Primitive Oligomeric RNAs at the Origins of Life on Earth
Abstract
:1. Introduction
2. Results
- -
- The subsequences of AL are the most frequent in 5S rRNAs and in Gly-tRNAs.
- -
- All dinucleotides appear at least once (except CG, because of CG suppression).
- -
- Among the rings satisfying the minimality principle “to be as short as possible and contain at least one codon of each amino acid class of synonymy” of the genetic code (Figure 1b), there is no solution for a length below 22 nucleotides. For length 22, there are 29,520 solutions (among 16 1012 of possible solutions) containing only one codon AUN repeated, N being G in 52% of the cases.
- -
- From these 29,520 solutions, the search by Kinefold® for the most stable hairpins gave 25 rings of length 9, with a head of length 3, the most stable being AGA (Figure 1c).
- -
- From these 25 rings, 19 encompass both a start and a stop codon.
- -
- Through the calculation of several distances (e.g., circular Hamming distance, permutation distance and edit distance), one singular ring (the AL ring) exhibits a minimum average distance as compared to the others. Therefore, only this sequence can be that acting as a barycenter of the set of the 18 others.
3. Material and Methods
4. Discussion
5. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ovidius, P. P. Ovidii Nasonis Metamorphosis Libri Moralizati cum Pulcherrimum Fabularum Principalium Figuris, Liber XV; J. Marechal: Lyon, France, 1524. [Google Scholar]
- Redi, F. Esperienze Intorno alla Generazione Degl’insetti; All’insegna della Stella: Firenze, Italy, 1668. [Google Scholar]
- Spallanzani, L. Opuscules de Physique Animale et Végétale; Pierre J. Duplain Libraire: Paris, France, 1787. [Google Scholar]
- Pasteur, L. Un Débat Scientifique Pouchet et Pasteur, 1858–1868; Actes du Museum d’Histoire Naturelle: Rouen, France, 1907. [Google Scholar]
- Brandt, A.; De Vera, J.P.; Onofri, S.; Ott, S. Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS. Int. J. Astrobiol. 2015, 14, 411–425. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.L. A Production of amino acids under possible primitive Earth conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [Green Version]
- Woese, C. The Genetic Code; Harper & Row: New York, NY, USA, 1967. [Google Scholar]
- Paecht-Horowitz, M.; Berger, J.; Katchalsky, A. Prebiotic synthesis of polypeptides by heterogeneous polycondensation of amino-acid adenylates. Nature 1970, 228, 636–639. [Google Scholar] [CrossRef] [PubMed]
- Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 1971, 58, 465–523. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.A.; Katchalsky, A. Hysteresis and conformational changes in ribosomal ribonucleic acid. Biochem. J. 1972, 126, 1039–1054. [Google Scholar] [CrossRef] [Green Version]
- Eigen, M.; Winkler-Oswatitsch, R. Transfer-RNA: The early adaptor. Naturwissenschaften 1981, 68, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, W. Origin of life: The RNA world. Nature 1986, 319, 618. [Google Scholar] [CrossRef]
- Eigen, M. The origin of genetic information: Viruses as models. Gene 1993, 135, 37–47. [Google Scholar] [CrossRef]
- Hobish, M.K.; Wickramasinghe, N.S.M.D.; Ponnamperuma, C. Direct interaction between amino-acids and nucleotides as a possible physico-chemical basis for the origin of the genetic code. Adv. Space Res. 1995, 15, 365–375. [Google Scholar] [CrossRef]
- Tamura, K.; Schimmel, P. Oligonucleotide-directed peptide synthesis in a ribosome- and ribozyme-free system. Proc. Natl. Acad. Sci. USA 2001, 98, 1393–1397. [Google Scholar] [CrossRef]
- Bada, J.L.; Lazcano, A. Prebiotic soup—Revisiting the Miller experiment. Science 2003, 300, 745–746. [Google Scholar] [CrossRef] [Green Version]
- Vauléon, S.; Müller, S. External Regulation of Hairpin Ribozyme Activity by an Oligonucleotide Effector. ChemBioChem 2003, 4, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Kuo, L.Y.; Davidson, L.A.; Pico, S. Characterization of the Azoarcus ribozyme: Tight binding to guanosine and substrate by an unusually small group I ribozyme. BBA 1999, 1489, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Jayathilaka, T.S.; Lehman, N. Spontaneous Covalent Self-Assembly of the Azoarcus Ribozyme from Five Fragments. ChemBioChem 2018, 19, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Jeancolas, C.; Matsubara, Y.J.; Vybornyi, M.; Lambert, C.N.; Blokhuis, A.; Alline, T.; Griffiths, A.D.; Sandeep, A.; Sandeep, K.; Nghe, P. RNA diversification by a self-reproducing ribozyme revealed by deep sequencing and kinetic modelling. Chem. Commun. 2021, 57, 1359–7345. [Google Scholar] [CrossRef] [PubMed]
