State-of-the-Art Review on Amorphous Carbon Nanotubes: Synthesis, Structure, and Application
Abstract
:1. Introduction
2. Comparison of the CNTs
CNTs | Sidewall Carbon Atom | Sidewall Layers Number | Nanotube Shape | Defects Quantity | Property Dependence on Structural Defects |
---|---|---|---|---|---|
aCNTs | Amorphous and graphitic carbon atoms | Several | Straight tubular structure in most cases, coiled, brushes, “test tube”-like; one open end or both ends open; and coral-like aCNTs in a few cases | Plenty | Slightly |
SWCNTs | Graphitic carbon atoms | One | Curly or entangled, bundles in most cases; sometimes can be serpentine, cross-bar, or with specific turning angles | Nearly none | Severe |
DWCNTs | Graphitic carbon atoms | Two | Curly or entangled | Nearly none | Severe |
MWCNTs | Graphitic carbon atoms | Several | Curly or entangled | Modicum | Slightly |
3. Synthesis Methods
Method | Raw Materials | Product | Ref. |
---|---|---|---|
Template | V3O7·H2O as template and glucose as carbon source, via hydrothermal route | Hydrogenated aCNTs | [19] |
AAO | aCNTs composited with SnO2, MnO2/GO or bimetal oxide | [33,34,35,36] | |
Sulfonated polymer nanotubes | aCNTs | [37] | |
PVP as template and Ni as catalyst, via triple-coaxial electrospinning | aCNTs decorated with graphite nanospheres | [38] | |
ZnO nanowires as template and formaldehyde resign as carbon source | aCNTs | [39] | |
SnO2 nanowires as template and glucose as carbon source, via hydrothermal | aCNTs encapsulated with SnO2 nanowires | [40] | |
Sulfonated polymer nanotubes | Thin-walled porous aCNTs | [41] | |
PC membrane filters as template and glucose as carbon source | Amorphous carbon/PC membrane composite | [42] | |
Aligned TiO2 nanotubes as template, via electrochemical deposition | Aligned aCNTs/TiO2 | [43] | |
Halloysite as template | aCNTs | [44] | |
CVD | Acetylene, Co/Ni-modified Si as catalyst | aCNTs encapsulated with Si | [27] |
Xylene, ferrocene, and triethylsilane | Network or aligned, coiled, V-shaped, and ribbon-like aCNTs with different raw material ratios | [45,46,47,48] | |
Electron cyclotron resonance—CVD, AAM as template, acetylene and Ar as precursor, ca. 100 °C for 4 min | Aligned hydrogenated aCNTs | [49] | |
Mesoporous silica SBA-15 as matrix, Fe2O3 as catalyst, and hexane as carbon source | aCNTs | [50] | |
Co-Ni as catalyst and acetylene as carbon source | aCNTs | [51] | |
Acetylene as carbon source and iron-coated indium tin oxide as substrate | Indium oxide encapsulated in aCNTs | [52] | |
Catalytic pyrolysis | Poly(tetrafluoroethylene) and ferrous chloride | aCNTs | [8,53] |
AAM as template and ferrocene as raw material | aCNTs encapsulated with iron oxide nanoparticles | [54,55] | |
Fe-Co/CaCO3 as bimetallic catalyst and ethylene as carbon source | aCNTs or N-doped aCNTs (N2 as gas carrier) | [56,57,58] | |
Co/RGO as catalyst and ethanol as carbon source | aCNTs/RGO composite | [59] | |
Low-temperature synthesis | Ferrocene and ammonium chloride | aCNTs | [9,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92] |
Polycarbonate membrane as template, glucose decomposition | aCNT brushes | [25,93] | |
Self-catalysis decomposition of Ni bis(dimethylglyoximate) at 250 °C | aCNTs or Ni-containing aCNTs | [94] | |
Self-catalysis decomposition | Ferrocene in benzene | Long aCNT bundles | [95] |
Arc discharge | Co-Ni (1:1) alloy and graphite | aCNTs and soot | [96] |
Mo-Co2O3-Mg (1:1:8 wt.%) powders as catalyst and graphene sheets as carbon source | [97] | ||
Thermal evaporation | Carbon paper as carbon source | aCNTs encapsulated with Sn | [98] |
3.1. Template
3.2. Chemical Vapor Deposition
3.3. Catalytic Pyrolysis
3.4. Low-Temperature Synthesis
3.5. Arc Discharge
3.6. Others
4. Structure
5. Applications
5.1. Electrical Applications
5.2. Absorption
5.3. Supports and Templates
5.4. Other Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sheng, Q.; Liu, H.; Jin, B.; Li, Q.; Li, L.; Cui, M.; Li, Y.; Lang, X.; Jiang, Q. 1T-MoS2 Grown on Amorphous Carbon-Coated Carbon Nanotubes for High-Performance Lithium-Sulfur Batteries. J. Electroanal. Chem. 2023, 929, 117119. [Google Scholar] [CrossRef]
- Guo, T.; Hu, P.; Li, L.; Wang, Z.; Guo, L. Amorphous Materials Emerging as Prospective Electrodes for Electrochemical Energy Storage and Conversion. Chem 2023, 9, 1080–1093. [Google Scholar] [CrossRef]
- Ganguly, D.; Ramanujam, K.; Sundara, R. Low-Temperature Synthesized Pt3Fe Alloy Nanoparticles on Etched Carbon Nanotubes Catalyst Support Using Oxygen-Deficient Fe2O3 as a Catalytic Center for PEMFC Applications. ACS Sustain. Chem. Eng. 2023, 11, 3334–3345. [Google Scholar] [CrossRef]
