Anomalous Concentration Dependence of Surface Tension and Concentration-Concentration Correlation Functions of Binary Non-Electrolyte Solutions
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Lainez, A.; Roux-Desgranges, G.; Grolier, J.P.E.; Wilhelm, E. Mixtures of alkanes with polar molecules showing internal rotation: An unusual composition dependence of CpE of 1,2-dichloroethane + an n-alkane. Fluid Phase Equilibria 1985, 20, 47–56. [Google Scholar] [CrossRef]
- Saint Victor, M.-E.; Patterson, D. The W-shaped concentration dependence of CpE and solution non-randomness: Systems approaching the UCST. Thermochim. Acta 1990, 159, 177–185. [Google Scholar] [CrossRef]
- Saint-Victor, M.-E.; Patterson, D. The w-shape concentration dependence of CEp and solution non-randomness: Ketones + normal and branched alkanes. Fluid Phase Equilibria 1987, 35, 237–252. [Google Scholar] [CrossRef]
- Matteoli, E.; Mansoori, G.A. (Eds.) Fluctuation Theory of Mixtures; Taylor & Francis: Boca Raton, FL, USA, 1990. [Google Scholar]
- Rubio, R.G.; Cáceres, M.; Masegosa, R.M.; Andreolli-Ball, L.; Costas, M.; Patterson, D. Mixtures with “w-Shape” CEp curves. A light scattering study. Ber. Bunsenges. Phys. Chem. 1989, 93, 48–56. [Google Scholar] [CrossRef]
- Mello, C.; Mello, T.; Sevéri, E.; Coelho, L.; Ribeiro, D.; Marangoni, A.; Poppi, R.J.; Noda, I. Microstructures formation in a seemingly ideal homogeneous mixture of ethanol and methanol: An experimental evidence and two-dimensional correlation spectroscopy approach. J. Chem. Phys. 2009, 131, 084501. [Google Scholar] [CrossRef]
- Phillips, D.J.; Brennecke, J.F. Spectroscopic measurement of local compositions in binary liquid solvents and comparison to the NRTL equation. Ind. Eng. Chem. Res. 1993, 32, 943–951. [Google Scholar] [CrossRef]
- Shulgin, I.L.; Ruckenstein, E. Excess around a central molecule with application to binary mixtures. Phys. Chem. Chem. Phys. 2008, 10, 1097–1105. [Google Scholar] [CrossRef]
- Požar, M.; Perera, A. Evolution of the micro-structure of aqueous alcohol mixtures with cooling: A computer simulation study. J. Mol. Liquids 2017, 248, 602–609. [Google Scholar] [CrossRef]
- Sarkar, S.; Maity, A.; Chakrabarti, R. Microscopic structural features of water in aqueous–reline mixtures of varying compositions. Phys. Chem. Chem. Phys. 2021, 23, 3779–3793. [Google Scholar] [CrossRef]
- Perera, A.; Kežić, B. Fluctuations and micro-heterogeneity in mixtures of complex liquids. Faraday Discuss. 2013, 167, 145–158. [Google Scholar] [CrossRef]
- Chen, H.-F.; Li, J.-T.; Gu, F.; Wang, H.-J. Kirkwood-Buff integrals for hard-core Yukawa fluids. Eur. Phys. J. E 2017, 40, 93. [Google Scholar] [CrossRef]
- Bentenitis, N.; Cox, N.R.; Smith, P.E. A Kirkwood−Buff Derived Force Field for Thiols, Sulfides, and Disulfides. J. Phys. Chem. B 2009, 113, 12306–12315. [Google Scholar] [CrossRef]
- Debenedetti, P.G. The statistical mechanical theory of concentration fluctuations in mixtures. J. Chem. Phys. 1987, 87, 1256–1260. [Google Scholar] [CrossRef]
- Shimizu, S.; Matubayasi, N. Statistical thermodynamic foundation for mesoscale aggregation in ternary mixtures. Phys. Chem. Chem. Phys. 2018, 20, 13777–13784. [Google Scholar] [CrossRef]
