Exploring the Effect of Deep-Sea Water on the Therapeutic Potential of the Anti-Inflammatory Response in an Indomethacin-Induced Gastric Ulcer Rat Model
Abstract
:1. Introduction
2. Results
2.1. Mineral Composition of DSW-Derived Water Samples
2.2. Effect of DSW-Derived Mineral Water on Gastrointestinal Tissue Weight
2.3. Effects of DSW-Derived Mineral Water on IND-Induced Gastrointestinal Mucosal Inflammation Symptoms
2.4. Histological Changes in IND-Induced Gastrointestinal Mucosal Inflammation Caused by DSW-Derived Mineral Water Intake
2.5. Regulation of COX Expression and PGE2 Synthesis in DSW-Derived Mineral Water
2.6. Effects of DSW-Derived Mineral Water on MPO Activity and Inflammatory Cytokines Expressed by Th1 and Th2 Lymphocytes
2.7. Effects of DSW-Derived Mineral Water on COX and Prostaglandin Synthase (PGES) mRNA Expression
2.8. Effects of DSW-Derived Mineral Water on Inflammatory Cytokine mRNA Expression Induced by Th1 and Th2 Lymphocytes
2.9. Total RNA Sequencing and Differentially Expressed Gene Analysis
3. Discussion
4. Materials and Methods
4.1. Preparation of DSW-Derived Mineral Water and Quantitative Analysis of Minerals in Samples
4.2. Animals
4.3. Indomethacin-Induced Gastric Ulcer Model
4.4. Histological Analysis
4.5. Measurement of Gastric Inflammatory Markers
4.6. mRNA Expression in Gastric Tissue
4.7. Total RNA Sequencing
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- da Silva, L.M.; Pezzini, B.C.; Somensi, L.B.; Mariano, L.N.B.; Mariott, M.; Boeing, T.; Dos Santos, A.C.; Longo, B.; Cechinel-Filho, V.; de Souza, P. Hesperidin, a citrus flavanone glycoside, accelerates the gastric healing process of acetic acid-induced ulcer in rats. Chem. Biol. Interact. 2019, 308, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Adewoye, E.; Salami, A. Anti-ulcerogenic mechanism of magnesium in indomethacin induced gastric ulcer in rats. Niger. J. Physiol. Sci. 2013, 28, 193–199. [Google Scholar] [PubMed]
- Mhd Omar, N.A.; Abdullah, N.; Kuppusamy, U.R.; Abdulla, M.A.; Sabaratnam, V. Nutritional composition, antioxidant activities, and antiulcer potential of Lentinus squarrosulus (Mont.) mycelia extract. Evid. Based Complement. Altern. Med. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Yang, Q.; Tian, T.; Chang, Y.; Li, Y.; Duan, L.-R.; Li, H.; Wang, S.-W. Gastroprotective effect of gallic acid against ethanol-induced gastric ulcer in rats: Involvement of the Nrf2/HO-1 signaling and anti-apoptosis role. Biomed. Pharmacother. 2020, 126, 110075. [Google Scholar] [CrossRef] [PubMed]
- Laucirica, I.; Iglesias, P.G.; Calvet, X. Peptic ulcer. Med. Clínica. 2023, 161, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Chattopadhyay, S.; Bandyopadhyay, S.K. Biphasic effect of Phyllanthus emblica L. extract on NSAID-induced ulcer: An antioxidative trail weaved with immunomodulatory effect. Evid. Based Complement. Altern. Med. 2010, 2011, 1–13. [Google Scholar]
- Dhikav, V.; Singh, S.; Pande, S.; Chawla, A.; Anand, K.S. Non-steroidal drug-induced gastrointestinal toxicity: Mechanisms and management. J. Indian Acad. Clin. Med. 2003, 4, 315–322. [Google Scholar]
- Banerjee, D.; Maity, B.; Bauri, A.K.; Bandyopadhyay, S.K.; Chattopadhyay, S. Gastroprotective properties of Myristica malabarica against indometacin-induced stomach ulceration: A mechanistic exploration. J. Pharm. Pharmacol. 2007, 59, 1555–1565. [Google Scholar] [CrossRef]
- Neamatallah, T. Caffeic acid phenethyl ester attenuates indomethacin-induced gastric ulcer in rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 1–11. [Google Scholar] [CrossRef]
- Brotas, A.M.; Cunha, J.M.T.; Lago, E.H.J.; Machado, C.C.N.; Carneiro, S.C.D.S. Tumor necrosis factor-alpha and the cytokine network in psoriasis. An. Bras. De Dermatol. 2012, 87, 673–683. [Google Scholar] [CrossRef]