- Tjhung, K.F.; Shokhirev, M.N.; Horning, D.P.; Joyce, G.F. An RNA polymerase ribozyme that synthesizes its own ancestor. Proc. Natl. Acad. Sci. USA 2020, 117, 2906–2913. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chmela, V.; Green, N.J.; Russell, D.A.; Janicki, M.J.; Góra, R.W.; Szabla, R.; Bond, A.D.; Sutherland, J.D. Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature 2020, 582, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Hörst, S.M.; Yelle, R.V.; Buch, A.; Carrasco, N.; Cernogora, G.; Dutuit, O.; Quirico, E.; Sciamma-O’Brien, E.; Smith, M.A.; Somogyi, Á.; et al. Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment. Astrobiology 2012, 12, 0623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferus, M.; Rimmer, P.; Cassone, G.; Knížek, A.; Civiš, S.; Šponer, J.E.; Ivanek, O.; Šponer, J.; Saeidfirozeh, H.; Kubelík, P.; et al. One-Pot Hydrogen Cyanide-Based Prebiotic Synthesis of Canonical Nucleobases and Glycine Initiated by High-Velocity Impacts on Early Earth. Astrobiology 2020, 20, 12. [Google Scholar] [CrossRef]
- Ferus, M.; Knížek, A.; Petera, L.; Pastorek, A.; Hrnčířová, J.; Jankovič, L.; Ivanek, O.; Šponer, J.; Křivková, A.; Saeidfirozeh, H.; et al. Formamide-Based Post-impact Thermal Prebiotic Synthesis in Simulated Craters: Intermediates, Products and Mechanism. Front. Astron. Space Sci. 2022, 9, 882145. [Google Scholar] [CrossRef]
- Xu, J.; Green, N.J.; Russell, D.A.; Liu, Z.; Sutherland, J.D. Prebiotic Photochemical Coproduction of Purine Ribo- and Deoxyribonucleosides. J. Am. Chem. Soc. 2021, 143, 14482–14486. [Google Scholar] [CrossRef] [PubMed]
- Kristoffersen, E.L.; Burman, M.; Noy, A.; Holliger, P. Rolling circle RNA synthesis catalyzed by RNA. Elife 2022, 11, e75186. [Google Scholar] [CrossRef] [PubMed]
- Demongeot, J. Au Sujet de Quelques Modèles Stochastiques Appliqués à la Biologie. Modélisation et Simulation; tel-00286222; Université Joseph-Fourier: Grenoble, France, 1975. [Google Scholar]
- Demongeot, J. Sur la possibilité de considérer le code génétique comme un code à enchaînement. Rev. De Biomaths 1978, 62, 61–66. [Google Scholar]
- Demongeot, J.; Besson, J. Code génétique et codes à enchaînement I. C. R. Acad. Sc. Série III 1983, 296, 807–810. [Google Scholar]
- Demongeot, J.; Moreira, A. A circular RNA at the origin of life. JTB 2007, 249, 314–324. [Google Scholar] [CrossRef]
- Kauffman, S.A. Approaches to the origin of life on Earth. Life 2011, 1, 34–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgs, P.; Lehman, N. The RNA World: Molecular cooperation at the origins of life. Nat. Rev. Genet. 2015, 16, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Demongeot, J.; Norris, V. Emergence of a “Cyclosome” in a primitive network capable of building “infinite” proteins. Life 2019, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Demongeot, J.; Moreira, A.; Seligmann, H. Negative CG dinucleotide bias: An explanation based on feedback loops between Arginine codon assignments and theoretical minimal RNA rings. Bioessays 2021, 43, 2000071. [Google Scholar] [CrossRef]
- Norris, V.; Demongeot, J. The Ring World: Eversion of small double-stranded polynucleotide circlets at the origin of DNA double helix, RNA polymerization, triplet code, twenty amino acids, and strand asymmetry. IJMS 2022, 23, 12915. [Google Scholar] [CrossRef]
- Root-Bernstein, R.; Kim, Y.; Sanjay, A.; Burton, Z.F. tRNA evolution from the proto-tRNA minihelix world. Transcription 2016, 7, 153–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Suddath, F.L.; Quigley, G.J.; McPherson, A.; Sussman, J.L.; Wang, A.H.J.; Seeman, N.C.; Rich, A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 1974, 185, 435–440. [Google Scholar] [CrossRef] [PubMed]
- GtRNAdb. Available online: http://lowelab.ucsc.edu/GtRNAdb/ (accessed on 3 April 2022).
