The Immune Checkpoint Landscape in Tumor Cells of Pancreatic Ductal Adenocarcinoma
Abstract
:1. Introduction
2. Results
2.1. Demographics, Clinicopathological Characteristics and Survival of Patient Cohort
2.2. Presence of TIM3, IDO, B7H4, LAG3, VISTA and PD-L1 in Cancer Cells of PDAC
2.3. Correlation of Overall Survival and TIM3, IDO, B7H4, LAG3, VISTA, and PD-L1 in Cancer Cells of PDAC
2.3.1. General Analysis
2.3.2. Combined Analysis of Significantly Correlated Immune Checkpoints VISTA and PD-L1
2.4. Heterogeneity of VISTA and PD-L1 in Cancer Cells of PDAC
3. Discussion
4. Materials and Methods
4.1. Patient Cohort
4.2. Surgery
4.3. Tissue-Microarrays and Immunohistochemistry
4.4. Evaluation of Immunohistochemistry and Threshold Selection
4.5. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beatty, G.L.; Gladney, W.L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 2015, 21, 687–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardoll, D. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Siddiqui, B.A.; Anandhan, S.; Yadav, S.S.; Subudhi, S.K.; Gao, J.; Goswami, S.; Allison, J.P. The next decade of immune checkpoint therapy. Cancer Discov. 2012, 11, 838–857. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. CA Global cancer statistics 2020. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef]
- Jun, U.; Kanno, A.; Ikeda, E.; Ando, K.; Nagai, H.; Miwata, T.; Kawasaki, Y.; Tada, Y.; Yokoyama, K.; Numao, N.; et al. Pancreatic Ductal Adenocarcinoma: Epidemiology and Risk Factors. Diagnostics 2021, 11, 562. [Google Scholar] [CrossRef]
- Bian, J.; Almhanna, K. Pancreatic cancer and immune checkpoint inhibitors-still a long way to go. Transl. Gastroenterol. Hepatol. 2021, 6, 6. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Y.; Cheng, Y.; Wei, Y.; Wei, X. Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim. Biophys. Acta Rev. Cancer 2019, 1871, 199–224. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Zhao, J.; Gu, M.; Giscombe, R.; Lefvert, A.K.; Wang, X. B7-H3 and B7-H4 expression in non-small-cell lung cancer. Lung Cancer 2006, 53, 143–151. [Google Scholar] [CrossRef]
- Popp, F.C.; Capino, I.; Bartels, J.; Damanakis, A.; Li, J.; Datta, R.R.; Löser, H.; Zhao, Y.; Quaas, A.; Lohneis, P.; et al. Expression of Immune Checkpoint Regulators IDO, VISTA, LAG3, and TIM3 in Resected Pancreatic Ductal Adenocarcinoma. Cancers 2021, 13, 2689. [Google Scholar] [CrossRef]
- Chocarro, L.; Blanco, E.; Zuazo, M.; Arasanz, H.; Bocanegra, A.; Fernández-Rubio, L.; Morente, P.; Fernández-Hinojal, G.; Echaide, M.; Garnica, M.; et al. Understanding LAG-3 Signaling. Int. J. Mol. Sci. 2021, 22, 5282. [Google Scholar] [CrossRef] [PubMed]
- Seifert, L.; Plesca, I.; Müller, L.; Sommer, U.; Heiduk, M.; von Renesse, J.; Digomann, D.; Glück, J.; Klimova, A.; Weitz, J.; et al. LAG-3-Expressing Tumor-Infiltrating T Cells Are Associated with Reduced Disease-Free Survival in Pancreatic Cancer. Cancers 2021, 13, 1297. [Google Scholar] [CrossRef] [PubMed]
- Kryczek, I.; Zou, L.; Rodriguez, P.; Zhu, G.; Wei, S.; Mottram, P.; Brumlik, M.; Cheng, P.; Curiel, T.; Myers, L.; et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 2006, 203, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhou, X.; Huang, X.; Li, Q.; Gao, L.; Jiang, L.; Huang, M.; Zhou, J. Tim-3 expression in cervical cancer promotes tumor metastasis. PLoS ONE 2013, 8, e53834. [Google Scholar] [CrossRef]