- Chatterjee, A.; Khatua, S.; Chatterjee, S.; Mukherjee, S.; Mukherjee, A.; Paloi, S.; Acharya, K.; Bandyopadhyay, S.K. Polysaccharide-rich fraction of Termitomyces eurhizus accelerate healing of indomethacin induced gastric ulcer in mice. Glycoconj. J. 2013, 30, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Cheong, A.M.; Tan, Z.W.; Patrick, N.O.; Tan, C.P.; Lim, Y.M.; Nyam, K.L. Improvement of gastroprotective and anti-ulcer effect of kenaf seed oil-in-water nanoemulsions in rats. Food Sci. Biotechnol. 2018, 27, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Ardalani, H.; Hadipanah, A.; Sahebkar, A. Medicinal plants in the treatment of peptic ulcer disease: A review. Mini Rev. Med. Chem. 2020, 20, 662–702. [Google Scholar] [CrossRef] [PubMed]
- Shipa, S.J.; Khandokar, L.; Bari, M.S.; Qais, N.; Rashid, M.A.; Haque, M.A.; Mohamed, I.N. An insight into the anti-ulcerogenic potentials of medicinal herbs and their bioactive metabolites. J. Ethnopharmacol. 2022, 293, 115245. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Jung, I.-S.; Song, H.-J.; Choi, E.-Y.; Choi, I.-S.; Choi, Y.-J. Study of Deep Ground Sea-Like Water on Antioxidant Activity and the Immune Response in RAW264. 7 Macrophages. J. Life Sci. 2008, 18, 329–335. [Google Scholar] [CrossRef]
- Lee, K.S.; Chun, S.Y.; Kwon, Y.S.; Kim, S.; Nam, K.S. Deep sea water improves hypercholesterolemia and hepatic lipid accumulation through the regulation of hepatic lipid metabolic gene expression. Mol. Med. Rep. 2017, 15, 2814–2822. [Google Scholar] [CrossRef] [PubMed]
- Ha, B.G.; Park, J.-E.; Cho, H.-J.; Shon, Y.H. Stimulatory effects of balanced deep sea water on mitochondrial biogenesis and function. PLoS ONE 2015, 10, e0129972. [Google Scholar] [CrossRef]
- Nani, M.; Zura, S.; Majid, F.; Jaafar, A.; Mahdzir, A.; Musa, M. Potential health benefits of deep sea water: A review. Evid. Based Complement. Altern. Med. 2016, 2016, 1–13. [Google Scholar] [CrossRef]
- Nam, J.; Kim, K.J.; Park, G.; Kim, B.G.; Jeong, G.-H.; Jeon, J.-E.; Hurh, B.S.; Kim, J.Y. Anti-Inflammatory Properties of Mineral-Balanced Deep Sea Water in In-Vitro and In-Vivo Models of Inflamed Intestinal Epithelium. Appl. Sci. 2020, 10, 5183. [Google Scholar] [CrossRef]
- Fein, P.; Suda, V.; Borawsky, C.; Kapupara, H.; Butikis, A.; Matza, B.; Chattopadhyay, J.; Avra, M.M. Relationship of serum magnesium to body composition and inflammation in peritoneal dialysis patients. Adv. Perit. Dial. Conf. Perit. Dial. 2010, 26, 112–115. [Google Scholar]
- Liu, M.; Dudley, S.C., Jr. Magnesium, oxidative stress, inflammation, and cardiovascular disease. Antioxidants 2020, 9, 907. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.H.; Ou, H.C.; Day, C.H.; Chen, H.I.; Pai, P.Y.; Lee, C.Y.; Chen, R.J.; Chang, R.L.; PadmaViswanadha, V.; Hsieh, D.J.Y. Deep sea minerals ameliorate diabetic-induced inflammation via inhibition of TNFα signaling pathways. Environ. Toxicol. 2020, 35, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Tam, M.; Gomez, S.; Gonzalez-Gross, M.; Marcos, A. Possible roles of magnesium on the immune system. Eur. J. Clin. Nutr. 2003, 57, 1193–1197. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.Y.; Shon, Y.H. Natural magnesium-enriched deep-sea water improves insulin resistance and the lipid profile of prediabetic adults: A randomized, double-blinded crossover trial. Nutrients 2020, 12, 515. [Google Scholar] [CrossRef]
- Wu, C.-C.; Cheng, Y.-H.; Chen, K.-H.; Chien, C.-T. Deep sea water-dissolved organic matter intake improves hyperlipidemia and inhibits thrombus formation and vascular inflammation in high-fat diet hamsters. Life 2022, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Nakasone, T.; Akeda, S. The Application of Deep Sea Water in Japan. In Proceedings of the 28th UJNR Aquaculture Panel Symposium, UJNR Technical Report, Kihei, HI, USA, 10–12 November 1999; pp. 69–75. [Google Scholar]
