Ligand-Modulated Nuclearity and Geometry in Nickel(II) Hydrazone Complexes: From Mononuclear Complexes to Acetato- and/or Phenoxido-Bridged Clusters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Acetato- and Phenoxido-Bridged Di-, Tri-, and Tetranuclear Nickel(II) Clusters
2.1.1. Structure of [Ni3(L3OMe)2(OAc)2(MeOH)2]∙2MeOH∙MeCN
2.1.2. Structure of [Ni2(HL4OMe)(L4OMe)(OAc)(MeOH)2]∙4.7MeOH
2.1.3. Structure of [Ni4(HLH)2(LH)2(OAc)2]∙4MeOH·0.63H2O·0.5CH3CN·HOAc
2.2. Mononuclear Nickel(II) Complexes
Structures of [Ni(L3OMe)(py)], [Ni(L4OMe)(py)], and [Ni(HLH)2]∙2MeOH
2.3. Hybrid Organic–Inorganic Compound Based on Polyoxomolybdate
Structure of [Ni2(HL4OMe)2(CH3OH)4][Mo4O10(OCH3)6]
2.4. Thermal Analysis
2.5. Spectroscopic Characterisation
3. Materials and Methods
3.1. Preparative Part
3.1.1. Synthesis of [Ni3(L3OMe)2(OAc)2(MeOH)2]∙2MeOH∙MeCN (1∙2MeOH∙MeCN)
3.1.2. Synthesis of [Ni2(HL4OMe)(L4OMe)(OAc)(MeOH)2]∙4.7MeOH (2∙4.7MeOH)
3.1.3. Synthesis of [Ni4(HLH)2(LH)2(OAc)2]∙4MeOH∙0.63H2O∙0.5MeCN∙HOAc (3∙4MeOH∙0.63H2O∙0.5MeCN∙HOAc)
3.1.4. Synthesis of [Ni(L3OMe)(py)] (4)
3.1.5. Synthesis of [Ni(L4OMe)(py)] (5)
3.1.6. Synthesis of [Ni(LH)(py)] (6)
3.1.7. Synthesis of [Ni(HL3OMe)2] (7)
3.1.8. Synthesis of [Ni(HL4OMe)2] (8)
3.1.9. Synthesis of [Ni(HLH)2] (9)
3.1.10. Synthesis of [Ni2(HL4OMe)2(CH3OH)4][Mo4O10(OCH3)6] (10)
3.2. Physical Methods
3.2.1. X-ray Crystallography—Powder Diffraction
3.2.2. Single-Crystal X-ray Diffraction Experiments
3.2.3. Thermal, Spectroscopic, and Magnetic Measurements
3.2.4. Quantum Chemical Calculation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, X.; Aprahamian, I. Hydrazone-based switches, metallo-assemblies and sensors. Chem. Soc. Rev. 2014, 43, 1963–1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Hong, S. Cooperative Bimetallic Catalysis in Asymmetric Transformations. Chem. Soc. Rev. 2012, 41, 6931–6943. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, P.; Kataev, V.; Büchner, B.; Klauss, H.-H.; Kersting, B.; Meyer, F. Tetranuclear Complexes in Molecular Magnetism: Targeted Synthesis, High-Field EPR and Pulsed-Field Magnetization. Coord. Chem. Rev. 2009, 253, 2261–2285. [Google Scholar] [CrossRef]
- Cooke, M.W.; Hanan, G.S. Luminescent Polynuclear Assemblies. Chem. Soc. Rev. 2007, 36, 1466–1476. [Google Scholar] [CrossRef]
- Amoroso, A.J.; Thompson, A.M.W.C.; Maher, J.P.; McCleverty, J.A.; Ward, M.D. Di-, Tri-, and Tetranucleating Pyridyl Ligands Which Facilitate Multicenter Magnetic Exchange between Paramagnetic Molybdenum Centers. Inorg. Chem. 1995, 34, 4828–4835. [Google Scholar] [CrossRef]
- Santiagoa, P.H.O.; Aiubeb, C.M.; de Macedo, J.L.; Gatto, C.C. Hydrazone-derived copper(II) coordination polymer as a selective liquid-phase catalyst: Synthesis, crystal structure and performance towards benzyl alcohol oxidation. Mol. Catal. 2020, 496, 111177. [Google Scholar] [CrossRef]
- Farwa, U.; Pait, M.; Ryu, J.Y.; Byun, Y.M.; Lee, S.G.; Jeong, S.H.; Singh, O.; Singh, N.; Park, H.-R.; Lee, J. Multinuclear nickel(II) complexes with chiral schiff base ligand. Inorg. Chim. Acta 2020, 511, 119798. [Google Scholar] [CrossRef]
