, K.; Uchtenhagen, H.; Ramwadhdoebe, T.H.; Dubnovitsky, A.; Kozhukh, G.; Rönnblom, L.; Kwok, W.W.; et al. Multi-HLA class II tetramer analyses of citrulline-reactive T cells and early treatment response in rheumatoid arthritis. BMC Immunol. 2020, 21, 27. [Google Scholar] [CrossRef]
- Pieper, J.; Dubnovitsky, A.; Gerstner, C.; James, E.A.; Rieck, M.; Kozhukh, G.; Tandre, K.; Pellegrino, S.; Gebe, J.A.; Rönnblom, L.; et al. Memory T cells specific to citrullinated α-enolase are enriched in the rheumatic joint. J. Autoimmun. 2018, 92, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, R.; Li, Z. Influenza virus haemagglutinin-derived peptides inhibit T-cell activation induced by HLA-DR4/1 specific peptides in rheumatoid arthritis. Clin. Exp. Rheumatol. 2006, 24, 148–154. [Google Scholar] [PubMed]
- de Jong, H.; Lafeber, F.F.P.; de Jager, W.; Haverkamp, M.H.; Kuis, W.; Bijlsma, J.W.J.; Prakken, B.J.; Albani, S. Pan-DR-binding Hsp60 self epitopes induce an interleukin-10-mediated immune response in rheumatoid arthritis. Arthritis Rheum. 2009, 60, 1966–1976. [Google Scholar] [CrossRef] [PubMed]
- ter Steege, J.; Vianen, M.; van Bilsen, J.; Bijlsma, J.; Lafeber, F.; Wauben, M. Identification of self-epitopes recognized by T cells in rheumatoid arthritis demonstrates matrix metalloproteinases as a novel T cell target. J. Rheumatol. 2003, 30, 1147–1156. [Google Scholar] [PubMed]
- Kurzik-Dumke, U.; Schick, C.; Rzepka, R.; Melchers, I. Overexpression of human homologs of the bacterial DnaJ chaperone in the synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 1999, 42, 210–220. [Google Scholar] [CrossRef]
- La Cava, A.; Nelson, J.L.; Ollier, W.E.; MacGregor, A.; Keystone, E.C.; Thorne, J.C.; Scavulli, J.F.; Berry, C.C.; Carson, D.A.; Albani, S. Genetic bias in immune responses to a cassette shared by different microorganisms in patients with rheumatoid arthritis. J. Clin. Investig. 1997, 100, 658–663. [Google Scholar] [CrossRef] [Green Version]
- De Santis, M.; Ceribelli, A.; Cavaciocchi, F.; Generali, E.; Massarotti, M.; Isailovic, N.; Crotti, C.; Scherer, H.U.; Montecucco, C.; Selmi, C. Effects of type II collagen epitope carbamylation and citrullination in human leucocyte antigen (HLA)-DR4(+) monozygotic twins discordant for rheumatoid arthritis. Clin. Exp. Immunol. 2016, 185, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Ge, C.; Weisse, S.; Xu, B.; Dobritzsch, D.; Viljanen, J.; Kihlberg, J.; Do, N.-N.; Schneider, N.; Lanig, H.; Holmdahl, R.; et al. Key interactions in the trimolecular complex consisting of the rheumatoid arthritis-associated DRB1*04:01 molecule, the major glycosylated collagen II peptide and the T-cell receptor. Ann. Rheum. Dis. 2022, 81, 480–489. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, W.U.; Cho, M.L.; Lee, S.K.; Youn, J.; Kim, S.I.; Yoo, W.H.; Park, J.H.; Min, J.K.; Lee, S.H.; et al. Enhanced T cell proliferative response to type II collagen and synthetic peptide CII (255-274) in patients with rheumatoid arthritis. Arthritis Rheum. 1999, 42, 2085–2093. [Google Scholar] [CrossRef]
- Ria, F.; Penitente, R.; De Santis, M.; Nicolò, C.; Di Sante, G.; Orsini, M.; Arzani, D.; Fattorossi, A.; Battaglia, A.; Ferraccioli, G.F. Collagen-specific T-cell repertoire in blood and synovial fluid varies with disease activity in early rheumatoid arthritis. Arthritis Res. Ther. 2008, 10, R135. [Google Scholar] [CrossRef] [Green Version]