- Nishikawa, K.; Hayashi, H.; Iijima, T. Temperature Dependence of the Concentration Fluctuation, the Kirkwood-Buff Parameters, and the Correlation Length of fed-Butyl Alcohol and Water Mixtures Studied by Small-Angle X-ray Scattering. J. Phys. Chem. 1989, 93, 6559–6565. [Google Scholar] [CrossRef]
- Hayashi, H.; Nishikawa, K.; Iijima, T. Small-Angle X-ray Scattering Study of Fluctuations in 1-Propanol-Water and 2-Propanol-Water Systems. J. Phys. Chem. 1990, 90, 8334–8338. [Google Scholar] [CrossRef]
- Hayashi, H.; Morita, T.; Nishikawa, K. Interpretation of correlation length by small-angle X-ray scattering experiments on fluids near critical point. Chem. Phys. Lett. 2009, 471, 249–252. [Google Scholar] [CrossRef]
- Tsuchiya, Y. Elucidation of structural changes and concentration fluctuations in binary mixtures using new thermodynamic relations. J. Phys. Condens. Matter 1999, 11, 593. [Google Scholar] [CrossRef]
- Coto, B.; Mößner, F.; Pando, C.; Rubio, R.G.; Renuncio, J.A.R. Bulk and surface properties for the methanol–1,1-dimethylpropyl methyl ether and methanol–1,1-dimethylethyl methyl ether systems. J. Chem. Soc. Faraday Trans. 1996, 92, 4435–4440. [Google Scholar] [CrossRef]
- Almasi, M.; Khodamoradpoor, M. Study of molecular interactions in binary mixtures by molecular diffusion, thermal diffusion, Soret effect, and separation ratio. J. Mol. Liquids 2021, 335, 116545. [Google Scholar] [CrossRef]
- Ritacco, H.A.; Fainerman, V.B.; Ortega, F.; Rubio, R.G.; Ivanova, N.; Starov, V.M. Equilibrium and dynamic surface properties of trisiloxane aqueous solutions. Part 2. Theory and comparison with experiment. Colloids Surf. A 2010, 365, 204–209. [Google Scholar] [CrossRef]
- Ritacco, H.A.; Ortega, F.; Rubio, R.G.; Ivanova, N.; Starov, V.M. Equilibrium and dynamic surface properties of trisiloxane aqueous solutions: Part 1. Experimental results. Colloids Surf. A 2010, 365, 199–203. [Google Scholar] [CrossRef]
- Llamas, S.; Fernández-Peña, L.; Akanno, A.; Guzmán, E.; Ortega, V.; Ortega, F.; Csaky, A.G.; Campbell, R.A.; Rubio, R.G. Towards understanding the behavior of polyelectrolyte–surfactant mixtures at the water/vapor interface closer to technologically-relevant conditions. Phys. Chem. Chem. Phys. 2018, 20, 1395–1407. [Google Scholar] [CrossRef]
- Llamas, S.; Guzmán, E.; Akanno, A.; Fernández-Peña, L.; Ortega, F.; Campbell, R.A.; Miller, R.; Rubio, R.G. Study of the Liquid/Vapor Interfacial Properties of Concentrated Polyelectrolyte–Surfactant Mixtures Using Surface Tensiometry and Neutron Reflectometry: Equilibrium, Adsorption Kinetics, and Dilational Rheology. J. Phys. Chem. C 2018, 122, 4419–4427. [Google Scholar] [CrossRef]
- Pandey, J.D.; Verma, R. Inversion of the Kirkwood–Buff theory of solutions: Application to binary systems. Chem. Phys. 2001, 270, 429–438. [Google Scholar] [CrossRef]
- Blanco, M.A.; Sahin, E.; Li, Y.; Roberts, C.J. Reexamining protein-protein and protein-solvent interactions from Kirkwood-Buff analysis of light scattering in multi-component solutions. J. Chem. Phys. 2011, 134, 225103. [Google Scholar] [CrossRef]