- Subramaniam, J.D.; Lee, S.K.; Chinapang, P.; Praneeth, V.K.K.; Okamura, M.; Kondo, M.; Masaoka, S.; Woi, P.M. Synthesis and structural characterization of centrosymmetric multinuclear nickel(II) complexes with neutral tetradentate N6-ligand. Transit. Met. Chem. 2021, 46, 255–262. [Google Scholar] [CrossRef]
- Sahoo, P.R.; Kathuria, I.; Kumar, S. The structural arrangement of the ligand-metal complex with centered zinc and nickel atoms and their optical features. J. Mol. Struct. 2022, 1262, 133010. [Google Scholar] [CrossRef]
- Jayanthi, E.; Kalaiselvi, S.; Padma, V.V.; Bhuvanesh, N.S.P.; Dharmaraj, N. Solvent assisted formation of ruthenium(III) and ruthenium(II) hydrazone complexes in one-pot with potential in vitro cytotoxicity and enhanced LDH, NO and ROS release. Dalton Trans. 2016, 45, 1693–1707. [Google Scholar] [CrossRef]
- Ay, B.; Şahin, O.; Demir, B.S.; Saygideger, Y.; López-De-Luzuriaga, J.M.; Mahmoudi, G.; Safin, D.A. Antitumor effects of novel nickel–hydrazone complexes in lung cancer cells. New J. Chem. 2020, 44, 9064–9072. [Google Scholar] [CrossRef]
- Krajewska, B. Ureases. II. Properties and Their Customizing by Enzyme Immobilizations: A Review. J. Mol Catal. B-Enzym. 2009, 59, 22–40. [Google Scholar] [CrossRef]
- Volkmer, D.; Hörstmann, A.; Griesar, K.; Haase, W.; Krebs, B. [Ni2(PpepO)(C6H5COO)2(CH3COOH)]ClO4·C4H10O: Synthesis and Characterization of an Asymmetric Dinuclear Nickel(II) Complex Showing Unusual Coordination Behavior with Relevance to the Active Site of Urease. Inorg. Chem. 1996, 35, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, H.; Haukka, M.; Bousseksou, A.; Latour, J.-M.; Nordlander, E. Nickel Complexes of Carboxylate-Containing Polydentate Ligands as Models for the Active Site of Urease. Inorg. Chem. 2004, 43, 8252–8262. [Google Scholar] [CrossRef] [PubMed]
- Dixon, N.E.; Gazzola, C.; Blakeley, R.L.; Zerner, B. Jack Bean Urease (EC 3.5.1.5). Metalloenzyme. Simple Biological Role for Nickel. J. Am. Chem. Soc. 1975, 97, 4131–4133. [Google Scholar] [CrossRef]
- Alagna, L.; Hasnain, S.S.; Piggott, B.; Williams, D.J. The Nickel Ion Environment in Jack Bean Urease. Biochem. J. 1984, 220, 591–595. [Google Scholar] [CrossRef] [Green Version]
- Muche, S.; Levacheva, I.; Samsonova, O.; Pham, L.; Christou, G.; Bakowsky, U.; Hołyńska, M. A Chiral, Low-Cytotoxic [Ni15]-Wheel Complex. Inorg. Chem. 2014, 53, 7642–7649. [Google Scholar] [CrossRef]
- Tandon, S.S.; Bunge, S.D.; Sanchiz, J.; Thompson, L.K. Structures and Magnetic Properties of an Antiferromagnetically Coupled Polymeric Copper(II) Complex and Ferromagnetically Coupled Hexanuclear Nickel(II) Clusters. Inorg. Chem. 2012, 51, 3270–3282. [Google Scholar] [CrossRef]
- Naskar, S.; Corbella, M.; Blake, A.J.; Chattopadhyay, S.K. Versatility of 2,6-Diacetylpyridine (Dap) Hydrazones in Generating Varied Molecular Architectures: Synthesis and Structural Characterization of a Binuclear Double Helical Zn(II) Complex and a Mn(II) Coordination Polymer. Dalton Trans. 2007, 1150–1159. [Google Scholar] [CrossRef]