- Snir, O.; Bäcklund, J.; Boström, J.; Andersson, I.; Kihlberg, J.; Buckner, J.H.; Klareskog, L.; Holmdahl, R.; Malmström, V. Multifunctional T cell reactivity with native and glycosylated type II collagen in rheumatoid arthritis. Arthritis Rheum. 2012, 64, 2482–2488. [Google Scholar] [CrossRef] [Green Version]
- Di Sante, G.; Gremese, E.; Tolusso, B.; Cattani, P.; Di Mario, C.; Marchetti, S.; Alivernini, S.; Tredicine, M.; Petricca, L.; Palucci, I.; et al. Haemophilus parasuis (Glaesserella parasuis) as a Potential Driver of Molecular Mimicry and Inflammation in Rheumatoid Arthritis. Front. Med. 2021, 8, 671018. [Google Scholar] [CrossRef] [PubMed]
- Cope, A.P.; Patel, S.D.; Hall, F.; Congia, M.; Hubers, H.A.; Verheijden, G.F.; Boots, A.M.; Menon, R.; Trucco, M.; Rijnders, A.W.; et al. T cell responses to a human cartilage autoantigen in the context of rheumatoid arthritis-associated and nonassociated HLA-DR4 alleles. Arthritis Rheum. 1999, 42, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Kotzin, B.L.; Falta, M.T.; Crawford, F.; Rosloniec, E.F.; Bill, J.; Marrack, P.; Kappler, J. Use of soluble peptide-DR4 tetramers to detect synovial T cells specific for cartilage antigens in patients with rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 2000, 97, 291–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trembleau, S.; Hoffmann, M.; Meyer, B.; Nell, V.; Radner, H.; Zauner, W.; Hammer, J.; Aichinger, G.; Fischer, G.; Smolen, J.; et al. Immunodominant T-cell epitopes of hnRNP-A2 associated with disease activity in patients with rheumatoid arthritis. Eur. J. Immunol. 2010, 40, 1795–1808. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, Y.; Thiel, A.; Rudwaleit, M.; Shi, S.-L.; Radbruch, A.; Poole, R.; Braun, J.; Sieper, J. Predominant cellular immune response to the cartilage autoantigenic G1 aggrecan in ankylosing spondylitis and rheumatoid arthritis. Rheumatology 2003, 42, 846–855. [Google Scholar] [CrossRef] [Green Version]
- Auger, I.; Balandraud, N.; Massy, E.; Hemon, M.F.; Peen, E.; Arnoux, F.; Mariot, C.; Martin, M.; Lafforgue, P.; Busnel, J.-M.; et al. Peptidylarginine Deiminase Autoimmunity and the Development of Anti-Citrullinated Protein Antibody in Rheumatoid Arthritis: The Hapten-Carrier Model. Arthritis Rheumatol. 2020, 72, 903–911. [Google Scholar] [CrossRef] [Green Version]
- Law, S.C.; Street, S.; Yu, C.-H.A.; Capini, C.; Ramnoruth, S.; Nel, H.J.; van Gorp, E.; Hyde, C.; Lau, K.; Pahau, H.; et al. T-cell autoreactivity to citrullinated autoantigenic peptides in rheumatoid arthritis patients carrying HLA-DRB1 shared epitope alleles. Arthritis Res. Ther. 2012, 14, R118. [Google Scholar] [CrossRef] [Green Version]
- Chemin, K.; Pollastro, S.; James, E.; Ge, C.; Albrecht, I.; Herrath, J.; Gerstner, C.; Tandre, K.; Sampaio Rizzi, T.; Rönnblom, L.; et al. A Novel HLA-DRB1*10:01-Restricted T Cell Epitope From Citrullinated Type II Collagen Relevant to Rheumatoid Arthritis. Arthritis Rheumatol. 2016, 68, 1124–1135. [Google Scholar] [CrossRef]
- Maggi, J.; Carrascal, M.; Soto, L.; Neira, O.; Cuéllar, M.C.; Aravena, O.; James, E.A.; Abian, J.; Jaraquemada, D.; Catalan, D.; et al. Isolation of HLA-DR-naturally presented peptides identifies T-cell epitopes for rheumatoid arthritis. Ann. Rheum. Dis. 2022, 81, 1096–1105. [Google Scholar] [CrossRef]