- Abubakre, O.K.; Medupin, R.O.; Akintunde, I.B.; Jimoh, O.T.; Abdulkareem, A.S.; Muriana, R.A.; James, J.A.; Ukoba, K.O.; Jen, T.-C.; Yoro, K.O. Carbon Nanotube-Reinforced Polymer Nanocomposites for Sustainable Biomedical Applications: A Review. J. Sci. Adv. Mater. Devices 2023, 8, 100557. [Google Scholar] [CrossRef]
- Asghar, F.; Murtaza, B.; Shakoor, B.; Iqbal, N.; Shafique, M.; Murtaza, R.; Butler, I.S. Properties, Assembly and Characterization of Carbon Nanotubes: Their Application in Water Purification, Environmental Pollution Control and Biomedicines—A Comprehensive Review. Carbon Lett. 2023, 33, 275–306. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Hu, Y.; Kang, L.; Zhang, S.; Xie, H.; Liu, D.; Zhao, Q.; Li, Q.; Zhang, J. State of the Art of Single-Walled Carbon Nanotube Synthesis on Surfaces. Adv. Mater. 2014, 26, 5898–5922. [Google Scholar] [CrossRef]
- Bera, B. Synthesis, Properties and Applications of Amorphous Carbon Nanotube and MoS2 Nanosheets: A Review. Nano Trends 2019, 21, 36–52. [Google Scholar]
- Nishino, H.; Yamaguchi, C.; Nakaoka, H.; Nishida, R. Carbon Nanotube with Amorphous Carbon Wall: α-CNT. Carbon 2003, 41, 2165–2167. [Google Scholar] [CrossRef]
- Tan, K.H.; Ahmad, R.; Johan, M.R. Electromagnetic and Microwave Absorbing Properties of Amorphous Carbon Nanotube–Cadmium Selenide Quantum Dot Hybrids. Mater. Chem. Phys. 2013, 139, 66–72. [Google Scholar] [CrossRef]
- Pahari, D.; Das, B.; Das, N.S.; Howli, P.; Chattopadhyay, K.K.; Sarkar, S.; Banerjee, D. Enhanced Electrochemical Performance of Copper Oxide Nanoparticle Decorated Amorphous Carbon Nanotubes. Adv. Sci. Eng. Med. 2017, 9, 263–270. [Google Scholar] [CrossRef]
- Kumari, R.; Singh, F.; Yadav, B.S.; Kotnala, R.K.; Peta, K.R.; Tyagi, P.K.; Kumar, S.; Puri, N.K. Ion Irradiation-Induced, Localized sp2 to sp3 Hybridized Carbon Transformation in Walls of Multiwalled Carbon Nanotubes. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 412, 115–122. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, C.Z.; Yu, T.X.; Woo, C.H.; Zhang, B.; Dai, Y.T. Formation of sp3 Bonding in Nanoindented Carbon Nanotubes and Graphite. Phys. Rev. Lett. 2004, 93, 245502. [Google Scholar] [CrossRef]
- Zhao, T.; Hou, C.; Zhang, H.; Zhu, R.; She, S.; Wang, J.; Li, T.; Liu, Z.; Wei, B. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes. Sci. Rep. 2015, 4, 5619. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Brozena, A.H.; Wang, Y. Double-Walled Carbon Nanotubes: Challenges and Opportunities. Nanoscale 2011, 3, 503–518. [Google Scholar] [CrossRef] [PubMed]
- Esawi, A.M.; Farag, M.M. Carbon Nanotube Reinforced Composites: Potential and Current Challenges. Mater. Des. 2007, 28, 2394–2401. [Google Scholar] [CrossRef]
- Cassell, A.M.; Raymakers, J.A.; Kong, J.; Dai, H. Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes. J. Phys. Chem. B 1999, 103, 6484–6492. [Google Scholar] [CrossRef]
- Lu, X.; Wang, H.; Wang, Z.; Jiang, Y.; Cao, D.; Yang, G. Room-Temperature Synthesis of Colloidal SnO2 Quantum Dot Solution and Ex-Situ Deposition on Carbon Nanotubes as Anode Materials for Lithium Ion Batteries. J. Alloys Compd. 2016, 680, 109–115. [Google Scholar] [CrossRef]
- Sivakkumar, S.R.; Pandolfo, A.G. Carbon Nanotubes/Amorphous Carbon Composites as High-Power Negative Electrodes in Lithium Ion Capacitors. J. Appl. Electrochem. 2014, 44, 105–113. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Y.; Zhang, X.; Huang, Y.; Tan, X.; Huang, C.; Mei, X.; Niu, F.; Meng, C.; Cheng, G. Designed Synthesis of Tunable Amorphous Carbon Nanotubes (a-CNTs) by a Novel Route and Their Oxidation Resistance Properties. Bullet. Mater. Sci. 2014, 37, 1397–1402. [Google Scholar] [CrossRef]
- Ghosh, M.M. Estimation of Thermal Conductivity of Amorphous Carbon Nanotube Using Molecular Dynamics Simulations. J. Nanosci. Nanotechnol. 2013, 13, 2961–2966. [Google Scholar] [CrossRef]
- Ren, Z.; Lan, Y.; Wang, Y. Carbon Nanotubes. In Aligned Carbon Nanotubes: Physics, Concepts, Fabrication and Devices; Ren, Z., Lan, Y., Wang, Y., Eds.; NanoScience and Technology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 7–43. ISBN 978-3-642-30490-3. [Google Scholar]
- Duan, Z.; Yuan, Z.; Jiang, Y.; Liu, Y.; Tai, H. Amorphous Carbon Material of Daily Carbon Ink: Emerging Applications in Pressure, Strain, and Humidity Sensors. J. Mater. Chem. C 2023, 11, 5585–5600. [Google Scholar] [CrossRef]
- Yadav, S.K.; Atyia, H.E.; Fouad, S.S.; Sharma, A.; Mehta, N. Study of Linear and Non-Linear Optoelectronic Properties of Thermally Grown Thin Films of Amorphous Selenium Doped with Graphene, Multiwalled Carbon Nanotubes, and Silver Nanoparticles. Diam. Relat. Mater. 2023, 136, 110030. [Google Scholar] [CrossRef]
- Wei, D.; Liu, Y. The Intramolecular Junctions of Carbon Nanotubes. Adv. Mater. 2008, 20, 2815–2841. [Google Scholar] [CrossRef]