- Sadhukhan, D.; Ray, A.; Pilet, G.; Rizzoli, C.; Rosair, G.M.; Gómez-García, C.J.; Signorella, S.; Bellú, S.; Mitra, S. Weak Interactions Modulating the Dimensionality in Supramolecular Architectures in Three New Nickel(II)-Hydrazone Complexes, Magnetostructural Correlation, and Catalytic Potential for Epoxidation of Alkenes under Phase Transfer Conditions. Inorg. Chem. 2011, 50, 8326–8339. [Google Scholar] [CrossRef]
- Vrdoljak, V.; Mandarić, M.; Hrenar, T.; Đilović, I.; Pisk, J.; Pavlović, G.; Cindrić, M.; Agustin, D. Geometrically constrained molybdenum(VI) metallosupramolecular architectures: Conventional synthesis versus vapor and thermally induced solid-state structural transformations. Cryst. Growth. Des. 2019, 19, 3000–3011. [Google Scholar] [CrossRef]
- Cindrić, M.; Bjelopetrović, A.; Pavlović, G.; Damjanović, V.; Lovrić, J.; Matković-Čalogović, D.; Vrdoljak, V. Copper(II) Complexes with Benzhydrazone-Related Ligands: Synthesis, Structural Studies and Cytotoxicity Assay. New J. Chem. 2017, 41, 2425–2435. [Google Scholar] [CrossRef]
- Vrdoljak, V.; Pavlović, G.; Maltar-Strmečki, N.; Cindrić, M. Copper(II) Hydrazone Complexes with Different Nuclearities and Geometries: Synthetic Methods and Ligand Substituent Effects. New J. Chem. 2016, 40, 9263–9274. [Google Scholar] [CrossRef]
- Taktak, S.; Ye, W.; Herrera, A.M.; Rybak-Akimova, E.V. Synthesis and Catalytic Properties in Olefin Epoxidation of Novel Iron(II) Complexes with Pyridine-Containing Macrocycles Bearing an Aminopropyl Pendant Arm. Inorg. Chem. 2007, 46, 2929–2942. [Google Scholar] [CrossRef] [PubMed]
- Haga, M.; Ali, M.M.; Koseki, S.; Fujimoto, K.; Yoshimura, A.; Nozaki, K.; Ohno, T.; Nakajima, K.; Stufkens, D.J. Proton-Induced Tuning of Electrochemical and Photophysical Properties in Mononuclear and Dinuclear Ruthenium Complexes Containing 2,2′-Bis(Benzimidazol-2-Yl)-4,4′-Bipyridine: Synthesis, Molecular Structure, and Mixed-Valence State and Excited-State Properties. Inorg. Chem. 1996, 35, 3335–3347. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.; Dougherty, W.G.; Kassel, W.S.; Dudley, T.J.; Paul, J.J. Structural, Electronic, and Acid/Base Properties of [Ru(Bpy)2(Bpy(OH)2)]2+ (Bpy = 2,2′-Bipyridine, Bpy(OH)2 = 4,4′-Dihydroxy-2,2′-Bipyridine). Inorg. Chem. 2011, 50, 2754–2763. [Google Scholar] [CrossRef]
- Lehn, J.-M. From Supramolecular Chemistry towards Constitutional Dynamic Chemistry and Adaptive Chemistry. Chem. Soc. Rev. 2007, 36, 151–160. [Google Scholar] [CrossRef]
- Lehn, J.-M. Perspectives in Chemistry-Steps towards Complex Matter. Angew. Chem. Int. Ed. 2013, 52, 2836–2850. [Google Scholar] [CrossRef]
- Uribe-Romo, F.J.; Doonan, C.J.; Furukawa, H.; Oisaki, K.; Yaghi, O.M. Crystalline Covalent Organic Frameworks with Hydrazone Linkages. J. Am. Chem. Soc. 2011, 133, 11478–11481. [Google Scholar] [CrossRef]
- Bunck, D.N.; Dichtel, W.R. Bulk Synthesis of Exfoliated Two-Dimensional Polymers Using Hydrazone-Linked Covalent Organic Frameworks. J. Am. Chem. Soc. 2013, 135, 14952–14955. [Google Scholar] [CrossRef]