- Klümper, N.; Ralser, D.J.; Bawden, E.G.; Landsberg, J.; Zarbl, R.; Kristiansen, G.; Toma, M.; Ritter, M.; Hölzel, M.; Ellinger, J.; et al. LAG3 (LAG-3, CD223) DNA methylation correlates with LAG3 expression by tumor and immune cells, immune cell infiltration, and overall survival in clear cell renal cell carcinoma. J. Immunother. Cancer 2020, 8, e000552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulati, K.; Hamanishi, J.; Matsumura, N.; Chamoto, K.; Mise, N.; Abiko, K.; Baba, T.; Yamaguchi, K.; Horikawa, N.; Murakami, R.; et al. VISTA expressed in tumour cells regulates T cell function. Br. J. Cancer 2019, 120, 115–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 2017, 32, 185–203.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020, 30, 660–669. [Google Scholar] [CrossRef]
- Gaikwad, S.; Agrawal, M.Y.; Kaushik, I.; Ramachandran, S.; Srivastava, S.K. Immune checkpoint proteins: Signaling mechanisms and molecular interactions in cancer immunotherapy. Semin. Cancer Biol. 2022, 86, 137–150. [Google Scholar] [CrossRef]
- Liang, X.; Sun, J.; Wu, H.; Luo, Y.; Wang, L.; Lu, J.; Zhang, Z.; Guo, J.; Liang, Z.; Liu, T. PD-L1 in pancreatic ductal adenocarcinoma: A retrospective analysis of 373 Chinese patients using an in vitro diagnostic assay. Diagn. Pathol. 2018, 13, 5. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Mo, S.; Ma, H.; Lu, Z.; Yu, S.; Chen, J. PD-L1 and PD-L2 expression in pancreatic ductal adenocarcinoma and their correlation with immune infiltrates and DNA damage response molecules. J. Pathol. Clin. Res. 2022, 8, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Pan, Y.; Fei, Q.; Lin, Y.; Zhou, Y.; Liu, Y.; Guan, H.; Yu, X.; Lin, X.; Lu, F.; et al. Prognostic significance and therapeutic potential of the immune checkpoint VISTA in pancreatic cancer. J. Cancer Res. Clin. Oncol. 2021, 147, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Meireson, A.; Devos, M.; Brochez, L. IDO Expression in Cancer: Different Compartment, Different Functionality? Front. Immunol. 2020, 11, 531491. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Wang, Y.N.; Xia, W.; Chen, H.; Rau, K.M.; Ye, L.; Wei, Y.; Chou, C.K.; Wang, S.C.; Yan, M.; et al. Removal of N-Linked Glycosylation Enhances PD-L1 Detection and Predicts Anti-PD-1/PD-L1 Therapeutic Efficacy. Cancer Cell 2019, 36, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Tang, T.; Zhang, G.; Hong, Z.; Xu, J.; Yadav, D.K.; Bai, X.; Liang, T. Genomic investigation of co-targeting tumor immune microenvironment and immune checkpoints in pan-cancer immunotherapy. NPJ Precis. Oncol. 2020, 4, 29. [Google Scholar] [CrossRef]
- Huang, X.; Tang, T.; Wang, X.; Bai, X.; Liang, T. Calreticulin couples with immune checkpoints in pancreatic cancer. Clin. Transl. Med. 2020, 10, 36–44. [Google Scholar] [CrossRef]
- Dragomir, M.P.; Moisoiu, V.; Manaila, R.; Pardini, B.; Knutsen, E.; Anfossi, S.; Amit, M.; Calin, G.A. A Holistic Perspective: Exosomes Shuttle between Nerves and Immune Cells in the Tumor Microenvironment. J. Clin. Med. 2020, 9, 3529. [Google Scholar] [CrossRef]
Patients | n = 68 |
---|---|
Age | |
Median age (years) | 72 |
Age range | 35–86 |
Sex | |
Female | 30 (44.1%) |
Male | 38 (55.9%) |
Location of main tumor mass | |
Pancreatic head | 55 (80.9%) |
Pancreatic body | 1 (1.5%) |
Pancreatic tail | 8 (11.8%) |
Overlapping | 4 (5.9%) |
Histopathological characteristics | |
pT1 | 3 (4.4%) |
pT2 | 16 (23.5%) |
pT3 | 49 (72.1%) |
pN0 | 13 (19.1%) |
pN+ (pN1 andand pN2) | 55 (80.9%) |
R0 | 56 (82.4%) |