- Dinesh, J.; Eswaramoorthy, M.; Rao, C.N.R. Use of Amorphous Carbon Nanotube Brushes as Templates to Fabricate GaN Nanotube Brushes and Related Materials. J. Phys. Chem. C 2007, 111, 510–513. [Google Scholar] [CrossRef]
- Lou, Z.; Chen, Q.; Wang, W.; Zhang, Y. Synthesis of Carbon Nanotubes by Reduction of Carbon Dioxide with Metallic Lithium. Carbon 2003, 41, 3063–3067. [Google Scholar] [CrossRef]
- Zhao, T.; She, S.; Ji, X.; Jin, W.; Dang, A.; Li, H.; Li, T.; Shang, S.; Zhou, Z. In-Situ Growth Amorphous Carbon Nanotube on Silicon Particles as Lithium-Ion Battery Anode Materials. J. Alloys Compd. 2017, 708, 500–507. [Google Scholar] [CrossRef]
- Stubrov, Y.; Nikolenko, A.; Gubanov, V.; Strelchuk, V. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes. Nanoscale Res. Lett. 2016, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Zare, H.; Hosseini, M.A.; Malekie, S. Evaluation of 10 MeV Electron Irradiation-Induced Defects in Graphene Oxide and Multi-Walled Carbon Nanotube Using a Multi-Analytical Approach. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2023, 543, 165089. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, D.; Xu, Y.; Liu, S.; Xu, X.; Zhou, J.; Gao, F.; Tang, H.; Wang, Z.; Wu, Y.; et al. A Review on Electrode Materials of Fast-Charging Lithium-Ion Batteries. Chem. Rec. 2022, 22, e202200127. [Google Scholar] [CrossRef]
- Ren, X.-N.; Xia, M.; Yan, Q.-Z.; Ge, C.-C. Controllable Preparation of Tungsten/Tungsten Carbide Nanowires or Nanodots in Nanostructured Carbon with Hollow Macroporous Core/Mesoporous Shell. Chin. Phys. B 2017, 26, 038103. [Google Scholar] [CrossRef]
- Guan, L.; Shi, Z.; Gu, Z. Exfoliation of Single-Walled Carbon Nanotube Bundles under Electron Beam Irradiation. Carbon 2005, 43, 1101–1103. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, G.; Huang, Y.; Wang, B.; Yao, B.; Wu, Y. Preparation of Nanowire Arrays of Amorphous Carbon Nanotube-Coated Single Crystal SnO2. Chem. Mater. 2008, 20, 2612–2614. [Google Scholar] [CrossRef]
- Zhao, N.H.; Yang, L.C.; Zhang, P.; Wang, G.J.; Wang, B.; Yao, B.D.; Wu, Y.P. Polycrystalline SnO2 Nanowires Coated with Amorphous Carbon Nanotube as Anode Material for Lithium Ion Batteries. Mater. Lett. 2010, 64, 972–975. [Google Scholar] [CrossRef]
- Im, C.; Yun, Y.S.; Kim, B.; Park, H.H.; Jin, H.-J. Amorphous Carbon Nanotube/MnO2/Graphene Oxide Ternary Composite Electrodes for Electrochemical Capacitors. J. Nanosci. Nanotechnol. 2013, 13, 1765–1768. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, Y.; Guo, P.; Wang, C. Fast and Universal Approach to Encapsulating Transition Bimetal Oxide Nanoparticles in Amorphous Carbon Nanotubes under an Atmospheric Environment Based on the Marangoni Effect. ACS Appl. Mater. Interfaces 2017, 9, 31076–31082. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Tang, Y.; Liu, L.; Gao, Y.; Zeng, X. Physical Forces Inducing Thin Amorphous Carbon Nanotubes Derived from Polymer Nanotube/SiO2 Hybrids with Superior Rate Capability for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 36985–36990. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lu, Z.; Zhou, L.; Mai, Y.-W.; Huang, H. Triple-Coaxial Electrospun Amorphous Carbon Nanotubes with Hollow Graphitic Carbon Nanospheres for High-Performance Li Ion Batteries. Energy Environ. Sci. 2012, 5, 7898–7902. [Google Scholar] [CrossRef]
- Lan, X.; Ye, W.; Zheng, H.; Cheng, Y.; Zhang, Q.; Peng, D.-L.; Wang, M.-S. Encapsulating Lithium and Sodium inside Amorphous Carbon Nanotubes through Gold-Seeded Growth. Nano Energy 2019, 66, 104178. [Google Scholar] [CrossRef]
- Li, Q.; Li, W.; Feng, Q.; Wang, P.; Mao, M.; Liu, J.; Zhou, L.; Wang, H.; Yao, H. Thickness-Dependent Fracture of Amorphous Carbon Coating on SnO2 Nanowire Electrodes. Carbon 2014, 80, 793–798. [Google Scholar] [CrossRef]
- Liang, W.; Tang, Y.; Liu, L.; Zhu, C.; Sheng, R. Effective Trapping of Polysulfides Using Functionalized Thin-Walled Porous Carbon Nanotubes as Sulfur Hosts for Lithium–Sulfur Batteries. Inorg. Chem. 2020, 59, 8481–8486. [Google Scholar] [CrossRef]
- Zhu, S.J.; Zhang, J.; Ma, J.J.; Zhang, Y.X.; Yao, K.X. Rational Design of Coaxial Mesoporous Birnessite Manganese Dioxide/Amorphous-Carbon Nanotubes Arrays for Advanced Asymmetric Supercapacitors. J. Power Sources 2015, 278, 555–561. [Google Scholar] [CrossRef]
- Jiang, J.; Fang, H.; Zhang, X.; He, K.; Wei, Z.; Pang, X.; Dai, J. Electrochemical Synthesis of Aligned Amorphous Carbon Nanotubes/TiO2 Nanotubes Heterostructured Arrays and Its Field Emission Properties. Diam. Relat. Mater. 2017, 74, 205–211. [Google Scholar] [CrossRef]
- Mu, D.; Chen, Z.; Liu, T.; He, Z.; Zhang, Y.; Yang, H.; Zuo, X.; Ouyang, J. Interfacial Multi-Reflection in Barium Ferrite Nanosheets/ Amorphous Carbon Nanotube Composites for Effective Electromagnetic Shielding Applications. Mater. Chem. Phys. 2021, 267, 124606. [Google Scholar] [CrossRef]