- Aggarwal, A.; Srivastava, R.; Agrawal, S. T cell responses to citrullinated self-peptides in patients with rheumatoid arthritis. Rheumatol. Int. 2013, 33, 2359–2363. [Google Scholar] [CrossRef]
- Cianciotti, B.C.; Ruggiero, E.; Campochiaro, C.; Oliveira, G.; Magnani, Z.I.; Baldini, M.; Doglio, M.; Tassara, M.; Manfredi, A.A.; Baldissera, E.; et al. CD4+ Memory Stem T Cells Recognizing Citrullinated Epitopes Are Expanded in Patients With Rheumatoid Arthritis and Sensitive to Tumor Necrosis Factor Blockade. Arthritis Rheumatol. 2020, 72, 565–575. [Google Scholar] [CrossRef]
- Ling, S.; Cline, E.N.; Haug, T.S.; Fox, D.A.; Holoshitz, J. Citrullinated calreticulin potentiates rheumatoid arthritis shared epitope signaling. Arthritis Rheum. 2013, 65, 618–626. [Google Scholar] [CrossRef] [Green Version]
- Markovics, A.; Ocskó, T.; Katz, R.S.; Buzás, E.I.; Glant, T.T.; Mikecz, K. Immune Recognition of Citrullinated Proteoglycan Aggrecan Epitopes in Mice with Proteoglycan-Induced Arthritis and in Patients with Rheumatoid Arthritis. PLoS ONE 2016, 11, e0160284. [Google Scholar] [CrossRef] [Green Version]
- Rims, C.; Uchtenhagen, H.; Kaplan, M.J.; Carmona-Rivera, C.; Carlucci, P.; Mikecz, K.; Markovics, A.; Carlin, J.; Buckner, J.H.; James, E.A. Citrullinated Aggrecan Epitopes as Targets of Autoreactive CD4+ T Cells in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2019, 71, 518–528. [Google Scholar] [CrossRef]
- Auger, I.; Sebbag, M.; Vincent, C.; Balandraud, N.; Guis, S.; Nogueira, L.; Svensson, B.; Cantagrel, A.; Serre, G.; Roudier, J. Influence of HLA-DR genes on the production of rheumatoid arthritis-specific autoantibodies to citrullinated fibrinogen. Arthritis Rheum. 2005, 52, 3424–3432. [Google Scholar] [CrossRef]
- Sharma, R.K.; Boddul, S.V.; Yoosuf, N.; Turcinov, S.; Dubnovitsky, A.; Kozhukh, G.; Wermeling, F.; Kwok, W.W.; Klareskog, L.; Malmström, V. Biased TCR gene usage in citrullinated Tenascin C specific T-cells in rheumatoid arthritis. Sci. Rep. 2021, 11, 24512. [Google Scholar] [CrossRef]
- Song, J.; Schwenzer, A.; Wong, A.; Turcinov, S.; Rims, C.; Martinez, L.R.; Arribas-Layton, D.; Gerstner, C.; Muir, V.S.; Midwood, K.S.; et al. Shared recognition of citrullinated tenascin-C peptides by T and B cells in rheumatoid arthritis. JCI Insight 2021, 6, 145217. [Google Scholar] [CrossRef]
- James, E.A.; Moustakas, A.K.; Bui, J.; Papadopoulos, G.K.; Bondinas, G.; Buckner, J.H.; Kwok, W.W. HLA-DR1001 presents “altered-self” peptides derived from joint-associated proteins by accepting citrulline in three of its binding pockets. Arthritis Rheum. 2010, 62, 2909–2918. [Google Scholar] [CrossRef] [Green Version]
- Gerstner, C.; Dubnovitsky, A.; Sandin, C.; Kozhukh, G.; Uchtenhagen, H.; James, E.A.; Rönnelid, J.; Ytterberg, A.J.; Pieper, J.; Reed, E.; et al. Functional and Structural Characterization of a Novel HLA-DRB1*04:01-Restricted α-Enolase T Cell Epitope in Rheumatoid Arthritis. Front. Immunol. 2016, 7, 494. [Google Scholar] [CrossRef] [Green Version]
- Gordon, R.D.; Young, J.A.; Rayner, S.; Luke, R.W.; Crowther, M.L.; Wordsworth, P.; Bell, J.; Hassall, G.; Evans, J.; Hinchliffe, S.A. Purification and characterization of endogenous peptides extracted from HLA-DR isolated from the spleen of a patient with rheumatoid arthritis. Eur. J. Immunol. 1995, 25, 1473–1476. [Google Scholar] [CrossRef]