- Vrdoljak, V.; Prugovečki, B.; Matković-Čalogović, D.; Dreos, R.; Siega, P.; Tavagnacco, C. Zigzag Chain, Square Tetranuclear, and Polyoxometalate-Based Inorganic−Organic Hybrid Compounds-Molybdenum vs Tungsten. Cryst. Growth Des. 2010, 10, 1373–1382. [Google Scholar] [CrossRef]
- Vrdoljak, V.; Prugovečki, B.; Matković-Čalogović, D.; Pisk, J.; Dreos, R.; Siega, P. Supramolecular Hexagon and Chain Coordination Polymer Containing the MoO22+ Core: Structural Transformation in the Solid State. Cryst. Growth Des. 2011, 11, 1244–1252. [Google Scholar] [CrossRef]
- Bebić, N.; Topić, E.; Mandarić, M.; Hrenar, T.; Vrdoljak, V. Extending the structural landscape of Mo(VI) hydrazonato inorganic-organic POM-hybrids: An experimental and computational study. CrystEngComm 2021, 23, 6349–6358. [Google Scholar] [CrossRef]
- Vos, J.G.; Pryce, M.T. Photoinduced Rearrangements in Transition Metal Compounds. Coord. Chem. Rev. 2010, 254, 2519–2532. [Google Scholar] [CrossRef]
- Kobayashi, A.; Yamamoto, D.; Horiki, H.; Sawaguchi, K.; Matsumoto, T.; Nakajima, K.; Chang, H.-C.; Kato, M. Photoinduced Dimerization Reaction Coupled with Oxygenation of a Platinum(II)–Hydrazone Complex. Inorg. Chem. 2014, 53, 2573–2581. [Google Scholar] [CrossRef]
- Naskar, S.; Mishra, D.; Blake, A.J.; Chattopadhyay, S.K. Synthesis, Characterization, and Crystal Structure of [Ni(Dap(A)2)]2 (Dap(AH)2: 2,6-Diacetylpyridine Bis(Anthraniloyl Hydrazone))—A Molecule Possessing an Infinite Double Helical Chain in the Solid State. Struct. Chem. 2007, 18, 217–222. [Google Scholar] [CrossRef]
- Sutradhar, M.; Barman, T.R.; Rentschler, E. Coordination Versatility of 1,5-Bis(Salicylidene)Carbohydrazide in Ni(II) Complexes. Inorg. Chem. Commun. 2014, 39, 140–143. [Google Scholar] [CrossRef]
- Krishnamoorthy, P.; Sathyadevi, P.; Muthiah, P.T.; Dharmaraj, N. Nickel and Cobalt Complexes of Benzoic Acid (2-Hydroxy-Benzylidene)-Hydrazide Ligand: Synthesis, Structure and Comparative in Vitro Evaluations of Biological Perspectives. RSC Adv. 2012, 2, 12190. [Google Scholar] [CrossRef]
- Krishnamoorthy, P.; Sathyadevi, P.; Butorac, R.R.; Cowley, A.H.; Bhuvanesh, N.S.P.; Dharmaraj, N. Copper(I) and Nickel(II) Complexes with 1 : 1 vs. 1 : 2 Coordination of Ferrocenyl Hydrazone Ligands: Do the Geometry and Composition of Complexes Affect DNA Binding/Cleavage, Protein Binding, Antioxidant and Cytotoxic Activities? Dalton Trans. 2012, 41, 4423. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yang, Z.; Zhou, M.; Li, Y. Synthesis and crystal structure of new monometallic Ni(II) and Co(II) complexes with an asymmetrical aroylhydrazone: Effects of the complexes on DNA/protein binding property, molecular docking, and in vitro anticancer activity. RSC Adv. 2017, 7, 49404–49422. [Google Scholar] [CrossRef]
- Matoga, D.; Szklarzewicz, J.; Stadnicka, K.; Shongwe, M.S. Iron(III) Complexes with a Biologically Relevant Aroylhydrazone: Crystallographic Evidence for Coordination Versatility. Inorg. Chem. 2007, 46, 9042–9044. [Google Scholar] [CrossRef] [PubMed]
- Monfared, H.H.; Sadighian, S.; Kamyabi, M.-A.; Mayer, P. Iron(III) Aroylhydrazone Complexes: Structure, Electrochemical Studies and Catalytic Activity in Oxidation of Olefins. J. Mol. Catal. A Chem. 2009, 304, 139–146. [Google Scholar] [CrossRef]