- Matteoli, E.; Lepori, L. Kirkwood–Buff integrals and preferential solvation in ternary non-electrolyte mixtures. J. Chem. Soc. Faraday Trans. 1995, 91, 431–436. [Google Scholar] [CrossRef]
- Matteoli, E.; Mansoori, G.A. A simple expression for radial distribution functions of pure fluids and mixtures. J. Chem. Phys. 1995, 103, 4672–4677. [Google Scholar] [CrossRef]
- Matteoli, E. A Study on Kirkwood−Buff Integrals and Preferential Solvation in Mixtures with Small Deviations from Ideality and/or with Size Mismatch of Components. Importance of a Proper Reference System. J. Phys. Chem. B 1997, 101, 9800–9810. [Google Scholar] [CrossRef]
- Wilcox, D.S.; Rankin, B.M.; Ben-Amotz, D. Distinguishing aggregation from random mixing in aqueous t-butyl alcohol solutions. Faraday Discuss. 2013, 167, 177–190. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sehanobish, E.; Sarkar, M. A traditional painkiller as a probe for microheterogeneity in 1-propanol–water mixtures. Chem. Phys. Lett. 2010, 501, 118–122. [Google Scholar] [CrossRef]
- Oh, K.-I.; Baiz, C.R. Molecular heterogeneity in aqueous cosolvent systems. J. Chem. Phys. 2020, 152, 190901. [Google Scholar] [CrossRef] [PubMed]
- Marcus, Y. Preferential solvation in mixed solvents. Part 5.—Binary mixtures of water and organic solvents. J. Chem. Soc. Faraday Trans. 1990, 86, 2215–2224. [Google Scholar] [CrossRef]
- Ramírez-Verduzco, L.F.; Romero-Martínez, A.; Trejo, A. Prediction of the surface tension, surface concentration, and the relative Gibbs adsorption isotherm of binary liquid systems. Fluid Phase Equilibria 2006, 246, 119–130. [Google Scholar] [CrossRef]
- Bagheri, A.; Rafati, A.A.; Tajani, A.A.; Borujeni, A.R.A.; Hajian, A. Prediction of the Surface Tension, Surface Concentration and the Relative Gibbs Adsorption Isotherm of Non-ideal Binary Liquid Mixtures. J. Solut. Chem. 2013, 42, 2071–2086. [Google Scholar] [CrossRef]
- Heidel, B.; Findenegg, G.H. Ellipsometric study of the surface of a binary liquid mixture near a critical solution point. J. Phys. Chem. 1984, 88, 6575–6579. [Google Scholar] [CrossRef]
- Privat, M.; Bennes, R.; Tronel-Peyroz, E.; Douillard, J.-M. Ellipsometry and adsorption: The determination of isotherms and the adsorbed layer thickness and fluctuations of the composition in the liquid-vapor interface. J. Colloid Interface Sci. 1988, 121, 198–207. [Google Scholar] [CrossRef]
- Subramanian, D.; Boughter, C.T.; Klauda, J.B.; Hammouda, B.; Anisimov, M.A. Mesoscale inhomogeneities in aqueous solutions of small amphiphilic molecules. Faraday Discuss. 2013, 167, 217–238. [Google Scholar] [CrossRef]
- Shulgin, I.; Ruckenstein, E. Kirkwood−Buff Integrals in Aqueous Alcohol Systems: Aggregation, Correlation Volume, and Local Composition. J. Phys. Chem. B 1999, 103, 872–877. [Google Scholar] [CrossRef]
- Nishikawa, K.; Morita, T. Small-Angle X-ray-Scattering Study of Supercritical Trifluoromethane. J. Phys. Chem. B 1997, 101, 1413–1418. [Google Scholar] [CrossRef]
- Morita, T.; Nishikawa, K. Fluctuations in density and concentration of methanol–water mixtures at 7 MPa and 373, 423 K studied by small-angle X-ray scattering. Chem. Phys. Lett. 2004, 389, 29–33. [Google Scholar] [CrossRef]