- Pianta, A.; Arvikar, S.; Strle, K.; Drouin, E.E.; Wang, Q.; Costello, C.E.; Steere, A.C. Evidence of the Immune Relevance of Prevotella copri, a Gut Microbe, in Patients with Rheumatoid Arthritis. Arthritis Rheumatol. 2017, 69, 964–975. [Google Scholar] [CrossRef] [Green Version]
- Pianta, A.; Arvikar, S.L.; Strle, K.; Drouin, E.E.; Wang, Q.; Costello, C.E.; Steere, A.C. Two rheumatoid arthritis-specific autoantigens correlate microbial immunity with autoimmune responses in joints. J. Clin. Investig. 2017, 127, 2946–2956. [Google Scholar] [CrossRef]
- Pianta, A.; Chiumento, G.; Ramsden, K.; Wang, Q.; Strle, K.; Arvikar, S.; Costello, C.E.; Steere, A.C. Identification of Novel, Immunogenic HLA-DR-Presented Prevotella copri Peptides in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 2200–2205. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Redlich, K.; Xu, Q.; Bizan, P.; Gröger, M.; Tohidast-Akrad, M.; Kiener, H.; Smolen, J.; Steiner, G. Enhanced expression of heat shock protein 70 (hsp70) and heat shock factor 1 (HSF1) activation in rheumatoid arthritis synovial tissue. Differential regulation of hsp70 expression and hsf1 activation in synovial fibroblasts by proinflammatory cytokines, shear stress, and antiinflammatory drugs. J. Clin. Investig. 1998, 102, 302–311. [Google Scholar] [CrossRef]
- Kamphuis, S.; Kuis, W.; de Jager, W.; Teklenburg, G.; Massa, M.; Gordon, G.; Boerhof, M.; Rijkers, G.T.; Uiterwaal, C.S.; Otten, H.G.; et al. Tolerogenic immune responses to novel T-cell epitopes from heat-shock protein 60 in juvenile idiopathic arthritis. Lancet 2005, 366, 50–56. [Google Scholar] [CrossRef]
- Takenaka, S.; Ogura, T.; Oshima, H.; Izumi, K.; Hirata, A.; Ito, H.; Mizushina, K.; Inoue, Y.; Katagiri, T.; Hayashi, N.; et al. Development and exacerbation of pulmonary nontuberculous mycobacterial infection in patients with systemic autoimmune rheumatic diseases. Mod. Rheumatol. 2020, 30, 558–563. [Google Scholar] [CrossRef]
- Kourbeti, I.S.; Ziakas, P.D.; Mylonakis, E. Biologic therapies in rheumatoid arthritis and the risk of opportunistic infections: A meta-analysis. Clin. Infect. Dis. 2014, 58, 1649–1657. [Google Scholar] [CrossRef]
- Jawa, V.; Terry, F.; Gokemeijer, J.; Mitra-Kaushik, S.; Roberts, B.J.; Tourdot, S.; De Groot, A.S. T-Cell Dependent Immunogenicity of Protein Therapeutics Pre-clinical Assessment and Mitigation-Updated Consensus and Review 2020. Front. Immunol. 2020, 11, 1301. [Google Scholar] [CrossRef]
- Trentham, D.E.; Dynesius, R.A.; David, J.R. Passive transfer by cells of type II collagen-induced arthritis in rats. J. Clin. Investig. 1978, 62, 359–366. [Google Scholar] [CrossRef]
- de Jong, H.; Berlo, S.E.; Hombrink, P.; Otten, H.G.; van Eden, W.; Lafeber, F.P.; Heurkens, A.H.M.; Bijlsma, J.W.J.; Glant, T.T.; Prakken, B.J. Cartilage proteoglycan aggrecan epitopes induce proinflammatory autoreactive T-cell responses in rheumatoid arthritis and osteoarthritis. Ann. Rheum. Dis. 2010, 69, 255–262. [Google Scholar] [CrossRef]
- Scally, S.W.; Petersen, J.; Law, S.C.; Dudek, N.L.; Nel, H.J.; Loh, K.L.; Wijeyewickrema, L.C.; Eckle, S.B.G.; van Heemst, J.; Pike, R.N.; et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J. Exp. Med. 2013, 210, 2569–2582. [Google Scholar] [CrossRef]
- Foulquier, C.; Sebbag, M.; Clavel, C.; Chapuy-Regaud, S.; Al Badine, R.; Méchin, M.-C.; Vincent, C.; Nachat, R.; Yamada, M.; Takahara, H.; et al. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis Rheum. 2007, 56, 3541–3553. [Google Scholar] [CrossRef]