- Vrdoljak, V.; Pavlović, G.; Hrenar, T.; Rubčić, M.; Siega, P.; Dreos, R.; Cindrić, M. Cobalt(III) Complexes with Tridentate Hydrazone Ligands: Protonation State and Hydrogen Bond Competition. RSC Adv. 2015, 5, 104870–104883. [Google Scholar] [CrossRef]
- Ülkü, D.; Ercan, F.; Atakol, O.; Dinçer, F.N. Bis{(μ-Acetato)[μ-Bis(Salicylidene)-1,3-Propanediaminato](Dimethyl Sulfoxide)Nickel(II)}nickel(II). Acta Crystallogr. C 1997, 53, 1056–1057. [Google Scholar] [CrossRef]
- Biswas, R.; Mukherjee, S.; Kar, P.; Ghosh, A. A Rare Phenoxido/Acetato/Azido Bridged Trinuclear and an Unprecedented Phenoxido/Azido Bridged One-Dimensional Polynuclear Nickel(II) Complexes: Synthesis, Crystal Structure, and Magnetic Properties with Theoretical Investigations on the Exchange Mechanism. Inorg. Chem. 2012, 51, 8150–8160. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, S.; Nihei, M.; Oshio, H. Structures and Magnetic Properties of Di- and Trinuclear Nickel(II) Complexes with Phenoxo and Acetato Bridges. Chem. Lett. 2003, 32, 812–813. [Google Scholar] [CrossRef]
- Chattopadhyay, K.; Craig, G.A.; Kundu, A.; Bertolasi, V.; Murrie, M.; Ray, D. Hydroxido-Supported and Carboxylato Bridge-Driven Aggregation for Discrete [Ni4] and Interconnected [Ni2]n Complexes. Inorg. Chem. 2016, 55, 10783–10792. [Google Scholar] [CrossRef] [PubMed]
- Caruso, U.; Centore, R.; Panunzi, B.; Roviello, A.; Tuzi, A. Grafting Poly(4-vinylpyridine) with a Second-Order Nonlinear Optically Active Nickel(II) Chromophore. Eur. J. Inorg. Chem. 2005, 2005, 2747–2753. [Google Scholar] [CrossRef]
- Hu, Z.-Q.; Li, W.-H.; Ding, Y.; Wu, Y. Tris(Pyridine-κ N )[Salicylaldehyde (2-Hydroxybenzoyl)Hydrazonato-κ 2 N, O]Nickel(II) Pyridine Sesquisolvate. Acta Crystallogr. E Struct. Rep. Online 2005, 61, m2526–m2527. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.-L.; Dou, J.-M.; Wang, D.-Q.; Li, D.-C. [2-Oxido-1-Naphthaldehyde (2-Hydroxybenzoyl)Hydrazonato]Pyridinenickel(II). Acta Crystallogr. E Struct. Rep. Online 2005, 61, m1366–m1367. [Google Scholar] [CrossRef]
- Zheng, C.Z.; Wang, L.; Liu, J. Synthesis, Crystal Structure and Antibacterial Activity of Nickel Complex with 5-Bromo-2- Hydroxyphenyl Ethyl Ketone Benzoyl Hydrazone. AMR 2011, 239–242, 2153–2157. [Google Scholar] [CrossRef]
- Siega, P.; Dreos, R.; Vrdoljak, V.; Hrenar, T. Kinetics and mechanism of the formation of CoIII(salen-type) complexes containing a nonstabilized pyridinium ylide as axial ligand: Computational and experimental studies. J. Organomet. Chem. 2017, 852, 27–33. [Google Scholar] [CrossRef]
- Mandarić, M.; Prugovečki, B.; Cvijanović, D.; Parlov Vuković, J.; Lovrić, J.; Skočibušić, M.; Odžak, R.; Cindrić, M.; Vrdoljak, V. Vapour- and solvent-mediated crystalline transformations in Mo(VI) hydrazone complexes controlled by noncovalent interactions. CrystEngComm 2019, 21, 6281–6292. [Google Scholar] [CrossRef]