- Zhao, T.; Ji, X.; Liu, H.; Yao, P.; Liu, W.; Xiong, C.; Li, T.; Wang, C. Growth of Well-Aligned Carbon Nanotubes with Different Shapes. Appl. Surf. Sci. 2015, 357, 2136–2140. [Google Scholar] [CrossRef]
- Zhao, T.; Ji, X.; Jin, W.; Xiong, C.; Ma, W.; Wang, C.; Duan, S.; Dang, A.; Li, H.; Li, T.; et al. Synthesis and Electromagnetic Wave Absorption Property of Amorphous Carbon Nanotube Networks on a 3D Graphene Aerogel/BaFe12O19 Nanocomposite. J. Alloys Compd. 2017, 708, 115–122. [Google Scholar] [CrossRef]
- Zhao, T.; Ji, X.; Jin, W.; Guo, S.; Zhao, H.; Yang, W.; Wang, X.; Xiong, C.; Dang, A.; Li, H.; et al. Electromagnetic Wave Absorbing Properties of Aligned Amorphous Carbon Nanotube/BaFe12O19 Nanorod Composite. J. Alloys Compd. 2017, 703, 424–430. [Google Scholar] [CrossRef]
- Zhao, T.; Ji, X.; Jin, W.; Wang, C.; Ma, W.; Gao, J.; Dang, A.; Li, T.; Shang, S.; Zhou, Z. Direct In Situ Synthesis of a 3D Interlinked Amorphous Carbon Nanotube/Graphene/BaFe12O19 Composite and Its Electromagnetic Wave Absorbing Properties. RSC Adv. 2017, 7, 15903–15910. [Google Scholar] [CrossRef]
- Tsai, S.H.; Chiang, F.K.; Tsai, T.G.; Shieu, F.S.; Shih, H.C. Synthesis and Characterization of the Aligned Hydrogenated Amorphous Carbon Nanotubes by Electron Cyclotron Resonance Excitation. Thin Solid Film. 2000, 366, 11–15. [Google Scholar] [CrossRef]
- Lu, A.-H.; Schmidt, W.; Tatar, S.-D.; Spliethoff, B.; Popp, J.; Kiefer, W.; Schüth, F. Formation of Amorphous Carbon Nanotubes on Ordered Mesoporous Silica Support. Carbon 2005, 43, 1811–1814. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, T.; Ji, X.; Peng, X.; Jin, W.; Yang, W.; Zhang, L.; Gao, J.; Dang, A.; Li, H.; et al. Synthesis and Electrochemical Property of Amorphous Carbon Nanotubes Wrapped Sulfur Particles as Cathode Material for Lithium-Sulfur Batteries. Chem. Phys. Lett. 2017, 688, 59–65. [Google Scholar] [CrossRef]
- Supangat, A.; Bryant, G.; Belcher, W.; Dastoor, P. Synthesis of Indium Oxide Nanowires Encapsulated in Amorphous Carbon Nanostructures on Indium Tin Oxide Substrate. Mater. Res. Innov. 2012, 16, 101–104. [Google Scholar] [CrossRef]
- Nishino, H.; Nishida, R.; Matsui, T.; Kawase, N.; Mochida, I. Growth of Amorphous Carbon Nanotube from Poly (Tetrafluoroethylene) and Ferrous Chloride. Carbon 2003, 41, 2819–2823. [Google Scholar] [CrossRef]
- Hu, Z.D.; Hu, Y.F.; Chen, Q.; Duan, X.F.; Peng, L.-M. Synthesis and Characterizations of Amorphous Carbon Nanotubes by Pyrolysis of Ferrocene Confined within AAM Templates. J. Phys. Chem. B 2006, 110, 8263–8267. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.F.; Liang, X.L.; Chen, Q.; Peng, L.-M.; Hu, Z.D. Electrical Characteristics of Amorphous Carbon Nanotube and Effects of Contacts. Appl. Phys. Lett. 2006, 88, 063113. [Google Scholar] [CrossRef]
- Zikalala, S.A.; Selvaraj, R.; Al Marzouqi, F.; Kuvarega, A.T.; Mamba, B.B.; Mhlanga, S.D.; Nxumalo, E.N. Amorphous Carbon Nanotube Residue Modification of Solgel-Synthesized C-, N-Doped TiO2 for Photocatalytic Applications. J. Nanopart. Res. 2020, 22, 374. [Google Scholar] [CrossRef]
- Zikalala, S.A.; Selvaraj, R.; Al Marzouqi, F.; Kuvarega, A.T.; Mamba, B.B.; Mhlanga, S.D.; Nxumalo, E.N. Tailoring TiO2 through N Doping and Incorporation of Amorphous Carbon Nanotubes via a Microwave-Assisted Hydrothermal Method. J. Environ. Chem. Eng. 2020, 8, 104082. [Google Scholar] [CrossRef]
- Zikalala, S.A.; Chabalala, M.B.; Gumbi, N.N.; Coville, N.J.; Mamba, B.B.; Mutuma, B.K.; Nxumalo, E.N. Microwave-Assisted Synthesis of Titania–Amorphous Carbon Nanotubes/Amorphous Nitrogen-Doped Carbon Nanotubes Nanohybrids for Photocatalytic Degradation of Textile Wastewater. RSC Adv. 2021, 11, 6748–6763. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, H.; Wang, H.; Bai, J. Composites of Amorphous Carbon Nanotube-Modified Reduced Graphene Oxide Synthesized by Ethanol Decomposition and Electrochemical Evaluation of Their Lithium Storage Properties. J. Mater. Sci. 2016, 51, 5529–5544. [Google Scholar] [CrossRef]
- Yusof, Y.; Johan, M. Concentration-Dependent Properties of Amorphous Carbon Nanotube/Silica Composites via the Sol–Gel Technique. CrystEngComm 2014, 16, 8570–8575. [Google Scholar] [CrossRef]
- Bhattacharjee, K.; Maity, S.; Das, G.C.; Chattopadhyay, K.K. Ni–Zn Ferrite-Loaded Superparamagnetic Amorphous Carbon Nanotubes through a Facile Route. Colloid Polym. Sci. 2013, 291, 2589–2597. [Google Scholar] [CrossRef]
- Ganguly, D.; Banerjee, D.; Das, B.; Das, N.S.; Ghorai, U.K.; Chattopadhyay, K.K. Amorphous Carbon Nanotube Mediated Low-Temperature Synthesis of Orange Emitting Self-Assembled Europium Oxy-Carbonate Microflower. Mater. Res. Bullet. 2019, 112, 307–313. [Google Scholar] [CrossRef]