- Willemze, A.; van der Woude, D.; Ghidey, W.; Levarht, E.W.N.; Stoeken-Rijsbergen, G.; Verduyn, W.; de Vries, R.R.P.; Houwing-Duistermaat, J.J.; Huizinga, T.W.J.; Trouw, L.A.; et al. The interaction between HLA shared epitope alleles and smoking and its contribution to autoimmunity against several citrullinated antigens. Arthritis Rheum. 2011, 63, 1823–1832. [Google Scholar] [CrossRef]
- Seward, R.J.; Drouin, E.E.; Steere, A.C.; Costello, C.E. Peptides presented by HLA-DR molecules in synovia of patients with rheumatoid arthritis or antibiotic-refractory Lyme arthritis. Mol. Cell. Proteomics 2011, 10, M110.002477. [Google Scholar] [CrossRef] [Green Version]
- Wells, P.M.; Adebayo, A.S.; Bowyer, R.C.E.; Freidin, M.B.; Finckh, A.; Strowig, T.; Lesker, T.R.; Alpizar-Rodriguez, D.; Gilbert, B.; Kirkham, B.; et al. Associations between gut microbiota and genetic risk for rheumatoid arthritis in the absence of disease: A cross-sectional study. Lancet Rheumatol. 2020, 2, e418–e427. [Google Scholar] [CrossRef]
- Alpizar-Rodriguez, D.; Lesker, T.R.; Gronow, A.; Gilbert, B.; Raemy, E.; Lamacchia, C.; Gabay, C.; Finckh, A.; Strowig, T. Prevotella copri in individuals at risk for rheumatoid arthritis. Ann. Rheum. Dis. 2019, 78, 590–593. [Google Scholar] [CrossRef]
- Medina-Vera, I.; Sanchez-Tapia, M.; Noriega-López, L.; Granados-Portillo, O.; Guevara-Cruz, M.; Flores-López, A.; Avila-Nava, A.; Fernández, M.L.; Tovar, A.R.; Torres, N. A dietary intervention with functional foods reduces metabolic endotoxaemia and attenuates biochemical abnormalities by modifying faecal microbiota in people with type 2 diabetes. Diabetes Metab. 2019, 45, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Candia, M.; Kratzer, B.; Pickl, W.F. On Peptides and Altered Peptide Ligands: From Origin, Mode of Action and Design to Clinical Application (Immunotherapy). Int. Arch. Allergy Immunol. 2016, 170, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Boots, A.M.H.; Hubers, H.; Kouwijzer, M.; den Hoed-van Zandbrink, L.; Westrek-Esselink, B.M.; van Doorn, C.; Stenger, R.; Bos, E.S.; van Lierop, M.C.; Verheijden, G.F.; et al. Identification of an altered peptide ligand based on the endogenously presented, rheumatoid arthritis-associated, human cartilage glycoprotein-39(263-275) epitope: An MHC anchor variant peptide for immune modulation. Arthritis Res. Ther. 2007, 9, R71. [Google Scholar] [CrossRef] [Green Version]
- Ohnishi, Y.; Tsutsumi, A.; Matsumoto, I.; Goto, D.; Ito, S.; Kuwana, M.; Uemura, Y.; Nishimura, Y.; Sumida, T. Altered peptide ligands control type II collagen-reactive T cells from rheumatoid arthritis patients. Mod. Rheumatol. 2006, 16, 226–228. [Google Scholar] [CrossRef]
- Barberá, A.; Lorenzo, N.; Garrido, G.; Mazola, Y.; Falcón, V.; Torres, A.M.; Hernández, M.I.; Hernández, M.V.; Margry, B.; de Groot, A.M.; et al. APL-1, an altered peptide ligand derived from human heat-shock protein 60, selectively induces apoptosis in activated CD4+ CD25+ T cells from peripheral blood of rheumatoid arthritis patients. Int. Immunopharmacol. 2013, 17, 1075–1083. [Google Scholar] [CrossRef]