- Nishikawa, K.; Kasahara, Y.; Ichioka, T. Inhomogeneity of Mixing in Acetonitrile Aqueous Solution Studied by Small-Angle X-ray Scattering. J. Phys. Chem. B 2002, 106, 693–700. [Google Scholar] [CrossRef]
- Kopf, S.; Bourriquen, F.; Li, W.; Neumann, H.; Junge, K.; Beller, M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem. Rev. 2022, 122, 6634–6718. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.a.P.; Ortega, F.; Rubio, R.G. Crossover critical phenomena in an aqueous electrolyte solution: Light scattering, density and viscosity of the 3-methylpyridine+water+NaBr system. J. Chem. Phys. 2003, 119, 4428–4436. [Google Scholar] [CrossRef]
- Díez-Pascual, A.; Ortega, F.; Crespo-Colín, A.; Compostizo, A.; Monroy, F.; Rubio, R.G. Concentration Fluctuations and Surface Adsorption in Hydrogen-Bonded Mixtures. J. Phys. Chem. B 2004, 108, 10019–10024. [Google Scholar] [CrossRef]
- Lyklema, J. Fundamentals of Interface and Colloid Science; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Rubio, R.G.; Renuncio, J.A.R.; Peña, M.D. Regression of vapor-liquid equilibrium data based on application of the maximum-likelihood principle. Fluid Phase Equilibria 1983, 12, 217–234. [Google Scholar] [CrossRef]
- Kirkwood, J.G.; Buff, F.P. The Statistical Mechanical Theory of Solutions. I. J. Phys. Chem. 1951, 19, 774–777. [Google Scholar] [CrossRef]
- McQuarrie, D.A. Statistical Mechanics; Harper & Row: New York, NY, USA, 1973. [Google Scholar]
- Gray, C.G.; Gubbins, K.E. Theory of Molecular Fluids; Oxfort University Press: London, UK, 1984. [Google Scholar]
- Segudovic, N.; Dezelic, G. Light Scattering in Binary Liquid Mixtures. I. Isotropic Scattering. Croat. Chem. Acta 1973, 45, 385–406. [Google Scholar]
- Johnson, B.L.; Smith, J. Light Scattering from Polymer Solutions; Huglin, M.B., Ed.; Academic Press: New York, NY, USA, 1972. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbone, C.; Guzmán, E.; Rubio, R.G. Anomalous Concentration Dependence of Surface Tension and Concentration-Concentration Correlation Functions of Binary Non-Electrolyte Solutions. Int. J. Mol. Sci. 2023, 24, 2276. https://doi.org/10.3390/ijms24032276
Carbone C, Guzmán E, Rubio RG. Anomalous Concentration Dependence of Surface Tension and Concentration-Concentration Correlation Functions of Binary Non-Electrolyte Solutions. International Journal of Molecular Sciences. 2023; 24(3):2276. https://doi.org/10.3390/ijms24032276
Chicago/Turabian StyleCarbone, Carlo, Eduardo Guzmán, and Ramón G. Rubio. 2023. "Anomalous Concentration Dependence of Surface Tension and Concentration-Concentration Correlation Functions of Binary Non-Electrolyte Solutions" International Journal of Molecular Sciences 24, no. 3: 2276. https://doi.org/10.3390/ijms24032276
APA StyleCarbone, C., Guzmán, E., & Rubio, R. G. (2023). Anomalous Concentration Dependence of Surface Tension and Concentration-Concentration Correlation Functions of Binary Non-Electrolyte Solutions. International Journal of Molecular Sciences, 24(3), 2276. https://doi.org/10.3390/ijms24032276