- Bera, B.; Banerjee, D. Preparation and Characterization of Amorphous Carbon Nanotube-MoS2 Nanohybrid. Int. J. Res. Eng. Sci. Manag. 2019, 2, 5–8. [Google Scholar]
- Tan, K.H. Synthesis and Characterizations of Amorphous Carbon Nanotubes/Cadmium Selenide Quantum Dots Hybrid Materials/Tan Kim Han. Ph.D. Thesis, University of Malaya, Kuala Lumpur, Malaysia, 2012. [Google Scholar]
- Tan, K.H.; Ahmad, R.; Leo, B.F.; Yew, M.C.; Ang, B.C.; Johan, M.R. Physico-Chemical Studies of Amorphous Carbon Nanotubes Synthesized at Low Temperature. Mater. Res. Bullet. 2012, 47, 1849–1854. [Google Scholar] [CrossRef]
- Banerjee, D.; Nawn, D.; Chattopadhyay, K.K. Synthesis of SnO2 Functionalized Amorphous Carbon Nanotube for Efficient Electron Field Emission Application. J. Alloys Compd. 2013, 572, 49–55. [Google Scholar] [CrossRef]
- Bera, B.; Banerjee, D. A Detail Opto-Electronic and Photocatalytic Study of Amorphous Carbon Nanotubes–MoS2 Hybrids. Nano Trends 2019, 21, 19–30. [Google Scholar]
- Banerjee, D.; Jha, A.; Chattopadhyay, K.K. Synthesis and Characterization of Water Soluble Functionalized Amorphous Carbon Nanotube-Poly(Vinyl Alcohol) Composite. Macromol. Res. 2012, 20, 1021–1028. [Google Scholar] [CrossRef]
- Jha, A.; Banerjee, D.; Chattopadhyay, K.K. Improved Field Emission from Amorphous Carbon Nanotubes Bysurface Functionalization with Stearic Acid. Carbon 2011, 49, 1272–1278. [Google Scholar] [CrossRef]
- Sarkar, S.; Banerjee, D.; Das, N.S.; Chattopadhyay, K.K. A Simple Chemical Synthesis of Amorphous Carbon Nanotubes–MnO2 Flake Hybrids for Cold Cathode Application. Appl. Surf. Sci. 2015, 347, 824–831. [Google Scholar] [CrossRef]
- Ganguly, D.; Pahari, D.; Das, N.S.; Howli, P.; Das, B.; Banerjee, D.; Chattopadhyay, K.K. All-Amorphous CNT-MnO2 Nanoflaky Hybrid for Improved Supercapacitor Applications. J. Electroanal. Chem. 2016, 778, 12–22. [Google Scholar] [CrossRef]
- Pahari, D.; Das, N.S.; Das, B.; Howli, P.; Chattopadhyay, K.K.; Banerjee, D. Enhanced Electrochemical Performance of Amorphous Carbon Nanotube-Manganese-Di-Oxide-Poly-Pyrrole Ternary Nanohybrid. Solid State Sci. 2017, 74, 101–108. [Google Scholar] [CrossRef]
- Bera, B.; Banerjee, D. Synthesis, Characterization of MoS2 Nanosheets, Amorphous Carbon Nanotube (ACNT) and ACNT-MoS2 Nanohybrids: A Comparative Research Analysis. J. Nanosci. 2019, 9, 10. [Google Scholar]
- Maity, S.; Goswami, S.; Kumar Chattopadhyay, K. Amorphous Carbon Nanotube–Polyaniline Core–Shell Nanostructures for Efficient Cold Cathode Applications. RSC Adv. 2013, 3, 26321–26327. [Google Scholar] [CrossRef]
- Maity, S.; Das, S.; Sen, D.; Chattopadhyay, K.K. Tailored CuO Nanostructures Decorated Amorphous Carbon Nanotubes Hybrid for Efficient Field Emitter with Theoretical Validation. Carbon 2018, 127, 510–518. [Google Scholar] [CrossRef]
- Banerjee, D.; Ghorai, U.K.; Das, N.S.; Das, B.; Thakur, S.; Chattopadhyay, K.K. Amorphous Carbon Nanotubes–Nickel Oxide Nanoflower Hybrids: A Low Cost Energy Storage Material. ACS Omega 2018, 3, 6311–6320. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, D.; Bhowmick, P.; Pahari, D.; Santra, S.; Sarkar, S.; Das, B.; Chattopadhyay, K.K. Pseudo First Ordered Adsorption of Noxious Textile Dyes by Low-Temperature Synthesized Amorphous Carbon Nanotubes. Phys. E Low-Dimens. Syst. Nanostructures 2017, 87, 68–76. [Google Scholar] [CrossRef]
- Chattopadhyay, K.K.; Banerjee, D.; Das, N.S.; Sarkar, D. Easy Synthesis of Amorphous Graphene and Related Hybrids for Cold Cathode Application. Carbon 2014, 72, 4–14. [Google Scholar] [CrossRef]
- Nawn, D.; Banerjee, D.; Chattopadhyay, K.K. Zinc Oxide Nanostructure Decorated Amorphous Carbon Nanotubes: An Improved Field Emitter. Diam. Relat. Mater. 2013, 34, 50–59. [Google Scholar] [CrossRef]
- Sarkar, S.K.; Jha, A.; Chattopadhyay, K.K. Well-Dispersed Amorphous Carbon Nanotube-Alumina Nanocompositefor Nanofluid with Improved Thermal Conductivity. AIP Conf. Proc. 2020, 2269, 030072. [Google Scholar] [CrossRef]
- Sardar, K.; Thakur, S.; Maiti, S.; Besra, N.; Bairi, P.; Chanda, K.; Majumdar, G.; Kumar Chattopadhyay, K. Amalgamation of MnWO4 Nanorods with Amorphous Carbon Nanotubes for Highly Stabilized Energy Efficient Supercapacitor Electrodes. Dalton Trans. 2021, 50, 5327–5341. [Google Scholar] [CrossRef]
- Halder, D.; Midya, P.R.; Das, S.; Das, N.S.; Roy, I.; Chattopadhyay, K.K. Amorphous Carbon Nanotubes Incorporated MgO-Graphite Composite with Enhanced Properties for Steel Making Furnaces. Ceram. Int. 2016, 42, 15826–15835. [Google Scholar] [CrossRef]
- Maity, S.; Das, N.S.; Chattopadhyay, K.K. Controlled Surface Damage of Amorphous and Crystalline Carbon Nanotubes for Enhanced Field Emission. Phys. Status Solidi B 2013, 250, 1919–1925. [Google Scholar] [CrossRef]