- Biswas, K.; Bandyopadhyay, U.; Chattopadhyay, I.; Varadaraj, A.; Ali, E.; Banerjee, R.K. A novel antioxidant and antiapoptotic role of omeprazole to block gastric ulcer through scavenging of hydroxyl radical. J. Biol. Chem. 2003, 278, 10993–11001. [Google Scholar] [CrossRef] [PubMed]
- Suleyman, H.; Albayrak, A.; Bilici, M.; Cadirci, E.; Halici, Z. Different mechanisms in formation and prevention of indomethacin-induced gastric ulcers. Inflammation 2010, 33, 224–234. [Google Scholar] [CrossRef]
- El-Ashmawy, N.E.; Khedr, E.G.; El-Bahrawy, H.A.; Selim, H.M. Gastroprotective effect of garlic in indomethacin induced gastric ulcer in rats. Nutrition 2016, 32, 849–854. [Google Scholar] [CrossRef]
- Dufner, M.M.; Kirchhoff, P.; Remy, C.; Hafner, P.; Muller, M.K.; Cheng, S.X.; Tang, L.-Q.; Hebert, S.C.; Geibel, J.P.; Wagner, C.A. The calcium-sensing receptor acts as a modulator of gastric acid secretion in freshly isolated human gastric glands. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 289, G1084–G1090. [Google Scholar] [CrossRef]
- Christiansen, J.; Rehfeld, J.F.; Kirkegaard, P. Interaction of calcium, magnesium, and gastrin on gastric acid secretion. Gastroenterology 1979, 76, 57–61. [Google Scholar] [CrossRef]
- Sugimoto, J.; Romani, A.M.; Valentin-Torres, A.M.; Luciano, A.A.; Ramirez Kitchen, C.M.; Funderburg, N.; Mesiano, S.; Bernstein, H.B. Magnesium decreases inflammatory cytokine production: A novel innate immunomodulatory mechanism. J. Immunol. 2012, 188, 6338–6346. [Google Scholar] [CrossRef] [PubMed]
- Roman, A.; Desai, N.; Rochelson, B.; Gupta, M.; Solanki, M.; Xue, X.; Chatterjee, P.K.; Metz, C.N. Maternal magnesium supplementation reduces intrauterine growth restriction and suppresses inflammation in a rat model. Am. J. Obstet. Gynecol. 2013, 208, 383.e1–383.e7. [Google Scholar] [CrossRef] [PubMed]
- Azzumi, Y.; Ichikawa, K.; Holta, K. The validity of ethanol precipitation method for the measurement of mucin content in human gastric juices and its relationship to gastroduodenal disease. Chin. Chim. Accta 1993, 221, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Satake, K.; Lee, J.D.; Shimizu, H.; Uzui, H.; Mitsuke, Y.; Ueda, T.; Yue, H. Effects of Magnesium on Prostacyclin Synthesis and Intracellular Free Calcium Concentration in Vascular Cells. 2004. Available online: https://core.ac.uk/download/pdf/61371713.pdf (accessed on 11 November 2023).
- Ige, A.; Adewoye, E.; Okwundu, N.; Alade, O.; Onuobia, P. Oral magnesium reduces gastric mucosa susceptibility to injury in experimental diabetes mellitus. Pathophysiology 2016, 23, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Xun, P.; Liu, K.; Loria, C.; Yokota, K.; Jacobs, D.R., Jr.; He, K. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care 2010, 33, 2604–2610. [Google Scholar] [CrossRef] [PubMed]
- Laurant, P.; Kantelip, J.-P.; Berthelot, A. Dietary magnesium supplementation modifies blood pressure and cardiovascular function in mineralocorticoid-salt hypertensive rats but not in normotensive rats. J. Nutr. 1995, 125, 830–841. [Google Scholar] [PubMed]
- Itoh, K.; Kawasaki, T.; Nakamura, M. The effects of high oral magnesium supplementation on blood pressure, serum lipids and related variables in apparently healthy Japanese subjects. Br. J. Nutr. 1997, 78, 737–750. [Google Scholar] [CrossRef]
- Sheu, M.-J.; Chou, P.-Y.; Lin, W.-H.; Pan, C.-H.; Chien, Y.-C.; Chung, Y.-L.; Liu, F.-C.; Wu, C.-H. Deep sea water modulates blood pressure and exhibits hypolipidemic effects via the AMPK-ACC pathway: An in vivo study. Mar. Drugs 2013, 11, 2183–2202. [Google Scholar] [CrossRef]