- Dominguez, M.D.C.; Lorenzo, N.; Barbera, A.; Darrasse-Jeze, G.; Hernández, M.V.; Torres, A.; Hernández, I.; Gil, R.; Klatzmann, D.; Padrón, G. An altered peptide ligand corresponding to a novel epitope from heat-shock protein 60 induces regulatory T cells and suppresses pathogenic response in an animal model of adjuvant-induced arthritis. Autoimmunity 2011, 44, 471–482. [Google Scholar] [CrossRef]
- Lorenzo, N.; Barberá, A.; Domínguez, M.C.; Torres, A.M.; Hernandez, M.V.; Hernandez, I.; Gil, R.; Ancizar, J.; Garay, H.; Reyes, O.; et al. Therapeutic effect of an altered peptide ligand derived from heat-shock protein 60 by suppressing of inflammatory cytokines secretion in two animal models of rheumatoid arthritis. Autoimmunity 2012, 45, 449–459. [Google Scholar] [CrossRef]
- Li, R.; Li, X.; Li, Z. Altered collagen II 263-272 peptide immunization induces inhibition of collagen-induced arthritis through a shift toward Th2-type response. Tissue Antigens 2009, 73, 341–347. [Google Scholar] [CrossRef]
- Myers, L.K.; Tang, B.; Rosioniec, E.F.; Stuart, J.M.; Kang, A.H. An altered peptide ligand of type II collagen suppresses autoimmune arthritis. Crit. Rev. Immunol. 2007, 27, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, E.; Matsumoto, I.; Yoshiga, Y.; Hayashi, T.; Goto, D.; Ito, S.; Sumida, T. Altered peptide ligands regulate type II collagen-induced arthritis in mice. Mod. Rheumatol. 2009, 19, 366–371. [Google Scholar] [CrossRef]
- Hirota, T.; Tsuboi, H.; Takahashi, H.; Asashima, H.; Ohta, M.; Wakasa, Y.; Matsumoto, I.; Takaiwa, F.; Sumida, T. Suppression of GPI-induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands. Nihon Rinsho Meneki Gakkai Kaishi 2017, 40, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Cabrales-Rico, A.; Ramos, Y.; Besada, V.; Del Carmen Domínguez, M.; Lorenzo, N.; García, O.; Alexis, J.; Prada, D.; Reyes, Y.; López, A.M.; et al. Development and validation of a bioanalytical method based on LC-MS/MS analysis for the quantitation of CIGB-814 peptide in plasma from Rheumatoid Arthritis patients. J. Pharm. Biomed. Anal. 2017, 143, 130–140. [Google Scholar] [CrossRef]
- Corrales, O.; Hernández, L.; Prada, D.; Gómez, J.; Reyes, Y.; López, A.M.; González, L.J.; Del Carmen Domínguez Horta, M. CIGB-814, an altered peptide ligand derived from human heat-shock protein 60, decreases anti-cyclic citrullinated peptides antibodies in patients with rheumatoid arthritis. Clin. Rheumatol. 2019, 38, 955–960. [Google Scholar] [CrossRef]
T Cells | MHC Elution | B Cell | |
---|---|---|---|
Assays | 865 | 859 | 26,539 |
Epitopes | 1390 | 657 | 25,664 |
Antigens | 79 | 366 | 5100 |
TCR | 153 | 0 | 20 |
References | 103 | 5 | 235 |
T Cell Exploration | Type | Assays |
---|---|---|
T cell activation | Proliferation | 3H thymidine Optical density |
Cytokines and chemokines | ELISpot, ELISA Flow cytometry Multiplex (Luminex) | |
T cell phenotype | Characterization, cell sorting | MHC multimers |
TCR | TCR repertoire (oligoclonality) | Multiplex RT-PCR, NGS |
Organism | Antigen | Main Epitope | HLA Restriction | T Cell Effect | T Cell Subset (Repertoire) | Blood/SF [Ref] |
---|---|---|---|---|---|---|
CMV | pp65 | NLVPMVATV | A2 | Enrichment (SF > blood) | CD8+ | SF, blood [30,31,32,33] |
EBV | BMLF1 | GLCTLVAML | A2 | Enrichment (SF > blood) | CD8+ (Vβ2/12/16) | SF, blood [32,33,34] |
BZLF1 | RAKFKQLL | B8, B61, Cw1 | Enrichment (SF > blood) | CD8+ | SF, blood [32,33,34] | |
EBNA3A | FLRGRAYGL | B8, B61 | No enrichment (SF = blood) | CD8+ | SF, blood [32,33,34] | |