- Maity, S.; Das, B.; Samanta, M.; Das, B.K.; Ghosh, S.; Chattopadhyay, K.K. MoSe2-Amorphous CNT Hierarchical Hybrid Core–Shell Structure for Efficient Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2020, 3, 5067–5076. [Google Scholar] [CrossRef]
- Banerjee, D.; Pahari, D.; Chattopadhyay, K. Synthesis of Amorphous Carbon Nanotube-Copper Hybrid and Its Optical Properties. Int. J. Eng. Technol. Manag. 2015, 4, 413. [Google Scholar]
- Sarkar, S.; Banerjee, D.; Pahari, D.; Chattopadhyay, K.K. Optical Properties of Chemically Synthesized Amorphous Carbon Nanotube and Cadmium Selenide Quantum Dot Hybrid. In Proceedings of the 2017 Devices for Integrated Circuit (DevIC), Kalyani, India, 23–24 March 2017; pp. 527–530. [Google Scholar]
- Banerjee, D.; Jha, A.; Chattopadhyay, K.K. Stable Dispersion of Functionalized Amorphous Carbon Nanotubes in Different Liquids. J. Nanofluids 2012, 1, 28–35. [Google Scholar] [CrossRef]
- Hwang, J.; Long, W.S. Synthesis and Characterization of Silver Particles Decorated Amorphous Carbon Nanotubes. Master’s Thesis, Universiti Tunku Abdul Rahman, Petaling Jaya, Malaysia, 2017; 112p. [Google Scholar]
- Pahari, D.; Ganguly, D.; Chattopadhyay, K.K.; Banerjee, D. Amorphous CNT/MnO2 Nanohybrid for Improved Energy Storage Applications. In Proceedings of the 2016 International Conference on Computer, Electrical Communication Engineering (ICCECE), Kolkata, India, 16–17 December 2016; pp. 1–6. [Google Scholar]
- Maity, S.; Samanta, M.; Roychowdhury, T.; Rakshit, S.; Chattopadhyay, K.K. Polypyrrole Decorated Amorphous CNT: A Potential ORR Electrocatalyst in Alkaline Medium. AIP Conf. Proc. 2020, 2220, 080039. [Google Scholar] [CrossRef]
- Jha, A.; Ghorai, U.K.; Banerjee, D.; Mukherjee, S.; Chattopadhyay, K.K. Surface Modification of Amorphous Carbon Nanotubes with Copper Phthalocyanine Leading to Enhanced Field Emission. RSC Adv. 2012, 3, 1227–1234. [Google Scholar] [CrossRef]
- Bhowmick, P.; Banerjee, D.; Santra, S.; Sen, D.; Das, B.; Chattopadhyay, K.K. Amorphous Carbon Nanotubes as Potent Sorbents for Removal of a Phenolic Derivative Compound and Arsenic: Theoretical Support of Experimental Findings. RSC Adv. 2016, 6, 8913–8922. [Google Scholar] [CrossRef]
- Raidongia, K.; Eswaramoorthy, M. Synthesis and Characterization of Metal Oxide Nanorod Brushes. Bull. Mater. Sci. 2008, 31, 87–92. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, K.; Liu, Y.; Zhu, Y.; Yu, W.; Qian, Y. Synthesis at 250 °C of Submicron Hydrogenated Amorphous Carbon “Test Tubes”. Carbon 2007, 45, 1571–1577. [Google Scholar] [CrossRef]
- Xiong, Y.; Xie, Y.; Li, X.; Li, Z. Production of Novel Amorphous Carbon Nanostructures from Ferrocene in Low-Temperature Solution. Carbon 2004, 42, 1447–1453. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, Y.; Zhu, J. Temperature and Catalyst Effects on the Production of Amorphous Carbon Nanotubes by a Modified Arc Discharge. Carbon 2005, 43, 2907–2912. [Google Scholar] [CrossRef]
- Zhao, T.; Ji, X.; Jin, W.; Yang, W.; Li, T. Coral-like Amorphous Carbon Nanotubes Synthesized by a Modified Arc Discharge. Fuller. Nanotub. Carbon Nanostructures 2017, 25, 359–362. [Google Scholar] [CrossRef]
- Li, R.; Sun, X.; Zhou, X.; Cai, M.; Sun, X. Aligned Heterostructures of Single-Crystalline Tin Nanowires Encapsulated in Amorphous Carbon Nanotubes. J. Phys. Chem. C 2007, 111, 9130–9135. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, T.; Peng, X.; Yang, W.; Ji, X.; Li, T. Growth of Coiled Amorphous Carbon Nanotube Array Forest and Its Electromagnetic Wave Absorbing Properties. Compos. Part B Eng. 2018, 134, 91–97. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, Y.; Zhu, J. Gas and Pressure Effects on the Synthesis of Amorphous Carbon Nanotubes. Chin. Sci. Bullet. 2004, 49, 2569–2571. [Google Scholar] [CrossRef]
- Zhao, T.; Ji, X.; Jin, W.; Yang, W.; Zhao, X.; Dang, A.; Li, H.; Li, T. In Situ Synthesis of Semiconducting Single-Walled Carbon Nanotubes by Modified Arc Discharging Method. Appl. Phys. A 2017, 123, 132. [Google Scholar] [CrossRef]
- Luo, T.; Chen, L.; Bao, K.; Yu, W.; Qian, Y. Solvothermal Preparation of Amorphous Carbon Nanotubes and Fe/C Coaxial Nanocables from Sulfur, Ferrocene, and Benzene. Carbon 2006, 44, 2844–2848. [Google Scholar] [CrossRef]
- Fang, Z.; Fan, Y.; Liu, Y. Photochemical Synthesis and Photocatalysis Application of ZnS/Amorphous Carbon Nanotubes Composites. Front. Optoelectron. China 2011, 4, 121. [Google Scholar] [CrossRef]
- Fu, N.; Liu, Y.; Liu, R.; Wang, X.; Yang, Z. Metal Cation-Assisted Synthesis of Amorphous B, N Co-Doped Carbon Nanotubes for Superior Sodium Storage. Small 2020, 16, 2001607. [Google Scholar] [CrossRef]