- Nagai, N.; Fukuhata, T.; Ito, Y.; Usui, S.; Hirano, K. Preventive effect of co-administration of water containing magnesium ion on indomethacin induced lesions of gastric mucosa in adjuvant-induced arthritis rat. Biol. Pharm. Bull. 2009, 32, 116–120. [Google Scholar] [CrossRef]
- Piuri, G.; Zocchi, M.; Della Porta, M.; Ficara, V.; Manoni, M.; Zuccotti, G.V.; Pinotti, L.; Maier, J.A.; Cazzola, R. Magnesium in obesity, metabolic syndrome, and type 2 diabetes. Nutrients 2021, 13, 320. [Google Scholar] [CrossRef]
- Shah, S.C.; Dai, Q.; Zhu, X.; Peek, R.M., Jr.; Smalley, W.; Roumie, C.; Shrubsole, M.J. Associations between calcium and magnesium intake and the risk of incident gastric cancer: A prospective cohort analysis of the National Institutes of Health-American Association of Retired Persons (NIH-AARP) Diet and Health Study. Int. J. Cancer 2020, 146, 2999–3010. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, D.; Cappadone, C.; Farruggia, G.; Prata, C. Magnesium: Biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency. Nutrients 2021, 13, 1136. [Google Scholar] [CrossRef] [PubMed]
Sample 2 | Mineral Contents (ppm) 3 | Na+/Mg2+ | Mg2+/Ca2+ | |||
---|---|---|---|---|---|---|
Na+ | Mg2+ | K+ | Ca2+ | |||
DSW | 10,700 | 1380 | 480 | 390 | 7.75 | 3.5 |
TM | 29.5 | 6.7 | 1.7 | 2.4 | 4.4 | 2.8 |
HMLS | 36 | 179 | 1.7 | 41.5 | 0.2 | 4.3 |
Group 2 | Stomach Weight (g/Body Weight) |
---|---|
Mean ± S.E. | |
CON | 1.30 ± 0.13 |
IND | 1.54 ± 0.13 |
TM | 1.53 ± 0.13 |
HMLS | 1.50 ± 0.09 |
Gene ID | Gene Name | Fold Change | FDR |
---|---|---|---|
Downregulated | |||
Igfbp4 | Insulin-like growth factor binding protein 4 | −1.087 | 0.001 |
Tnfrsf11b | Tumor necrosis factor receptor superfamily member 11b | −1.114 | 0.001 |
Serpina1 | Serpin family A member 1 | −1.150 | 0.001 |
C4a | Complement component 4A | −1.206 | 0.021 |
Tac1 | Tachykinin precursor 1 | −1.225 | 0.013 |
C4b | Complement component 4B | −1.368 | 0.166 |
Gper1 | G protein-coupled estrogen receptor 1 | −1.484 | 0.479 |
Ccl21 | C-C motif chemokine ligand 21 | −1.613 | 0.001 |
Ccl7 | C-C motif chemokine ligand 7 | −1.724 | 0.048 |
Calca | Calcitonin-related polypeptide alpha | −2.199 | 0.008 |
Serpina3n | Serine (or cysteine) peptidase inhibitor, clade A, member 3 N | −2.488 | 0.001 |
Upregulated | |||
Tlr5 | Toll-like receptor 5 | 1.200 | 0.001 |
Ccl20 | C-C motif chemokine ligand 20 | 1.529 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-y.; Im, J.A.; Kim, J.Y. Exploring the Effect of Deep-Sea Water on the Therapeutic Potential of the Anti-Inflammatory Response in an Indomethacin-Induced Gastric Ulcer Rat Model. Int. J. Mol. Sci. 2023, 24, 17430. https://doi.org/10.3390/ijms242417430
Park S-y, Im JA, Kim JY. Exploring the Effect of Deep-Sea Water on the Therapeutic Potential of the Anti-Inflammatory Response in an Indomethacin-Induced Gastric Ulcer Rat Model. International Journal of Molecular Sciences. 2023; 24(24):17430. https://doi.org/10.3390/ijms242417430
Chicago/Turabian StylePark, Soo-yeon, Jin A Im, and Ji Yeon Kim. 2023. "Exploring the Effect of Deep-Sea Water on the Therapeutic Potential of the Anti-Inflammatory Response in an Indomethacin-Induced Gastric Ulcer Rat Model" International Journal of Molecular Sciences 24, no. 24: 17430. https://doi.org/10.3390/ijms242417430
APA StylePark, S.-y., Im, J. A., & Kim, J. Y. (2023). Exploring the Effect of Deep-Sea Water on the Therapeutic Potential of the Anti-Inflammatory Response in an Indomethacin-Induced Gastric Ulcer Rat Model. International Journal of Molecular Sciences, 24(24), 17430. https://doi.org/10.3390/ijms242417430