Influenzae | IAMP | GILGFVFTL | A2 | No enrichment (SF = blood) | CD8+ (Vβ17) | SF, blood [33] |
Apoptotic (human) | MYH9 | QLFNHTMFI VLMIKALEL | A2 | Autoreactive Teff (RA > HC) | CD8+ | Blood [35,36,37] |
Apoptotic (human) | VIME | LLQDSVDFSL SLQEEIAFL | A2 | Autoreactive Teff (RA > HC) | CD8+ | Blood [35,36] |
Apoptotic (human) | ACTB1 | FLGMESCGI | A2 | Autoreactive Teff (RA > HC) | CD8+ | Blood [35,36] |
Organism | Antigen | Main Epitope (Antagonist, B Cell Epitope) | HLA Restriction | Native Form Effect on T Cells | If Not Specified, Citrullinated Form Effect | Blood/SF [Reference] |
---|---|---|---|---|---|---|
Peptides derived from heat shock proteins and conserved proteins | ||||||
Mycobacteria | HSP70/DNAk (287–306) | DRTRKPFQSVIADTGISVSE | DR4 | Prolif (RA > HC), IFN-γ, IL-17 | - | Blood [55] |
Mycobacteria | LpqH (31–50) | SGETTTAAGTTASPGAASGPK | DRB1-SE | Prolif (RA > HC), IFN-γ | Blood [56,57] | |
Human | BiP (336–355) | RSTMKPVQKVLEDSDLKKSD | DR4 | Prolif (RA > HC), IFN-γ, IL-17 | - | Blood [58] |
Influenzae | HAE (307–319) | PKYVKQNTLKLAT | DR4 | Prolif (RA > HC), IFN-γ | - | Blood [56,59,60] |
Influenzae | MP1 (17–29) | SGPLKAEIAQRLE | DR4 | Prolif (RA > HC), IFN-γ | - | Blood [56,59,61] |
Human | BiP (456–475) | DNQPTVTIKVYEGERPLTKD (antagonist) | DR4 | Weak prolif, Treg (IL-10) | - | Blood [55] |
Mycobacteria | HSP65/GroEL2 (256–270) | ALSTLVVNKIRGTFK | DRB1-SE | Prolif (RA > HC), IL-1β, IL-6, TNF-α | - | Blood [62] |
Human | HSP60 (535–549) | ALSTLVLNRLKVGLQ | DRB1-SE | Prolif (RA > HC), IL-1β, IL-6, TNF-α | - | Blood [62] |
Mycobacteria/human | HSP60 | panel (antagonist) | pan-DR | Prolif (RA = HC), IL-10 > TNF-α | - | Blood [62] |
Rat | MMP3 (446–460) | FFYFFTGSSQLEFDP | DRB1 | Prolif (RA > HC), IL-4, IL-1β, TNF-α | - | Blood [63] |
Mycobacteria | HSP40/DNAj | QKRAAYDQYGHAAFE (B cell) | DRB1-SE | Prolif (RA > HC) | Blood [64,65] | |
Synovial peptides derived from native and cross-reactive proteins | ||||||
Human | Col2 (259–273) | GIAGFKGEQGPKGET | DR4 | Weak prolif (RA > HC), IFN-γ, IL-17 and IL-2 | Galactosylation: strong prolif, IFN-γ, IL-17 and IL-2 | Blood/SF [66,67,68,69,70] |
Human | Col 2 (261–273) | AGFKGEQGPKGET | DR4 | Activation (RA > HC), CD40L, IL-17, IL-4 | Activation (RA > HC), CD40L, IL-17, IL-4 | Blood [66] |
Haemophilus parasuis | Vta (755–766) | AGPKGEQPKGE | DR4 | Prolif, IL-17 | - | Blood [71] |
Human | Cartilage proteoglycan (268–282) | YLAWQAGMDMCSAGW | DRB1-SE | Prolif (RA > HC), IL-1, IL-2, IL-6, IL-10, TNF-α, MCP1 | - | Blood [62] |
Human | HCgp39 (263–275) | FTLASSETG | DR4 | Prolif (RA > HC) | - | Blood, SF [72,73] |
Yersinia sp. | Yop (68–82) | QKQLGWQAGMDEART | DRB1-SE | Prolif | - | Blood [62] |
Human | hnRNP-A2/RA33 (117–133) | RDYFEEYGKIDTIEIIT | DRB1-SE | Prolif (RA > HC), IFN-γ, IL-2 | Blood [74] | |
Human | G1 aggrecan | pool | HLA-DR | Prolif (RA > HC), IFN-γ, TNF-α | - | Blood/SF [75] |
Human | PAD4 | DPGVEVTLTMKAASGSTGDQ (B cell) | DRB1-SE | Prolif (RA > HC), TNF-α | - | Blood [76] |
Extracellular-matrix and other peptides with citrulline modifications (R underline) | ||||||
Human | Fibrinogen-α (79–91) | QDFTNRINKLKNS | DRB1-SE | No response | Weak prolif, IL-17 > IFN-γ, IL-6 (RA > HC) | Blood [77] |
Human | Col2 (1237–1249) | QYMRADQAAGGLR | DRB1-SE | No response | Weak prolif, IFN-γ, IL-6, IL-17 (RA > HC) | Blood [77,78,79] |