- Modec, B. Acetato Complexes of Molybdenum(V): A Novel Tetranuclear Core Based on the Metal–Metal Bonded {Mo2O4}2+ Units. Inorg. Chim. Acta 2008, 361, 2863–2870. [Google Scholar] [CrossRef]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; Repr. as Paperback.; Wiley: Chichester, UK, 2010; ISBN 978-0-470-09307-8. [Google Scholar]
- Topić, E.; Landripet, I.; Duguin, M.; Pisk, J.; Đilović, I.; Vrdoljak, V.; Rubčić, M. Coordinating and supramolecular prospects of unsymmetrically substituted carbohydrazides. New J. Chem. 2020, 44, 13357–13367. [Google Scholar] [CrossRef]
- Mandarić, M.; Prugovečki, B.; Kekez, I.; Musija, D.; Parlov Vuković, J.; Cindrić, M.; Vrdoljak, V. Counter Anion Effects on the Formation and Structural Transformations of Mo(VI)-Hydrazone Coordination Assemblies: Salts, Solvates, Co-Crystals, and Neutral Complexes. Crystals 2022, 12, 443. [Google Scholar] [CrossRef]
- Vrdoljak, V.; Pisk, J.; Agustin, D.; Novak, P.; Parlov Vuković, J.; Matković-Čalogović, D. Dioxomolybdenum(VI) and Dioxotungsten(VI) Complexes Chelated with the ONO Tridentate Hydrazone Ligand: Synthesis, Structure and Catalytic Epoxidation Activity. New J. Chem. 2014, 38, 6176–6185. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore Suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef] [Green Version]
- CrysAlisPro. Software System, version 1.171.38.41; Rigaku Oxford Diffraction: Oxford, UK, 2015. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Nardelli, M. PARST 95—An Update to PARST: A System of Fortran Routines for Calculating Molecular Structure Parameters from the Results of Crystal Structure Analyses. J. Appl. Crystallogr. 1995, 28, 659. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Towler, M.; Van der Streek, J.; et al. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1998, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peverati, R.; Truhlar, D. Screened-exchange density functionals with broad accuracy for chemistry and solid-state physics. Phys. Chem. Chem. Phys. 2012, 14, 16187–16191. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comp. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
Complex | ΔΔbG° |
---|---|
4 | −76.46 |
5 | −72.37 |
6 | −81.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrdoljak, V.; Hrenar, T.; Rubčić, M.; Pavlović, G.; Friganović, T.; Cindrić, M. Ligand-Modulated Nuclearity and Geometry in Nickel(II) Hydrazone Complexes: From Mononuclear Complexes to Acetato- and/or Phenoxido-Bridged Clusters. Int. J. Mol. Sci. 2023, 24, 1909. https://doi.org/10.3390/ijms24031909
Vrdoljak V, Hrenar T, Rubčić M, Pavlović G, Friganović T, Cindrić M. Ligand-Modulated Nuclearity and Geometry in Nickel(II) Hydrazone Complexes: From Mononuclear Complexes to Acetato- and/or Phenoxido-Bridged Clusters. International Journal of Molecular Sciences. 2023; 24(3):1909. https://doi.org/10.3390/ijms24031909
Chicago/Turabian StyleVrdoljak, Višnja, Tomica Hrenar, Mirta Rubčić, Gordana Pavlović, Tomislav Friganović, and Marina Cindrić. 2023. "Ligand-Modulated Nuclearity and Geometry in Nickel(II) Hydrazone Complexes: From Mononuclear Complexes to Acetato- and/or Phenoxido-Bridged Clusters" International Journal of Molecular Sciences 24, no. 3: 1909. https://doi.org/10.3390/ijms24031909