- Gray, M. Rickettsia, typhus and the mitochondrial connection. Nature 1998, 396, 109–110. [Google Scholar] [CrossRef] [PubMed]
- Harish, A.; Caetano-Anollés, G. Ribosomal history reveals origins of modern protein synthesis. PLoS ONE 2012, 7, e32776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gospodinov, A.; Kunnev, D. Universal Codons with Enrichment from GC to AU Nucleotide Composition Reveal a Chronological Assignment from Early to Late Along with LUCA Formation. Life 2020, 10, 81. [Google Scholar] [CrossRef]
- Pak, D.; Root-Bernstein, R.; Burton, Z.F. tRNA structure and evolution and standardization to the three nucleotides genetic code. Transcription 2017, 8, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Opron, K.; Burton, Z.F. A tRNA- and Anticodon-Centric View of the Evolution of Aminoacyl-tRNA Synthetases, tRNAomes, and the Genetic Code. Life 2019, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Demongeot, J.; Seligmann, H. Evolution of tRNA subelement accretion from small and large ribosomal RNAs. Biosystems 2022, 193, 104796. [Google Scholar] [CrossRef]
- 5S RNAdb. Available online: http://www.combio.pl/rrna/alignment/ (accessed on 12 December 2022).
- Kinefold. Available online: http://kinefold.curie.fr (accessed on 12 December 2022).
- Demongeot, J.; Seligmann, H. Theoretical minimal RNA rings recapitulate the order of the genetic code’s codon-amino acid assignments. JTB 2019, 471, 108–116. [Google Scholar] [CrossRef]
- Demongeot, J.; Seligmann, H. Spontaneous evolution of circular codes in theoretical minimal RNA rings. Gene 2019, 705, 95–102. [Google Scholar] [CrossRef]
- Demongeot, J.; Seligmann, H. The Uroboros theory of life’s origin: 22-nucleotide theoretical minimal RNA rings reflect evolution of genetic code and tRNA-rRNA translation machineries. Acta Biotheor. 2019, 67, 273–297. [Google Scholar] [CrossRef]
- Müller, F.; Escobar, L.; Xu, F.; Węgrzyn, E.; Nainytė, M.; Amatov, T.; Chan, C.Y.; Pichler, A.; Carell, T. A prebiotically plausible scenario of an RNA–peptide world. Nature 2022, 605, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Thellier, M. Origins of life: Proposal for an alternative approach. Progress Bot. 2023, 84. [Google Scholar]
- Dyson, F. Origins of Life; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Fox, G.E. Origin and Evolution of the Ribosome. Cold Spring Harb. Perspect. Biol. 2010, 2, a003483. [Google Scholar] [CrossRef] [Green Version]
- Schrum, J.P.; Zhu, T.F.; Szostak, J.W. The origins of cellular life. Cold Spring Harb. Perspect. Biol. 2010, 2, a002212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cech, T.R.; Steitz, J.A.; Atkins, J.F. RNA Worlds: New Tools for Deep Exploration; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2019. [Google Scholar]
- Blain, J.C.; Szostrak, J.W. Progress towards synthetic cells. Ann. Rev. Biochem. 2014, 83, 615–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, D.; Zhou, L.; Giurgiu, C.; Szostak, J.W. Kinetic explanation for the sequence biases observed in the nonenzymatic copying of RNA templates. Nucleic Acids Res. 2022, 50, 35–45. [Google Scholar] [CrossRef]
- Diallo, I.; Ho, J.; Lalaouna, D.; Massé, E.; Provost, P. RNA Sequencing Unveils Very Small RNAs with Potential Regulatory Functions in Bacteria. Front. Mol. Biosci. 2022, 9, 914991. [Google Scholar] [CrossRef]
- Demongeot, J.; Glade, N.; Moreira, A.; Vial, L. RNA relics and origin of life. Int. J. Mol. Sci. 2009, 10, 3420–3441. [Google Scholar] [CrossRef]
- Demongeot, J.; Henrion-Caude, A. T Footprints of a Singular 22-Nucleotide RNA Ring at the Origin of Life. Biology 2020, 9, 88. [Google Scholar] [CrossRef]
- Tamura, K.; Schimmel, P.R. Peptide synthesis with a template-like RNA guide and aminoacyl phosphate adaptors. Proc. Natl. Acad. Sci. USA 2003, 100, 8666–8669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, K.; Schimmel, P.R. Chiral-selective aminoacylation of an RNA minihelix: Mechanistic features and chiral suppression. Proc. Natl. Acad. Sci. USA 2006, 103, 13750–13752. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demongeot, J.; Thellier, M. Primitive Oligomeric RNAs at the Origins of Life on Earth. Int. J. Mol. Sci. 2023, 24, 2274. https://doi.org/10.3390/ijms24032274
Demongeot J, Thellier M. Primitive Oligomeric RNAs at the Origins of Life on Earth. International Journal of Molecular Sciences. 2023; 24(3):2274. https://doi.org/10.3390/ijms24032274
Chicago/Turabian StyleDemongeot, Jacques, and Michel Thellier. 2023. "Primitive Oligomeric RNAs at the Origins of Life on Earth" International Journal of Molecular Sciences 24, no. 3: 2274. https://doi.org/10.3390/ijms24032274