R1 | 12 (17.6%) |
G1 | 2 (2.9%) |
G2 | 39 (57.4%) |
G3 | 26 (38.2%) |
G4 | 1 (1.5%) |
PN0 | 19 (27.9%) |
PN1 | 49 (72.1%) |
pL0 | 34 (50.0%) |
pL1 | 34 (50.0%) |
pV0 | 47 (69.1%) |
pV1 | 21 (30.9%) |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
HR | CI 95% | p-Value | HR | CI 95% | p-Value | |
Age (>65 vs. <65 years) | 1.95 | 0.98–3.87 | 0.06 | 1.96 | 0.96–4.01 | 0.06 |
Sex (male vs. female) | 1.49 | 0.86–2.57 | 0.15 | |||
T stage (pT3–4 vs. pT1/2) | 1.57 | 0.83.2.99 | 0.17 | |||
Nodal involvement (pN+ vs. pN0) | 5.09 | 2.01–12.92 | <0.01 | 4.06 | 1.56–10.6 | <0.01 |
Resection margin (R1 vs. R0) | 3.00 | 1.50–5.60 | <0.01 | 2.16 | 1.06–4.43 | 0.04 |
Grading (G3–4 vs. G1–2) | 1.37 | 0.80–2.34 | 0.25 | |||
Perineural invasion (Pn1 vs. Pn0) | 1.61 | 0.88–2.96 | 0.13 | |||
Lymphatic vessel invasion (pL1 vs. pL0) | 1.87 | 1.09–3.20 | 0.02 | 1.21 | 0.66–2.21 | 0.55 |
Angioinvasion (pV1 vs. pV0) | 2.52 | 1.43–4.43 | <0.01 | 2.30 | 1.24–4.28 | <0.01 |
IC | All Patients | Survivors | Non-Survivors |
---|---|---|---|
TIM3 | 16.2% (n = 11) | 7.7% (n = 1) | 18.2% (n = 10) |
IDO | 41.2% (n = 28) | 30.8% (n = 4) | 43.6% (n = 24) |
B7H4 | 22.1% (n = 15) | 15.4% (n = 2) | 23.6% (n = 13) |
LAG3 | 20.6% (n = 14) | 15.4% (n = 2) | 21.8% (n = 12) |
VISTA | 26.5% (n = 18) | 7.7% (n = 1) | 30.9% (n = 17) |
PD-L1 | 33.8% (n = 23) | 15.4% (n = 2) | 38.2% (n = 21) |
Any IC | 66.2% (n = 45) | 61.5% (n = 8) | 67.3% (n = 37) |
ICs | All Patients | One-Year SR | Three-Year SR | Five-Year SR |
---|---|---|---|---|
VISTA neg., PD-L1 neg. | 52.9% (n = 36) | 77.8% | 38.9% | 26.9% |
VISTA pos., PD-L1 neg. | 11.8% (n = 8) | 25.0% | 25.0% | 12.5% |
VISTA neg., PD-L1 pos. | 19.1% (n = 13) | 46.2% | 15.4% | 15.4% |
VISTA pos., PD-L1 pos. | 14.7% (n = 10) | 50.0% | 0.0% | 0.0% |
Localization of VISTA Expression | Patients | Log-Rank p-Value | Median Survival No Expression vs. Expression |
---|---|---|---|
Periphery only | 22.2% (n = 4) | p = 0.97 | 19 months (CI: 11.5–26.5) vs. 11 months (CI: 0.0–24.7) |
Center only | 44.4% (n = 8) | p = 0.01 | 19 months (CI: 12.8–25.2) vs. 4 months (CI: 0.0–9.5) |
Periphery and center | 22.2% (n = 4) | p < 0.01 | 19 months (CI: 13.4–24.6) vs. 2 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loch, F.N.; Kamphues, C.; Beyer, K.; Schineis, C.; Rayya, W.; Lauscher, J.C.; Horst, D.; Dragomir, M.P.; Schallenberg, S. The Immune Checkpoint Landscape in Tumor Cells of Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2023, 24, 2160. https://doi.org/10.3390/ijms24032160
Loch FN, Kamphues C, Beyer K, Schineis C, Rayya W, Lauscher JC, Horst D, Dragomir MP, Schallenberg S. The Immune Checkpoint Landscape in Tumor Cells of Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences. 2023; 24(3):2160. https://doi.org/10.3390/ijms24032160
Chicago/Turabian StyleLoch, Florian N., Carsten Kamphues, Katharina Beyer, Christian Schineis, Wael Rayya, Johannes C. Lauscher, David Horst, Mihnea P. Dragomir, and Simon Schallenberg. 2023. "The Immune Checkpoint Landscape in Tumor Cells of Pancreatic Ductal Adenocarcinoma" International Journal of Molecular Sciences 24, no. 3: 2160. https://doi.org/10.3390/ijms24032160
APA StyleLoch, F. N., Kamphues, C., Beyer, K., Schineis, C., Rayya, W., Lauscher, J. C., Horst, D., Dragomir, M. P., & Schallenberg, S. (2023). The Immune Checkpoint Landscape in Tumor Cells of Pancreatic Ductal Adenocarcinoma. International Journal of Molecular Sciences, 24(3), 2160. https://doi.org/10.3390/ijms24032160