- Urones-Garrote, E.; Ávila-Brande, D.; Ayape-Katcho, N.; Gómez-Herrero, A.; Landa-Cánovas, A.R.; Otero-Díaz, L.C. Amorphous Carbon Nanostructures from Chlorination of Ferrocene. Carbon 2005, 43, 978–985. [Google Scholar] [CrossRef]
- Wang, R.-C.; Hsu, C.-C.; Chen, S.-J. The Evolution of Well-Aligned Amorphous Carbon Nanotubes and Porous ZnO/C Core–Shell Nanorod Arrays for Photosensor Applications. Nanotechnology 2010, 22, 035704. [Google Scholar] [CrossRef]
- Zielinski, W.; Kamedulski, P.; Smolarkiewicz-Wyczachowski, A.; Skorupska, M.; Lukaszewicz, J.P.; Ilnicka, A. Synthesis of Hybrid Carbon Materials Consisting of N-Doped Microporous Carbon and Amorphous Carbon Nanotubes. Materials 2020, 13, 2997. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M. Modelling Networks in Varying Dimensions. In Molecular Dynamics Simulations of Disordered Materials: From Network Glasses to Phase-Change Memory Alloys; Massobrio, C., Du, J., Bernasconi, M., Salmon, P.S., Eds.; Springer Series in Materials Science; Springer International Publishing: Cham, Switzerland, 2015; pp. 215–254. ISBN 978-3-319-15675-0. [Google Scholar]
- Ren, X.-N.; Xia, M.; Yan, Q.-Z.; Ge, C.-C. Full filling of mesoporous carbon nanotubes by aqueous solution at room temperature. Chin. Phys. B 2019, 28, 036801. [Google Scholar] [CrossRef]
- Ren, X.; Xia, M.; Yan, Q.; Ge, C. Controllable Modification of Nanostructured Carbon with Hollow Macroporous Core/Mesoporous Shell and Its Application as Templates in Aqueous Solution. Chem. Phys. Lett. 2016, 662, 286–290. [Google Scholar] [CrossRef]
- Ci, L.; Wei, B.; Xu, C.; Liang, J.; Wu, D.; Xie, S.; Zhou, W.; Li, Y.; Liu, Z.; Tang, D. Crystallization Behavior of the Amorphous Carbon Nanotubes Prepared by the CVD Method. J. Cryst. Growth 2001, 233, 823–828. [Google Scholar] [CrossRef]
- Nishino, H.; Nishida, R.; Okimi, K.; Yokomichi, Y.; Matsui, T.; Mochida, I. Structural Change of α-Carbon Nanotube Through Annealing. Chem. Lett. 2004, 33, 162–163. [Google Scholar] [CrossRef]
- Dian, L.Y.; Johan, M.R. Functionalization of Amorphous Carbon Nanotubes for Au Nanoparticles Hybridization. Fuller. Nanotub. Carbon Nanostructures 2015, 23, 181–186. [Google Scholar] [CrossRef]
- Ren, X.-N.; Xia, M.; Yan, Q.-Z.; Ge, C.-C. Utilising the Adsorptivity of Mesoporous Carbon Nanotubes to Prepare Nanomaterials: A Shape-Controllable and Catalyst-Free Preparation Mechanism of Tungsten Nanowire and Nanodots. Chem. Phys. Lett. 2020, 739, 136978. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, Y.; Li, T.; Zhao, X. Electrochemical Performance of Amorphous Carbon Nanotube as Anode Materials for Lithium Ion Battery. J. Nanosci. Nanotechnol. 2010, 10, 3873–3877. [Google Scholar] [CrossRef]
- Li, X.; Xue, C.; Liu, Y.; Zhao, J.; Zhang, J.; Zhang, J. Amorphous Structure and Sulfur Doping Synergistically Inducing Defect-Rich Short Carbon Nanotubes as a Superior Anode Material in Lithium-Ion Batteries. Electrochim. Acta 2023, 440, 141697. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, X.; Jiang, J.; Jiang, W.; Mao, P.; Gao, X.; Zhang, K.; Wu, M. One Dimensional Amorphous Carbon Nanotubes Derived from Palygorskite as Template for High Performance Lithium Ions Batteries. Ionics 2022, 28, 3731–3742. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, L.; Yu, X.-Y.; Lou, X.W. (David) Encapsulating Sn Nanoparticles in Amorphous Carbon Nanotubes for Enhanced Lithium Storage Properties. Adv. Energy Mater. 2016, 6, 1601177. [Google Scholar] [CrossRef]
- Zhang, H.; Li, W.; Pan, J.; Sun, Z.; Xiao, B.; Ye, W.; Ke, C.; Gao, H.; Cheng, Y.; Zhang, Q.; et al. Synergistic Coupling of Amorphous Carbon and Graphitic Domains toward High-Rate and Long-Life K+ Storage. J. Energy Chem. 2022, 73, 533–541. [Google Scholar] [CrossRef]
- Jain, K.; Bhowmick, P.; Das, B.; Sarkar, J.; Gain, A.; Ghorai, U.K.; Chattopadhyay, K.K.; Banerjee, D. Amorphous Carbon Nanotubes-Molybdenum Disulphide: A Potential Material for Energy Storage. Mater. Today Commun. 2022, 33, 104665. [Google Scholar] [CrossRef]
- Ibrahim, S.; Ahmad, R.; Johan, M.R. Conductivity and Optical Studies of Plasticized Solid Polymer Electrolytes Doped with Carbon Nanotube. J. Lumin. 2012, 132, 147–152. [Google Scholar] [CrossRef]
- Ibrahim, S.; Johan, M.R. Conductivity, Thermal and Neural Network Model Nanocomposite Solid Polymer Electrolyte S LiPF6. Int. J. Electrochem. Sci 2011, 6, 5565–5587. [Google Scholar] [CrossRef]
- Ibrahim, S.; Yasin, S.M.M.; Nee, N.M.; Ahmad, R.; Johan, M.R. Conductivity, Thermal and Infrared Studies on Plasticized Polymer Electrolytes with Carbon Nanotubes as Filler. J. Non-Cryst. Solids 2012, 358, 210–216. [Google Scholar] [CrossRef]
- Johan, M.R.; Ibrahim, S. Optimization of Neural Network for Ionic Conductivity of Nanocomposite Solid Polymer Electrolyte System (PEO–LiPF6–EC–CNT). Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 329–340. [Google Scholar] [CrossRef]