Human | Col2 (311–325) | APGNRGFPGQDGLAG | DRB1-SE *10:01 | No response | Activ. (CD40L), TNF-α, IL-17F, IL-10, IL-13 | Blood [78] |
Human | VIME (66–78) | SAVRARSSVPGVR (B cell) | DRB1-SE | No response | Weak prolif, IFN-γ, IL-6, IL-17 (RA > HC) | Blood [77,80,81,82] |
Human | Aggrecan (84–103) | VVLLVATEGRVRVNSAYQDK | DRB1-SE | No response | Weak prolif, IL-6 > IFN-γ, IL-17 (RA > HC) | Blood [77,80,83,84] |
Human | Fibrinogen | Pool | DRB1 | Prolif similar to controls | Prolif similar to controls | Blood [85] |
Human | Tenascin | VSLISRRGDMSSNPA (B cell) | DRB1-SE *04:01 | No response | Weak prolif (RA > HC), IFN-γ > IL-17, IL-10 | Blood, SF [86,87] |
Human | Tenascin 56 | QGQYELRVDLRDHGE (B cell) | DRB1-SE *04:01 | No response | Weak prolif (RA > HC), IFN-γ > IL-17, IL-10 | Blood, SF [86,87] |
Human | CILP (982–996) | GKLYGIRDVRSTRDR | DRB1-SE *10:01 | No response | Prolif, IL-17 | Blood [59,81,88] |
Human | α-enolase (26–40) | TSKGLFRAAVPSGAS | DRB1-SE | No response | T cell response (RA > HC), IFN-γ | Blood [59,89] |
Human | α-enolase (326–340) | KRIAKAVNEKSCNCL | DRB1-SE | - | Enrichment (SF > blood), Prolif, IL-17 | Blood, SF [59,60,81] |
HLA-DR peptides eluted from synovial tissues with citrulline modification (R underline) | ||||||
Human | HAS (106–120) | RETYGEMADCCAKQEPE | DRB1-SE *04:01 | - | - | Spleen [90] |
P. copri | Pc-27 (2–19) | KRIILILTVLLAMLGQVAY | DRB1-SE | IFN-γ release (RA > HC) | - | Blood [91,92] |
Human | GNS | FEPFFMMIATPAPH | DRB1-SE | IFN-γ release (RA > HC) | - | SF [91,92,93] |
Human | FLNA | NPAEFVVNTSNAGAG | DRB1-SE | IFN-γ release (RA > HC) | - | SF [91,92,93] |
Human | Gelsolin | DAYVILKTVQLRNGN | DRB1-SE *01:01 | Activ (CD40L), IFN-γ | No effect | SF [79] |
Human | Histone H2B | MNSFVNDIFERI | DRB1-SE *04:01 | Activ (CD40L), IFN-γ | Activ (CD40L), IFN-γ, TNF-α | SF [79] |
Human | Histone 4 | DNIQGITKPAIRR | DRB1 | Activ (CD40L), IFN-γ | - | SF [79] |
Human | PG4 | THTIRIQYSPAR | DRB1-SE *04:01 | No effect | Activ (CD40L), IFN-γ, TNF-α | SF [79] |
Human | MPO | SNEIVRFPTDQLTPDQ | DRB1 | Activ (CD40L), IFN-γ | - | SF [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlé, C.; Degboe, Y.; Ruyssen-Witrand, A.; Arleevskaya, M.I.; Clavel, C.; Renaudineau, Y. Characteristics of the (Auto)Reactive T Cells in Rheumatoid Arthritis According to the Immune Epitope Database. Int. J. Mol. Sci. 2023, 24, 4296. https://doi.org/10.3390/ijms24054296
Carlé C, Degboe Y, Ruyssen-Witrand A, Arleevskaya MI, Clavel C, Renaudineau Y. Characteristics of the (Auto)Reactive T Cells in Rheumatoid Arthritis According to the Immune Epitope Database. International Journal of Molecular Sciences. 2023; 24(5):4296. https://doi.org/10.3390/ijms24054296
Chicago/Turabian StyleCarlé, Caroline, Yannick Degboe, Adeline Ruyssen-Witrand, Marina I. Arleevskaya, Cyril Clavel, and Yves Renaudineau. 2023. "Characteristics of the (Auto)Reactive T Cells in Rheumatoid Arthritis According to the Immune Epitope Database" International Journal of Molecular Sciences 24, no. 5: 4296. https://doi.org/10.3390/ijms24054296
APA StyleCarlé, C., Degboe, Y., Ruyssen-Witrand, A., Arleevskaya, M. I., Clavel, C., & Renaudineau, Y. (2023). Characteristics of the (Auto)Reactive T Cells in Rheumatoid Arthritis According to the Immune Epitope Database. International Journal of Molecular Sciences, 24(5), 4296. https://doi.org/10.3390/ijms24054296