- Hou, C.; Song, S.; Zhou, X.; Wei, J.; Li, T. Electromagnetic and Mechanical Properties of Fe3O4-Coated Amorphous Carbon Nanotube/Polyvinyl Chloride Composites. Compos. Interfaces 2016, 23, 901–907. [Google Scholar] [CrossRef]
- Kong, L.; Luo, S.; Zhang, S.; Zhang, G.; Liang, Y. Ultralight Pyrolytic Carbon Foam Reinforced with Amorphous Carbon Nanotubes for Broadband Electromagnetic Absorption. Int. J. Min. Met. Mater. 2023, 30, 570–580. [Google Scholar] [CrossRef]
- Ray, U.; Sarkar, S.; Sharma, P.; Dhariwal, A.; Jha, A.; Das, N.S.; Kumar, S.; Banerjee, D.; Chattopadhyay, K.K. Silica-Amorphous Carbon Nanotube Hybrid Induced Removal of Rhodamine B from Water. Silicon 2023. [Google Scholar] [CrossRef]
- Ren, X.-N.; Xia, M.; Yan, Q.-Z.; Ge, C.-C. Large scale and controllable preparation of W2C nanorods or WC nanodots with peroxidase-like catalytic activity, Large scale and controllable preparation of W2C nanorods or WC nanodots with peroxidase-like catalytic activity. Chin. Phys. B 2017, 26, 048103. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Guo, P.; Wang, C. Self-Climbed Amorphous Carbon Nanotubes Filled with Transition Metal Oxide Nanoparticles for Large Rate and Long Lifespan Anode Materials in Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 26818–26825. [Google Scholar] [CrossRef] [PubMed]
- Kadish, K.M.; Ruoff, R.S. Proceedings of the Symposium on Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials; The Electrochemical Society: Pennington, NJ, USA, 1997; ISBN 978-1-56677-141-2. [Google Scholar]
- Tong, Z.; Yuan, Y.; Yin, S.; Wang, B.; Zhu, M.; Guo, S. Preparation and High-Performance Lithium Storage of Intimately Coupled MnO2 Nanosheets@Carbon Nanotube-in-Nanotube. Sustain. Mater. Technol. 2021, 29, e00312. [Google Scholar] [CrossRef]
- Jha, A.; Sarkar, S.K.; Chattopadhyay, K.K. In-Situ Grown ZnS Nanoparticles on Amorphous Carbon Nanotubes Improved Cold Cathode Emission and Photoluminescence. J. Nanosci. Nanotechnol. 2020, 20, 7686–7693. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Xing, Y.J.; Zhu, J.; Yu, D.P.; Zhao, Y.G.; Zhang, L.; Fang, H.; Huang, Z.P.; Xu, J. Structure and Electrical Properties of Ni Nanowire/Multiwalled-Carbon Nanotube/Amorphous Carbon Nanotube Heterojunctions. Adv. Funct. Mater. 2006, 16, 1081–1085. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, J.; Huang, Z.; Zhang, L. Arrays of Ni Nanowire/Multiwalled Carbon Nanotube/Amorphous Carbon Nanotube Heterojunctions Containing Schottky Contacts. Appl. Phys. Lett. 2007, 90, 033114. [Google Scholar] [CrossRef]
- Roy, R.; Jha, A.; Banerjee, D.; Sankar Das, N.; Chattopadhyay, K.K. Edge Effect Enhanced Electron Field Emission in Top Assembled Reduced Graphene Oxide Assisted by Amorphous CNT-Coated Carbon Cloth Substrate. AIP Adv. 2013, 3, 012115. [Google Scholar] [CrossRef]
- Castez, M.F.; Winograd, E.A.; Sánchez, V.M. Methane Flow through Organic-Rich Nanopores: The Key Role of Atomic-Scale Roughness. J. Phys. Chem. C 2017, 121, 28527–28536. [Google Scholar] [CrossRef]
The aCNTs’ Characteristics | Application Fields | Examples | Ref. |
---|---|---|---|
Structure | Template | Tungsten nanowires | [114] |
Support | Support MoSe2 nanosheets used in hybrid hydrogen evolution reaction | [84] | |
Reinforcement | Enhancing polymer | [68] | |
Electrical property | Supercapacitor | Metal-oxide-based supercapacitors, i.e., aCNT manganese di-oxide (MnO2)-poly pyrrole (PPy) ternary nanocomposites | [72] |
Battery | LIB anodes | [37] | |
Adsorption | Pollution | Removal of organic dyes from water | [77] |
Microwave | Electromagnetic wave absorption | [46] | |
Others | Field emission | Nano-CuO-decorated aCNTs | [75] |
Graphite substitute | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Hussain, M.I.; Chang, Y.; Ge, C. State-of-the-Art Review on Amorphous Carbon Nanotubes: Synthesis, Structure, and Application. Int. J. Mol. Sci. 2023, 24, 17239. https://doi.org/10.3390/ijms242417239
Ren X, Hussain MI, Chang Y, Ge C. State-of-the-Art Review on Amorphous Carbon Nanotubes: Synthesis, Structure, and Application. International Journal of Molecular Sciences. 2023; 24(24):17239. https://doi.org/10.3390/ijms242417239
Chicago/Turabian StyleRen, Xiaona, Muhammad Irfan Hussain, Yue Chang, and Changchun Ge. 2023. "State-of-the-Art Review on Amorphous Carbon Nanotubes: Synthesis, Structure, and Application" International Journal of Molecular Sciences 24, no. 24: 17239. https://doi.org/10.3390/ijms242417239
APA StyleRen, X., Hussain, M. I., Chang, Y., & Ge, C. (2023). State-of-the-Art Review on Amorphous Carbon Nanotubes: Synthesis, Structure, and Application. International Journal of Molecular Sciences, 24(24), 17239. https://doi.org/10.3390/ijms242417239